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On power sharing and stability in autonomous inverter-based

microgrids

Johannes Schiffer, Adolfo Anta, Truong Duc Trung, Jörg Raisch, Tevfik Sezi

Abstract— We consider the problem of voltage and frequency
stability for an autonomous inverter-based microgrid. An LMI-
based decentralized feedback control design is derived that
stabilizes the system under the consideration of droop-like
controllers aiming to achieve power sharing among the dif-
ferent generation units. We provide a design procedure that
accounts for uncertainties in line impedances and loads while
guaranteeing zero steady-state frequency deviation.

I. INTRODUCTION

An increasing amount of renewable energy sources is

present in the electrical grid, of which a large share are

small-scale distributed generation units connected at the

low (LV) and medium voltage (MV) levels via inverters.

The physical characteristics of such power electronic de-

vices largely differ from the characteristics of conventional

electrical generators (e.g. synchronous generators (SGs)),

and therefore different control strategies are needed [1].

Moreover, since these generation units are intermittent by

nature, more flexible operation and control strategies are

needed to balance consumption and generation. Microgrids

represent one promising solution that has received increasing

attention in recent years [2]. It addresses these issues by

gathering a combination of generation units, loads and energy

storage elements at distribution level into a locally control-

lable system, which can be operated in a decentralized and

even completely isolated manner from the main transmission

system. Microgrids have been identified as a key component

in future electrical networks [3]. Many new problems arise

for this type of networks. In this paper we focus on the

problem of guaranteeing voltage and frequency stability

for a microgrid under droop-like control (see below) by

providing additional decentralized feedback. The problem

of power sharing mainly addresses the following question:

upon load changes in the system, how should the different

generation units in the network adjust their output power in

order to fulfill the demand while satisfying a desired power

distribution. It is a requirement to achieve these objectives

in a decentralized way without communication among units

and allowing for a plug-and-play-like operation [2].

A control solution widely used to tackle this problem

in large power systems is droop control [4]. Under this
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approach, the current value of the frequency in the network is

monitored to derive how much active power each generating

unit needs to provide. In this way, the frequency (present

everywhere in the network) serves as an implicit communi-

cation signal. From a control perspective, droop control can

be regarded as a proportional controller where the control

gain (known as droop gain) specifies the steady-state power

distribution in the network. Since performance under droop

control is satisfactory for transmission systems, researchers

have first tried to apply this technique to microgrids [5],

[6], [7], [8]. Stability analysis is usually carried out by

means of detailed small-signal analysis as well as extensive

simulations and experimental studies aiming to characterize

a range for the droop gains guaranteeing system stability.

In this regard, several articles [9], [10] propose to make

inverters resemble the input/output behavior of SGs, so that

the widely existing knowledge and expertise on SGs can be

directly applied to inverter-based networks.

However, microgrids exhibit some characteristics that con-

siderably differ from large power systems and therefore

complicate a direct implementation of droop-like control

methods. Examples of such characteristics are low inertia,

no inherent physical relation between network frequency

and power balance, possibly large R/X ratio, etc. [11],

[12]. Several modifications to droop control have been pro-

posed [13], [14], where the stability problem is either ignored

or simplified by dealing with a linear model. While droop

control provides a satisfactory performance in terms of power

sharing, it has been observed that droop control can result

in poorly damped or even unstable systems [6], [8], [15],

[16]. Recently, conditions for proportional power sharing

and synchronization of a microgrid under frequency droop

control have been derived in [17] by applying results of the

theory of coupled oscillators. The considered model rep-

resents a lossless strongly-connected autonomous inverter-

based network with constant bus voltages.

To the best of the authors’ knowledge, there is no pub-

lished work so far that provides a control design for inverter-

based networks guaranteeing overall network stability for the

nonlinear model considering variable voltages and arbitrary

R/X ratios of the lines while accounting for power sharing.

Our main contributions in this sense are twofold. First, we

provide a decentralized control design for robust stability of

the nonlinear model of an inverter-based network formed by

an arbitrary number of inverters. Second, the design allows

to specify a range for the droop gains, rather than a fixed

value. In this way, the power sharing characteristics could

then be adjusted e.g., by market mechanisms similar to the
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present implementation in many large power systems [18],

[19], while preserving stability. Opposed to standard droop

control our approach does guarantee zero steady-state fre-

quency deviation. The proposed design merges ideas from

decentralized control for large power systems of SGs [20],

[21], [22] (where stabilizing control laws have been derived

for nonlinear models of power systems) and droop control

ideas (that target the requirement of power sharing). At the

technical level, this is achieved by solving a decentralized

output feedback problem for a desired range of the power

sharing gains (to be defined by the user). Additionally,

we account for line and load uncertainties by considering

multiplicative uncertainties in the admittance elements. The

control synthesis is also decentralized and formulated as a

linear matrix inequality (LMI) optimization problem, which

allows for efficient off-line computation. Moreover, this ro-

bust decentralized synthesis enables easy plug-and-play-like

integration of new generation units in the network without

recomputing controller gains of existing units, if the latter

have been determined accounting for sufficient robustness

with respect to uncertainties in loads and line impedances.

II. MODELING OF A MICROGRID

Whenever a grid is mainly formed by inverters, the latter

are normally operated in voltage source mode. A voltage

source inverter (VSI) behaves as a voltage source with con-

trollable magnitude and frequency of the output voltage [23].

To address the stability problem, the inverter is modeled as an

ideal voltage source where all internal control loops but the

power control loop are neglected [6], [8]. Given a particular

network, we work with the Kron-reduced admittance matrix

of the network, a standard method in power systems to

eliminate passive nodes [4]. Based on these assumptions, the

active and reactive power flow exchange at node i is given

by:

Pi =

n
∑

j=1

αij |Yij |ViVj cos(δi − δj − φij)

Qi =

n
∑

j=1

αij |Yij |ViVj sin(δi − δj − φij), (II.1)

where δi and δj are the phase angles at node i and j, δ̇i and

δ̇j their corresponding frequencies, Vi and Vj are the voltage

magnitudes, |Yij | represents the expected magnitude of the

admittance Yij between node i and j, φij is the admittance

angle of Yij , (αij−1) represents a multiplicative uncertainty

in |Yij | and n is the number of nodes in the network. All

phase angles δi are expressed with respect to an arbitrary

rotating reference frame with angular velocity ωnom [7].

The active and reactive power flows are measured through

a low pass filter with time constant τPi
:

˙̃Pi =
1

τPi

(

−P̃i + Pi

)

, ˙̃Qi =
1

τPi

(

−Q̃i +Qi

)

, (II.2)

where P̃i and Q̃i denote the measured active and reactive

power. In most power control approaches, e.g., droop control,

the inverter output frequency δ̇i is controlled instead of

directly controlling the phase angle δi [7]. Further, we

consider the input delay in the voltage via another low-pass

filter with time constant τVi
≪ τPi

, hence

δ̇i = ua
i, V̇i =

1

τVi

(−Vi + V d
i + ub

i ), (II.3)

where V d
i denotes the desired (nominal) operating voltage.

In that way, the model resembles the typical droop control

structure.

Based on (II.1), (II.2) and (II.3), we now build a

nonlinear multi-inverter network (Fig. 1). Notice that in

the here considered case of an autonomously operated

network the isolation switch is open. We denote by

ye
i = [δe

i V
e
i P̃ e

i Q̃e
i]
T , i = 1, . . . , n an equilibrium point of

the network, characterized by equations (II.1), (II.2) together

with (II.3) and ua,e
i = 0, ub,e

i = const. This equilibrium point

ye
i is usually not completely known explicitly in power

systems, as it depends on the network topologies and load

conditions (that are represented in the model through the

uncertainty coefficients αij). In order to derive control laws

guaranteeing stability with respect to ye
i , we define our state

variables as:

xi1 = δi − δe
i , xi2 = Vi − V e

i , (II.4)

xi3 = P̃i − P̃ e
i , xi4 = Q̃i − Q̃e

i, i = 1, . . . n.

Further we define:

∆ui =

[

∆ua
i

∆ub
i

]

=

[

ua
i − ua,e

i

ub
i − ub,e

i

]

, i = 1, . . . , n. (II.5)

Hence, we can rewrite the dynamics for the deviations from

the equilibrium point at node i as follows:

ẋi(t) = Aixi(t) +Bi∆ui(t) +

n
∑

j=1

κijGifij(xi, xj) (II.6)

with Bi =
[

Bi1 0
]T

, Gi =
[

0 1

τPi

I
]T

,

Ai =

[

Ai1 0
0 − 1

τPi

I

]

, Ai1 =

[

0 0
0 − 1

τVi

]

, Bi1 =

[

1 0
0 1

τVi

]

.

and κij are constants with values either 1 or 0 (κij = 0
means that the jth subsystem is not connected with the ith
subsystem). The nonlinear interconnections are given by:

fij(xi, xj)=



















αij |Yij |
(

(xi2 + V e
i )(xj2 + V e

j )

cos(xi1 − xj1 + φ̃ij)− V e
i V

e
j cos(φ̃ij)

)

αij |Yij |
(

(xi2 + V e
i )(xj2 + V e

j )

sin(xi1 − xj1 + φ̃ij)− V e
i V

e
j sin(φ̃ij)

)



















,

where φ̃ij = δe
i − δe

j − φij .

III. A DECENTRALIZED CONTROL SOLUTION FOR

VOLTAGE AND FREQUENCY STABILITY

In this paper we propose a decentralized control design

procedure that achieves stability (with respect to ye
i ) of

system (II.6) for a given set of droop-like controllers aiming

to achieve power sharing among the different nodes in the

network. From a control perspective, the power sharing

requirement relates to the design of the control law so

that the equilibrium point ye
i lies in a desired manifold,
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Fig. 1. Schematic representation of a multi-inverter network.

regardless of the network conditions (i.e., regardless of the

current value of αij .) Indeed, looking at the state equations

in (II.1), (II.2) and (II.3) it can be concluded that the

equilibrium point ye
i is just partially determined by the

control laws. In particular, the difference between the current

equilibrium point ye
i and a so-called nominal equilibrium

point yd
i = [δd

i V d
i P̃ d

i Q̃d
i ]
T , i = 1, . . . , n (that typically cor-

responds to the nominal operating conditions) is of interest.

For that matter, we define the deviations of the system

variables with respect to their desired values as

zi1 = δi − δd
i , zi2 = Vi − V d

i , (III.1)

zi3 = P̃i − P̃ d
i , zi4 = Q̃i − Q̃d

i , i = 1, . . . n.

We would like to point out that the choice of the nominal

operation point does not affect the stability of the system and

can thus be made arbitrarily, but will affect the steady state

ye
i as will be shown in the following. We further divide the

control input ui = [ua
i ub

i ]
T in two components:

ui(t) = ui1(t) + ui2(t) = −Ki1zi(t)−Ki2zi(t). (III.2)

Notice that the control law depends on zi and not on xi,

since ye
i is unknown and therefore xi is not available. The

first input ui1 imitates the effect of droop control and is

thus responsible for power sharing, whereas ui2 stabilizes the

system once Ki1 has been selected. We include this second

component ui2 since, to the best of our knowledge, it has not

been proven that droop control can stabilize an inverter-based

network (considering a nonlinear model). The role played by

ui1 is to modify the voltage magnitude and angle according

to the active and reactive power in the spirit of droop control:

ui1(t) = −Ki1zi(t), Ki1 =
[

0 KPQi

]

. (III.3)

Different structures can be considered for the matrix KPQi
.

While our formal approach is valid for any structure of

KPQi
, we focus for simplicity on the following diagonal

matrix:

KPQi
=

[

kPi
0

0 kQi

]

, (III.4)

with kPi
> 0 and kQi

> 0, which is the most commonly

proposed pairing [6]. Under this controller gain, the voltage

angle of the inverter is modified according to the active

power at the node, while the reactive power modifies the

voltage magnitude. Other pairings to achieve power sharing

have been proposed in the literature [14], [24], [13]. The

gains kPi
and kQi

are coefficients selected by the user

according to the desired power distribution in the network

(as in droop control). Such gains might not be known

beforehand; instead, the user might adjust them according

to the status of the network, number of generation units

present, economic factors,...[18], [19]. To account for this

case, our approach considers a set of droop-like gain matrices

Ki1 ∈Γi :{[0,diag(kPi
, kQi

)]|0 ≤ kPi
≤ k̄Pi

,0 ≤ kQi
≤ k̄Qi

}
rather than preassigned specific values. Once Ki1 has been

specified, the second gain matrix Ki2 has to be designed

to guarantee stability. It can be proven1 that a feedback

law of the form ui2 = [−kδizi1 − kVi
zi2 ]

T can stabilize

the system for sufficiently large kδi and kVi
. Under such

control laws ui1 and ui2 , the following holds in steady state

for system (II.6) in z-coordinates:

ze
i1

= −
kPi

kδi
ze
i3
, ze

i2
= −

kQi

kVi
+ 1

ze
i4
,

ze
i3

=

n
∑

j=1

(

αijYij(V
d
i −

kQi

kVi
+ 1

ze
i4
)(V d

j −
kQj

kVj
+ 1

ze
j4
)·

cos(δd
i −

kPi

kδi
ze
i3
− δd

j +
kPj

kδj
ze
j3
− φij)

)

− P̃ d
i ,

ze
i4

=

n
∑

j=1

(

αijYij(V
d
i −

kQi

kVi
+ 1

ze
i4
)(V d

j −
kQj

kVj
+ 1

ze
j4
)·

sin(δd
i −

kPi

kδi
ze
i3
− δd

j +
kPj

kδj
ze
j3
− φij)

)

− Q̃d
i . (III.5)

Similar to droop control, the steady-state deviations of

zi1 and zi2 are determined by those of active and reactive

power zi3 , zi4 via the relations kPi
/kδi and kQi

/(kVi
+ 1).

The heuristic approach of droop control is that by choosing

adequate relations of the droop gains at nodes i and j
one obtains the desired power sharing between those

inverters, which in our case is reflected by the steady-

state differences in phase angles δe
i = δd

i − kPi
/kδiz

e
i3
,

δe
j = δd

j − kPj
/kδjz

e
j3

and voltage amplitudes

V e
i = V d

i − kQi
/(kVi

+ 1)ze
i4
, V e

j = V d
j − kQj

/(kVj
+ 1)ze

j4
.

The role of the stabilizing gains kδi , kVi
can be interpreted

as a restriction in magnitude of the user-selected droop

gains kPi
, kQi

in order to guarantee stability. That overall

network stability requires constraints on the droop gains

has been reported by several authors [6], [8]. To maximize

the effect of the user-selected gains kPi
, kQi

to achieve a

desired power distribution, the control design proposed in

Section III-B attempts at minimizing the gains kδi and kVi

for given upper bounds of the droop gains specified in Γi.

While our design method does guarantee overall network

stability, we can not make any claims regarding the power

sharing performance. Given the complex structure of the

interconnected network, such claims are difficult to derive in

general and are part of our on-going investigations. Analysis

for more specific cases have been presented in [13], [17].

Fig. 2 displays the proposed control structure. Only the

output voltage and current need to be measured, from which

the active and reactive power can be computed. Notice that

the control of active power is done based on the voltage angle

1Not shown here due to space constraints. This fact can be easily
concluded using V =

∑n
i=1

Vi =
∑n

i=1
xT
i xi as a control Lyapunov

function for the system and considering (II.4).
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and not voltage frequency, as in traditional droop control.

A similar option has been previously explored in [15]. As

mentioned in the introduction, this solution guarantees zero

steady-state deviation for the frequency. It is clear that

this property, among other benefits, removes the need for

secondary control in charge of frequency restoration. The

proposed method requires referencing for clock synchroniza-

tion, that can be achieved for instance via GPS [15]. We now

formally define the problem addressed in this paper:

Problem 3.1: Given a desired droop-like control law

ui1 = −Ki1zi and a set of desired droop-gain matrices

Ki1 ∈Γi :{[0,diag(kPi
,kQi

)]|0 ≤ kPi
≤ k̄Pi

, 0 ≤ kQi
≤ k̄Qi

},

design a decentralized control ui2 = −Ki2zi that stabilizes

the system (II.6) (for i = 1, . . . , n).

Remark 3.2: Note that for ease of explanation, we assume

the particular structure of KPQi
given in (III.4) throughout

the paper. Our approach always guarantees stability (for

appropiate values of Ki2 ) independently of the chosen struc-

ture of KPQi
, although the quality of power sharing might

deteriorate if the system characteristics assumed during the

design process do not match the real system.

A. Preliminaries

1) Bounds for nonlinearities: Before proposing a design

procedure for Ki2 , we analyze the nonlinearities present

in the network model in (II.6). Given an operating region

Ω ⊂ R
n such that 0 ∈ Ω, we can derive a quadratic bound

for the nonlinearities in (II.6). In particular, we select a

set Ω : {(x1, x2, x3, x4) ∈ R
4| x2 < Vmax − V e}, where Vmax

represents the maximum operating voltage of the considered

power system. Using the Hölder inequality 2ab ≤ 1

µ
a2+µb2

together with standard trigonometric identities, we obtain:
n
∑

j=1

fT
ijfij ≤

n
∑

j=1,j 6=i

2α2

ijY
2

ij

(

(1 + µ)V 2

max(x
2

i2
+ x2

j2
)

+ (1 +
1

µ
)V 4

max(x
2

i1
+ x2

j1
)
)

+ 4α2

iiY
2

iiV
2

maxx
2

i2

=

n
∑

j=1

xT
i F

T
iij
Fiijxi +

n
∑

j=1

xT
j F

T
jij

Fjijxj (III.6)

for appropiate values of Fiij and Fjij . We further define for

convenience FT
i Fi =

∑n
j=1

(FT
iij
Fiij + FT

iji
Fiji).

Remark 3.3: These bounds are valid provided that the

state trajectories stay in the set Ω. A fairly simple, though

conservative, estimate of Ω for initial conditions satisfying

|x0| ≤ r is given by:

Ω : {x ∈ R
4| |x(t)| ≤

√

λmax(Φ)

λmin(Φ)
r, t ≥ 0} (III.7)

where λmax and λmin are respectively the

maximum and minimum eigenvalues of

Φ = blockdiag[Φ1, . . . ,Φn] = blockdiag[W−1

1
, . . . ,W−1

n ],
as defined in the proof of Theorem 3.4. Equation (III.7)

allows to identify the values of admissible initial conditions.

B. Stabilizing decentralized LMI control design

The following theorem provides a solution to Problem 3.1.

Theorem 3.4: The nonlinear multi-inverter system (II.6) is

stabilizable via decentralized linear feedback control for any

Wi, Mi, Ni, i = 1, . . . , n satisfying the following conditions

∀Ki1 ∈ Γi:












Âi WiK̄
T
i1

Bi Gi WiF
T
i

K̄i1Wi − 1

ǫ
I 0 0 0

BT
i 0 −ǫI 0 0

GT
i 0 0 −ρ̃I 0

FiWi 0 0 0 −ρI













< 0,

MiCi = CiWi, Wi > 0, (III.8)

where Âi = WiA
T
i +AiWi −BiNiCi − CT

i N
T
i BT

i ,

Ci =
[

I 0
]

, K̄i1 = maxKi1
(Γi), and ρ̃ = (ρ

∑n
j=1

κij)
−1.

Moreover, the control law is then given by:

ui = −Kizi = −Ki1zi −Ki2zi = −
[

NiM
−1

i KPQi

]

zi.
Proof: The proof draws inspiration from [20], [21] and

[22]. Analyzing (II.5) under control (III.2) and considering

(II.4) together with (III.1) gives:

∆ui =

[

∆ua
i

∆ub
i

]

= −Kizi +Kiz
e
i = −Kixi.

Thus, stability of system (II.6) under control (III.2), is

equivalent to stability of

ẋi = Aixi −BiKixi +

n
∑

j=1

κijGifij(xi, xj)

for any zi. We then define a Lyapunov function of the

following form:

V =

n
∑

i=1

Vi =

n
∑

i=1

xT
i Φixi. (III.9)

Defining Ãi = Ai −BiKi2 and making use of

XTY + Y TX ≤
1

ǫ
XTX + ǫY TY (III.10)

for ǫ > 0, the time derivative of Vi along the trajectories

of (II.6) with the controller given in (III.2) becomes:

V̇i = ẋT
i Φixi + xT

i Φiẋi

= xT
i

(

(Ãi −BiK̄i1)
TΦi +Φi(Ãi −BiK̄i1)

)

xi

+

n
∑

j=1

κijf
T
ijG

T
i Φixi + xT

i Φi

n
∑

j=1

κijGifij

≤ xT
i

(

ÃT
i Φi +ΦiÃi +

1

ǫ
ΦiBiB

T
i Φi + ǫK̄T

i1
K̄i1

)

xi

+

n
∑

j=1

κijf
T
ijG

T
i Φixi + xT

i Φi

n
∑

j=1

κijGifij .
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Recalling V =
∑n

i=1
Vi, using the fact that

∑n
i=1

∑n
j=1

aij =
∑n

i=1

∑n
j=1

aji and applying (III.10)

with ρ > 0 together with the bounds in (III.6) we have

V̇ ≤

n
∑

i=1

(

xT
i

(

ÃT
i Φi+ΦiÃi+

1

ǫ
ΦiBiB

T
i Φi+ǫK̄T

i1
K̄i1

)

xi

+xT
i ρ

n
∑

j=1

κijΦiGiG
T
i Φixi+

1

ρ

n
∑

j=1

fT
ijfij

)

≤

n
∑

i=1

(

xT
i

(

ÃT
i Φi+ΦiÃi+ǫK̄T

i1
K̄i1+

1

ǫ
ΦiBiB

T
i Φi

+ρ

n
∑

j=1

κijΦiGiG
T
i Φi+

1

ρ
FT
i Fi

)

xi

)

.

Defining Wi = Φ−1

i ,Wi > 0 and ρ̃ = (ρ
∑n

j=1
κij)

−1,

using the Schur complement and pre- and postmultiplying

with Wi [22], we can rewrite the condition on V̇ as the

following bilinear matrix inequalities (BMI) in Wi and Ki2

for i = 1, · · · , n:












WiÃ
T
i + ÃiWi WiK̄

T
i1

Bi Gi WiF
T
i

K̄i1Wi − 1

ǫ
I 0 0 0

BT
i 0 −ǫI 0 0

GT
i 0 0 −ρ̃I 0

FiWi 0 0 0 −ρI













< 0. (III.11)

Notice that, because of the particular structure imposed

on the controller, the present problem resembles the case of

output feedback control. It is well known that the problem

of output feedback stabilization in Wi and Ki2 is nonconvex

and numerically very difficult to solve. There has been exten-

sive research on finding appropriate related convex problem

formulations via a change of variables [25]. Among others,

one possible variable change leads to the W -Problem [26].

Applying this variable transformation to equations (III.11)

leads to the proposed LMI optimization problem stated in

Theorem 3.4.

Remark 3.5: Notice that Theorem 3.4 holds for any struc-

ture of Ki2 . However, as discussed at the beginning of

Section III, we are interested in a diagonal structure for Ki2 ,

for the purpose of power sharing. It was also mentioned that

the gains in Ki2 should be minimized as well. This can be

achieved by enforcing Ni and Mi to be diagonal matrices

and limiting the feedback gains by adding the following

constraints to the set of equations (III.8) [25]:

NT
i Ni < κNi

Ii, M−1

i < κMi
Ii,

which can be expressed as the LMIs
[

−κNi
I NT

i

Ni −I

]

< 0,

[

Mi I
I κMi

I

]

> 0, Mi > 0. (III.12)

Remark 3.6: Theorem 3.4 not only provides a decentral-

ized controller, but also represents a decentralized design:

each node can design its controller without the knowledge

of the controllers in the other nodes (provided that all nodes

follow the control design proposed in (III.8)). Notice as

well that the proposed design allows for plug-and-play-like

integration of new generation units in the network without

recomputing controller gains of existing units.

Inverter 1 Inverter 2

∼∼
V2V1

ZL1(YL1)

Z1(Y1) Z2(Y2)

ZL2(YL2) ZL3(YL3)

Z̃1(Ỹ1)

Z̃2(Ỹ2)

Fig. 3. Test system with two inverters represented as voltage sources.

TABLE I

TEST SYSTEM PARAMETERS

Inverter 1 Inverter 2

Voltage magnitude V d
1
= 232V V d

2
= 228.5V

and phase angle δd
1
= 0 rad δd

2
= −10−4 rad

Active and P̃ d
1
= 15.68 kW P̃ d

2
= 15.6 kW

reactive power Q̃d
1
= 7.73 kVar Q̃d

2
= 5.16 kVar

Time constant τP1
= 0.0265 s τP2

= 0.0265 s

low pass filter τV1
= 10−3 s τV2

= 10−3 s

Control gains kδ1 = 17.72 1

s
kδ2 = 17.72 1

s

via LMI approach kV1
= 6.98 kV2

= 7.05

User-selected kP1
= 10−2 rad

skW
kP2

= 10−2 rad
skW

droop gains kQ1
= 1 V

kVar
kQ2

= 1 V
kVar

Load impedances Z1 = (4 + j1.95)Ω Z2 = (2.24+j.79)Ω

Zi = Ri + jωLi Z̃1 = (20 + j9.7)Ω Z̃2 = (11.2+j3.7)Ω

Line impedances ZL1 = (.01+j.05)Ω ZL2 = (.12+j.03)Ω

ZLi = Ri + jωLi ZL3 = (.01+j.04)Ω

Nominal voltage Vnom = 230V

Nominal frequency fnom = 50Hz

IV. AN ACADEMIC EXAMPLE

The presented approach is now implemented on a test

system composed of two inverters having each a local

load represented by a frequency dependent impedance and

being connected via an LV line, Fig. 3. We consider the

following scenario in the simulations: the system is first

stabilized at the determined equilibrium point; then, at t = 1s
(respectively t = 2s) a new load Z̃1 (respectively Z̃2) is

connected; subsequently both new loads (Z̃1, Z̃2) are discon-

nected simultaneously at t = 3s. According to the proposed

control design, it is expected that the system stabilizes in

all operating conditions and that the new loads are shared

among the inverters.

The system parameters and control gains are given in

Table I. The control parameters for the presented design

are derived using the LMIs in (III.8) with kPi
∈ [0, 10−2],

kQi
∈ [0, 1] and Vmax = 1.2Vnom. We account for un-

certainties of the absolute values of the elements of Y of

up to αij = 1.1, {i, j} ∈ {1, 2}, so that the controllers are

robust against e.g., load changes. The LMIs are solved using

Yalmip 3 [27] together with Sedumi 1.3 under Matlab. The

simulations are carried out in Plecs [28].

The simulation results are displayed in Fig. 4. After

initialization, the system is first stabilized at the desired

equilibrium point. At t = 1s both inverters react to the

new load by increasing their power outputs. After a short

transient, the system is again stabilized. Similar behavior can

be observed for the second load change at t = 2s. When

both new loads are switched off at t = 3s, the inverters

decrease their output powers and the system returns to the

first equilibrium point. We would like to point out that

the system stabilizes in each operating condition with zero
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Fig. 4. Test system with proposed control, Inverter 1 ’–’, Inverter 2 ’- -’.

steady-state frequency deviation, a behavior which cannot be

achieved with conventional droop control.

In all cases, the active power sharing is improved by

over a factor 3/2 with respect to the case without control,

although does not represent a share of 50% as suggested

by the selected droop gains. A reduction in power sharing

performance in favor of stability and zero steady state

frequency deviation has also been reported in [15]. Notice

as well that there is no overshoot in the active power output,

which is favorable for voltage and current limitations in

both the DC circuit fed by the renewable source and the

inverter. The reactive power sharing is not very accurate. This

behavior has been often reported related to droop control in

LV networks [29]. The power sharing may be improved by

considering inverse droop control or more advanced modified

droop control strategies as well as appropiate scaling of the

output impedances as proposed e.g., in [14], [29], [24], [13].

V. CONCLUSION

A decentralized feedback control design addressing the

problem of voltage and frequency stability for a nonlinear

inverter-based microgrid model under droop-like control by

providing additional decentralized feedback has been pre-

sented. Opposed to standard droop control, our approach

guarantees zero steady-state frequency deviation. The control

synthesis (also decentralized) is formulated as an LMI and

allows for a user-specified range for power sharing gains

as well as line and load uncertainties. The presented exam-

ple demonstrates the benefits of this approach in terms of

zero steady-state frequency deviation and stability. Future

research will consider networks that include synchronous

generators and inverters as well as formal consideration of

the power sharing performance.
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