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Abstract

In this paper we consider the minimum time population transfer problem for a two level quantum

system driven by two external fields with bounded amplitude. The controls are modeled as real

functions and we do not use the Rotating Wave Approximation. After projection on the Bloch

sphere, we tackle the time-optimal control problem with techniques of optimal synthesis on 2-

D manifolds. Based on the Pontryagin Maximum Principle, we characterize a restricted set of

candidate optimal trajectories. Properties on this set, crucial for complete optimal synthesis, are

illustrated by numerical simulations. Furthermore, when the two controls have the same bound

and this bound is small with respect to the difference of the two energy levels, we get a complete

optimal synthesis up to a small neighborhood of the antipodal point of the starting point.
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I. INTRODUCTION

In this paper we apply techniques of optimal synthesis on 2-D manifolds to the population

transfer problem for a two-level quantum system (e.g. a spin 1/2 particle) driven by two

external fields. Two-level systems are the simplest quantum mechanical models interesting

for applications, see for instance [2, 10]. The dynamics is governed by the time dependent

Schrödinger equation (in a system of units such that ~ = 1):

i
dψ(t)

dt
= H(t)ψ(t), (1)

where ψ(·) = (ψ1(·), ψ2(·))T : [0, T ] 7→ C2 satisfies
∑2

j=1 |ψj(t)|2 = 1, and

H(t) :=

 −E Ω(t) + iΩ2(t)

Ω1(t)− iΩ2(t) E

 , (2)

where E is a real number (±E represent the two energy levels of the system). The controls

(Ω1(·),Ω2(·)), assumed to be real valued and different from zero only in a fixed interval,

represent external pulsed fields. The Hamiltonian without external fields, i.e., the matrix

diag(−E,E), is called drift term.

The goal is to steer the system from the first level (i.e. |ψ1|2 = 1) to any other target

state in minimal-time and with controls of bounded amplitude,

|Ωi(t)| ≤Mi, i = 1, 2 for every t ∈ [0, T ],

where T is the transfer time, M1 and M2 are two positive real constants representing maxi-

mum available amplitudes for the control fields. The most interesting target state is of course

the second level (i.e. |ψ2|2 = 1).

Remark 1. The two real controls represent two independent fields acting in two orthogonal

directions. They do not come from the use of the Rotating Wave Approximation close to

the Bohr frequency of the system as it often happens in problems with two controls. Each

field acts independently and has its own bound on the amplitude. As a consequence, the use

of the interaction picture does not permit to eliminate the drift term. More precisely, the

system would be driftless in the interaction picture, but with a control set depending explicitly

on time (and not anymore of the form |Ωi| ≤Mi with Mi constant).
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The time optimal problem for two level quantum system with one bounded real control

was studied in [7]. For the same problem with unbounded control, see [12]. The minimum

energy problem with one unbounded control was addressed in [11]. For the minimum energy

problem with two unbounded controls see [6, 11]. Regarding optimal control problems for

two-level dissipative systems, see [3, 4]. Surprisingly the time optimal problem with two

bounded real controls for closed two-level systems has not yet been studied. This is a

relevant problem in NMR, see [4, 13] and references therein.

It is standard to eliminate global phase by projecting the system on a two dimensional

real sphere S2 (called the Bloch Sphere) by means of a Hopf map [7]. After setting ui(t) =

Ωi(t)/Mi, the controlled Schrödinger equation (1) becomes a two-input control-affine system

on the sphere S2:

ẋ = Fx+ u1G1x+ u2G2x, |ui(t)| ≤ 1, (3)

where x := (x1, x2, x3)T ∈ R3, ‖x‖2 = 1, and

F := k cosα


0 −1 0

1 0 0

0 0 0

 , G1 := k sinα sin β


0 0 0

0 0 −1

0 1 0

 ,

G2 := k sinα cos β


0 0 −1

0 0 0

1 0 0

 ,

with α := arctan(
√
M2

1 +M2
2/E), β := arctan(M1/M2), and k := 2

√
E2 +M2

1 +M2
2 .

Normalizations. To simplify the notation, we normalize k = 1. This normalization

corresponds to a time re-parameterization. More precisely, if T is the minimum time to steer

the state one to a target state for the system with k = 1, the corresponding minimum time

for the original system is
T

2
√
E2 +M2

1 +M2
2

.

Assumptions. Two types of assumptions on the parameters α and β are used in this

paper:

(A1) 0 < α < π/4 and 0 < β ≤ π/4.
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(A2) α small and β = π/4.

Assumption (A1) is used in Sec. III. Assumption (A2) is used in Sec. IV and Sec. V. Note

that in (A1) it is not restrictive to assume 0 < β ≤ π/4, as the controls u1 and u2 play a

symmetric role; in (A2) β = π/4 corresponds to the case where the two controls have the

same bound (M1 = M2).

Remark 2. Roughly speaking, the parameter α measures the relative strength of the control

fields compared to the static one. The parameter β characterizes the relative strength between

the two control fields. In spin experiments, the static field represented by the drift term is

many orders of magnitude larger than the radio-frequency control fields [14, Chap. 10].

Therefore, the most relevant case corresponds to small α.

The vector fields Fx, G1x, and G2x describe rotations respectively around the axes x3, x1,

and x2. The state one which corresponds to the lowest energy level is represented by the point

N := (0, 0, 1) (called north pole) and the state two which corresponds to the highest energy

level is represented by the point S := (0, 0,−1) (called south pole). The optimal control

problem we are interested in is to connect the north pole to any other fixed state in minimum

time. The most important final state is of course the south pole. In the case of a spin 1/2

particle the later case corresponds to a complete spin flip. As usual we assume control ui(·)

to be a measurable function satisfying |ui(t)| ≤ 1 almost everywhere. The corresponding

trajectory is a Lipschitz continuous function x(·) satisfying (3) almost everywhere. Since (3)

is controllable, and the set of velocities V (x) := {Fx+ u1G1x+ u2G2x, |u1| ≤ 1, |u1| ≤ 1}

is compact and convex, solutions to the time-optimal control problem exist. [1, Chap. 10].

By solution we mean an optimal synthesis, i.e., the collection of time-optimal trajectories

starting from the north pole:

{γx̄| γx̄ is time optimal between N and x̄}x̄∈S2 .

Optimal syntheses are considered as the right concept of solutions for optimal control prob-

lems, see [16]. One of the most important tools for the construction of optimal synthesis is

the Pontryagin Maximum Principle (PMP for short, see [17], [1, Chap. 12]). It is a first
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order necessary condition for optimality that allows us to restrict the set of candidate op-

timal trajectories. One then needs to select the optimal ones from this set. In general the

selection step is the most difficult [8, 16].

For arbitrary values of α and β satisfying Assumption (A1), we are mainly concerned with

the fist step, i.e., the construction of a restricted set of candidate time-optimal trajectories.

The most difficult task is to analyze the role of singular trajectories. For small α and β = π/4

(i.e with controls bounded on the square: |Ωi| ≤M , i = 1, 2), we complete the time optimal

synthesis up to a neighborhood of order α of the south pole. More precisely, the optimal

synthesis is composed of four families of trajectories starting from N with (u1 = 1, u2 = 1),

or (u1 = 1, u2 = −1), or (u1 = −1, u2 = −1), or (u1 = −1, u2 = 1), and switching for the

first time at s with s ∈ [0, smax] and then every v(s) until reaching a neighborhood of S.

Here switching means that one of the two controls switches from +1 to −1 or vice versa.

The expressions of smax and v(s) are given by

smax = arccos

(
− sin2 α

1 + cos2 α

)
,

v(s) = arccos

[
d− A(s)−B(s)− C(s)

e− A(s) +B(s)

]
,

where A(s) := 8 cosα sin2 α sin(s), B(s) = 2 sin2 2α cos(s), C(s) := 4 sin4 α cos(2s), d :=

sin2 2α, and e := 5 + 2 cos 2α + cos 4α. See Proposition III.2 and Corollary III.3 for more

detail. An image of the time optimal synthesis is presented in Fig. 1, where the non-

intersecting four-snake structure of the four families of optimal trajectories is preserved

outside a neighborhood of the south pole. The colored curves called switching curves are

the locations where a switching occurs. Note that the switching curves are located close to

the two great circles passing through the north pole and containing x1− or x2−axis; the

endpoints of each switching curve are located exactly on these great circles. We deduce

from the optimal synthesis that for a given target state, the optimal trajectories are bang-

bang, and the corresponding optimal controls are periodic on all interior bang arcs. In other

words, u1 and u2 are periodic except on the first and last pieces. The first and the last

switching times need to be computed numerically depending on the target. These optimal

trajectories are more complicated than the ones with the two controls bounded on the circle
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FIG. 1. Optimal synthesis for α = 0.25 and β = π/4. Black curves are optimal trajectories and

colored curves are switching curves.

(i.e. with
√

Ω2
1 + Ω2

2 ≤ M , see [6, 11]), but permit faster transfer times. We show in Fig. 2

a time-optimal control that steers (3) from N to S with α = 0.25.

Based on the optimal synthesis up to a neighborhood of S, we also propose two families

of simple suboptimal controls which both allow a transfer from N to S faster than the

optimal controls bounded on the circle. More specifically, consider the sequence of controls

(u1 = 1, u2 = −1)→ (u1 = −1, u2 = −1)→ (u1 = −1, u2 = 1)→ (u1 = 1, u2 = 1), or any of

the three other cyclic permutations of it, where each pair of controls lasts for a duration equal

to π/2. We show that successively applying this sequence steers system (3) from N to a point

close to S with an error of order α. Furthermore, a similar but slightly non-saturate sequence

(u1 = γ, u2 = −γ) → (u1 = −γ, u2 = −γ) → (u1 = −γ, u2 = γ) → (u1 = γ, u2 = γ), where
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FIG. 2. For α = 0.25 and β = π/4, optimal control (u1, u2) (left) and corresponding optimal

trajectory reaching the south pole (right).

γ is an explicitly computable positive constant slightly smaller than 1, will bring (3) from

N to S exactly. Both strategies realize a transfer time close to the optimal one without any

computation.

The paper is organized as follows. In Section II, we derive basic facts of optimal syntheses

on 2-D manifolds for control-affine systems with two bounded controls. The section is self-

contained, and has its own value beyond the optimal control problem considered in this

paper. Based on these results, we present in Section III a restricted set of candidate optimal

trajectories for the case with 0 < α < π/4 and 0 < β ≤ π/4. In Section IV, we complete the

time optimal synthesis up to a neighborhood of order α of the south pole for small α and

β = π/4. Further, we derive in Section V two simple suboptimal strategies, and compare

them with the optimal strategy for controls bounded on the circle. Finally, we gather in

Appendices A, B and C technical proofs and computational lemmas.
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II. OPTIMAL SYNTHESES ON 2-D MANIFOLDS WITH TWO BOUNDED CON-

TROLS

In this section, we introduce important definitions and develop basic facts about optimal

syntheses on 2-D manifolds for control-affine systems with two bounded controls. We use

ideas similar to those used by Sussmann, Bressan, Piccoli and the first author in [5, 8, 9, 18,

19]. This section is written to be as self-contained as possible.

A. Basic Definitions and PMP

We focus on the following problem:

(P) Consider the control system

ẋ = F (x) + u1G1(x) + u2G2(x), (4)

where x ∈M , |ui| ≤ 1, i = 1, 2. We make the following assumption:

(H0): M is a smooth 2-D manifold. The vector fields F , G1 and G2 are C∞, and the control

system (4) is complete on M .

The goal is to reach every point of M in minimum time from a source Min which is assumed

to be a smooth submanifold of M , possibly with a smooth boundary.

In the following we use the notation u := (u1, u2), and x := (x1, x2) in a local chart.

Definition 1. A control for the system (4) is a measurable function u(·) = (u1(·), u2(·)) :

[a1, a2] → [−1, 1]2. The corresponding trajectory is a Lipschitz continuous map x(·) :

[a1, a2] → M such that ẋ(t) = F (x(t)) + u1(t)G1(x(t)) + u2(t)G2(x(t)) for almost every

t ∈ [a1, a2]. Since the system is autonomous we can always assume that [a1, a2] = [0, T ].

A solution to problem (P) is an optimal synthesis that is a collection {(xx̄(·), ux̄(·)) defined

on [0, Tx̄], x̄ ∈ M} of trajectory–control pairs such that xx̄(0) ∈ Min, xx̄(Tx̄) = x̄, and

xx̄(·) is time optimal.

We use the following definition to describe different types of controls.
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Definition 2. Let u(·) = (u1(·), u2(·)) : [a1, a2] ⊂ [0, T ] → [−1, 1]2 be a control for the

control system (4).

• u(·) is a bang control if for almost every t ∈ [a1, a2],

u(t) = ū ∈ {(−1,−1), (−1, 1), (1,−1), (1, 1)}.

Similarly, u(·) is a ui-bang control (i = 1, 2) if for almost every t ∈ [a1, a2], ui(t) =

u ∈ {±1}.

• A ui(·)-switching (i = 1, 2) is a time t̄ ∈ [a1, a2] such that for a sufficiently small ε > 0,

ui(·) is a.e. equal to +1 on ]t̄− ε, t̄[ and a.e. equal to −1 on ]t̄, t̄+ ε[ or vice-versa. A

u1-u2-switching is a time t̄ that is a u1- and a u2-switching.

• If uA : [a1, a2] → [−1, 1]2 and uB : [a2, a3] → [−1, 1]2 are controls, their concatenation

uB ∗ uA is the control

(uB ∗ uA)(t) :=

 uA(t) for t ∈ [a1, a2],

uB(t) for t ∈]a2, a3].

The control u(·) is called bang-bang if it is a finite concatenation of bang arcs. Similarly

one defines ui-bang-bang controls.

• A trajectory of (4) is a bang trajectory (resp. bang-bang trajectory) if it corresponds to

a bang control (resp. bang-bang control). Similarly, one defines ui-bang and ui-bang-

bang trajectories.

Given two vector fields X and Y , consider the following function

∆(X, Y )(x) := det (X(x)), Y (x)), x ∈M,

and the set of its zeros

Q(X, Y ) := {x ∈M s.t. ∆(X, Y )(x) = 0}.

Notice that the definition of ∆(X, Y ) depends on the choice of the coordinate system, but

not the set Q(X, Y ) that is the set of points where X and Y are parallel. For problem
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(P), the sets Q(G1, G2), Q(G1, [F + G2, G1]), Q(G1, [F − G2, G1]), Q(G2, [F + G1, G2]),

Q(G2, [F −G1, G2]), and Q(F,G1, G2) := Q(F,G1)∩Q(F,G2)∩Q(G1, G2) are fundamental

to the construction of the optimal synthesis by applying PMP, as will be seen in the next

paragraphs. In fact, assuming these sets to be embedded one-dimensional submanifolds of

M , we have the following:

• u1-u2 switchings can only occur on the set Q(G1, G2). See Lemma II.3.

• The support of u1-u2 singular trajectories (called totally singular trajectories in the

following) is always contained in the set Q(G1, G2). See Lemma II.6.

• The support of u1-singular trajectories (that are trajectories for which the u1-switching

function identically vanishes, and for which u1 can assume values different from ±1, see

next section for detail) is always contained in the set Q(G1, [F +G2, G1])∪Q(G1, [F −

G2, G1]). A similar statement holds for u2-singular trajectories. See Lemma II.7.

• Under certain conditions, one proves that u1 can switch only once on a connected

component of M \ (Q(F,G1)∪Q(G1, G2)∪Q(G1, [F,±G2, G1])∪Q(G2, [F,±G1, G2])).

A similar statement holds for u2. See Proposition II.8.

For problem (P), Pontryagin Maximum Principle says the following:

Corollary II.1. Consider the control system (4) subject to (H0). For every (x, λ, u) ∈

T ∗M × [−1, 1]2, define

H(x, λ, u) := 〈λ, F (x)〉+ u1〈λ,G1(x)〉+ u2〈λ,G2(x)〉+ λ0.

If the pair (x(·), u(·)) : [0, T ] → M × [−1, 1] × [−1, 1] is time optimal, then there exist

a never vanishing Lipschitz continuous covector λ(·) : t ∈ [0, T ] 7→ λ(t) ∈ T ∗x(t)M and a

constant λ0 ≤ 0 such that for a.e. t ∈ [0, T ]:

i): ẋ(t) = ∂H
∂λ (x(t), λ(t), u(t)),

ii): λ̇(t) = −∂H∂x (x(t), λ(t), u(t)) = −〈λ(t), (∇F + u1(t)∇G1 + u2(t)∇G2)(x(t))〉,
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iii): H(x(t), λ(t), u(t)) = HM(x(t), λ(t)), where HM(x, λ) := max{H(x, λ, u) : u ∈

[−1, 1]2},

iv): HM(x(t), λ(t)) = 0,

v): 〈λ(0), Tx(0)Min〉 = 0 (transversality condition).

Definition 3. The real-valued map H is called PMP-Hamiltonian. A trajectory x(·) (resp.

a couple (x(·), λ(·))) satisfying conditions i), ii), iii) and iv) is called an extremal (resp. an

extremal pair). If (x(·), λ(·)) satisfies i), ii), iii) and iv) with λ0 = 0 (resp. λ0 < 0), then it

is called an abnormal extremal pair (resp. a normal extremal pair).

B. Switching Functions

In this section we are interested in determining when controls switch from +1 to −1 or

vice-versa and when they may assume values in ]−1,+1[. Moreover we would like to predict

which kind of switchings can happen, using properties of the vector fields F , G1 and G2. A

key role is played by switching functions.

Definition 4. (Switching Functions) Let (x(·), λ(·)) be an extremal pair. The correspond-

ing switching functions are defined as φi(t) := 〈λ(t), Gi(x(t))〉, i = 1, 2. For later use, we

also define φ0(t) := 〈λ(t), F (x(t))〉.

The switching functions φ1 and φ2 determine when the corresponding controls switch from

+1 to −1 or vice-versa. In fact, from the maximization condition iii) of Corollary II.1, one

immediately gets:

Lemma II.2. Let (x(·), λ(·)) be an extremal pair defined on [0, T ] and φi(·) the corresponding

switching functions. If φi(t) 6= 0 for some t ∈]0, T [, then there exists ε > 0 such that x(·)

corresponds a.e. to a constant control ui = sign(φi) on ]t − ε, t + ε[. Moreover, if φi(·) has

a zero at t, and if φ̇i(t) exists and is strictly larger than zero (resp. strictly smaller than

zero) then there exists ε > 0 such that x(·) corresponds a.e. to constant control ui = −1 on

]t− ε, t[ and a.e. to a constant control ui = +1 on ]t, t+ ε[ (resp. a.e. to a constant control

ui = +1 on ]t− ε, t[ and a.e. to a constant control ui = −1 on ]t, t+ ε[).
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Notice that on every interval where φi(·) has no zero (resp. finitely many zeros), the

corresponding control is ui-bang (resp. ui-bang-bang). Another direct consequence of the

PMP is:

Lemma II.3. Let x(·) be an extremal trajectory defined on [a1, a2] and t̄ ∈]a1, a2[ be an

u1-u2-switching. Then x(t̄) ∈ Q(G1, G2).

We are then interested in differentiating φi. By a simple computation one gets:

Lemma II.4. Let (x(·), λ(·)), defined on [0, T ] be an extremal pair and φi(·) the correspond-

ing switching functions. Then it holds a.e.

φ̇1(t) = 〈λ(t), ([F,G1] + u2(t)[G2, G1])(x(t))〉, (5)

φ̇2(t) = 〈λ(t), ([F,G2] + u1(t)[G1, G2](x(t))〉, (6)

where [·, ·] denotes the Lie bracket of two vector fields.

From Lemma II.2 it follows that ui can assume values different from ±1 on some interval

[a1, a2] only if the corresponding switching function vanishes identically on this interval.

Remark 3. Lemma II.4 asserts that if in a neighborhood of a u1-switching we have that u2

is a.e. equal to +1 or a.e. equal to −1, then in that neighborhood φ1(·) is a.e. a C1 function.

A similar statement holds for φ2(·).

C. Abnormal Extremals

The following lemma is again direct consequence of the PMP. It characterizes some prop-

erties of abnormal extremals.

Lemma II.5. Let (x(·), λ(·)) be an abnormal extremal defined on [a1, a2]. We have:

1. If t̄ is a u1-u2-switching, then x(t̄) ∈ Q(F,G1, G2).

2. If t̄ is a u1-switching and u2 is a.e. equal to +1 or a.e. equal to −1 in ]t̄ − ε, t̄ + ε[ for

some ε > 0, then x(t̄) ∈ Q(F ±G2, G1).

3. If t̄ is a u2-switching and u1 is a.e. equal to +1 or a.e. equal to −1 in ]t̄ − ε, t̄ + ε[ for

some ε > 0, then x(t̄) ∈ Q(F ±G1, G2).
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D. Singular trajectories

Definition 5. Consider an extremal trajectory x(·) defined on [a1, a2]. It is called ui-singular

if the corresponding switching function φi(·) vanishes identically on [a1, a2]. It is called

totally singular if φ1(·) and φ2(·) both vanish identically on [a1, a2].

The following two lemmas are obtained immediately from the PMP.

Lemma II.6. Let x(·) be a totally singular trajectory on [a1, a2] ⊂ [0, T ], then Supp(x(·)|[a1,a2]) ⊂

Q(G1, G2).

Lemma II.7. Let x(·) be a u1-singular trajectory on [a1, a2] ⊂ [0, T ] and assume that u2 is

a.e. equal to +1 (resp. a.e. equal to −1) on [a1, a2]. Then Supp(x(·)|[a1,a2]) ⊂ Q(G1, [F ±

G2, G1]). Similar result holds true for u2-singular trajectory.

E. Predicting switchings

Definition 6. A point x ∈M is called a u1-super-ordinary point if

x /∈ Q(F,G1) ∪Q(G1, G2) ∪Q(G1, [F ±G2, G1]).

On the set of u1-super-ordinary points we can define the functions α1(x), β1(x), ω1(x), ξ1(x)

as:

[F,G1](x) = α1(x)F (x) + β1(x)G1(x), (7)

[G2, G1](x) = ω1(x)G1(x) + ξ1(x)G2(x). (8)

The following Lemma is not used in the rest of the paper, but is a step towards under-

standing systems of the form (4).

Proposition II.8. Let Ω ⊂ M be an open connected set composed of u1-super-ordinary

points. Assume that for every x ∈ Ω we have α1(x) > 0 and ξ1(x) − α1(x) > 0. (resp.

α1(x) < 0 and ξ1(x)− α1(x) < 0). Then all extremal trajectories x(·) : [a1, a2]→ Ω, are u1-

bang-bang with at most one −1→ +1 u1-switching switching (resp. +1→ −1 u1-switching).

A similar result holds for u2-switchings.
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Proof. Let x(·) : ]a1, a2[→ Ω be an extremal trajectory and φ1(·) be the corresponding

u1-switching function. If φ1(·) has no zero, then x(·) is a u1-bang and the conclusion follows.

Let t̄ be a zero of φ1(·). The time t̄ cannot be a zero of φ2(·), otherwise we would have

x(t̄) ∈ Q(G1, G2). From Remark 3 it follows that φ1(·) is a.e. C1 in a neighborhood of t̄.

Without loss of generality we assume that φ1(·) is C1 in a neighborhood of t̄. Moreover t̄

cannot be a zero of φ̇1(·) otherwise x(t̄) could not be a u1-super-ordinary point (we would

have x(t̄) ∈ Q(G1, [F ± G2, G1])). Since in a neighborhood of t̄, u2 is a.e. constantly equal

to +1 or −1, we can assume u2 constant in this neighborhood, and we have

φ̇1(t) = 〈λ(t), ([F,G1] + u2(t)[G2, G1])(x(t))〉

= α1〈λ(t), F 〉+ β1〈λ(t), G1〉+ u2(t)ω1〈λ(t), G1〉+ u2(t)ξ1〈λ(t), G2〉

= α1φ0(t) + (β1 + u2(t)ω1)φ1(t) + u2(t)ξ1φ2(t).

At time t̄, φ1 = 0 and if α1 > 0 and ξ1 − α1 > 0 on Ω, we have

φ̇1(t̄) = α1(φ0(t̄) + u2(t)φ2(t̄)) + (ξ1 − α1)u2(t̄)φ2(t̄) > 0,

where we used the following facts: i) from the maximization condition the quantity

u2(t̄)φ2(t̄) > 0 in a neighborhood of t̄; ii) λ0 ≤ 0 implies that φ0(t̄) + u2(t̄)φ2(t̄) ≥ −δ

for some arbitrary δ > 0 in a sufficiently small neighborhood of t̄ (depending on δ). The

case α1 < 0 and ξ1 − α1 < 0 on Ω is treated similarly.

III. PROPERTIES OF EXTREMALS FOR SYSTEM (??)

Based on the general results presented in Section II, we derive properties of extremals

for system (3) under assumption (A1), i.e., 0 < α < π/4 and 0 < β ≤ π/4. We show

in particular that starting from the north pole, only normal bang-bang trajectories can be

optimal. All the results presented in this section are essentially based on the following lemma

which characterizes the time evolution of switching functions corresponding to system (3).

Lemma III.1. Let φ0, φ1, and φ2 be the switching functions for system (3). We have:

14



(i)


φ̇0

φ̇1

φ̇2

 = P (u1(t), u2(t))


φ0

φ1

φ2

, with

P (u1(t), u2(t)) :=


0

cosα

tan β
u2(t) − cosα tan β u1(t)

−sin2 α sin β cos β

cosα
u2(t) 0 cosα tan β

sin2 α sin β cos β

cosα
u1(t) − cosα

tan β
0

 .

(ii) On a bang-bang trajectory, we have

φ0(t) + |φ1(t)|+ |φ2(t)|+ λ0 = 0.

(iii) φ2
0(t) +

1

tan2 α

(
φ2

1(t)

sin2 β
+

φ2
2(t)

cos2 β

)
= K, for all t, with K :=

1

tan2 α

(
φ2

1(0)

sin2 β
+
φ2

2(0)

cos2 β

)
.

Proof. (i) is a consequence of Lemma II.4. (ii) is a consequence of (iv) of Corollary II.1 and

Lemma II.2. (iii) is based on (i) and the fact that φ0(0) = 0.

A. Normal and abnormal bang-bang extremals

Proposition III.2. Under (A1), normal extremals for (3) have the following properties:

(i) Let s > 0 and s + t (t > 0) be two consecutive switching times. If φ2(s) = 0 (resp.

φ1(s) = 0), then φ1(s) 6= 0, φ1(s + t) = 0 and φ2(s + t) 6= 0 (resp. φ2(s) 6= 0,

φ2(s+ t) = 0 and φ1(s+ t) 6= 0).

(ii) The duration of the first bang-arc s satisfies [0, smax] with

smax :=


arccos

(
− sin2 α cos2 β

1− sin2 α cos2 β

)
if it corresponds to control (1,1) or (-1,-1),

arccos

(
− sin2 α sin2 β

1− sin2 α sin2 β

)
if it corresponds to control (1,-1) or (-1,1).

(9)
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(iii) The duration between two consecutive switchings is the same for all interior bang arcs

(i.e., excluding the first and the last bang arcs). This duration depends only on the

duration of the first bang arc.

The proof of Proposition III.2 is postponed to Appendix A. In the following, the duration

between two consecutive switchings of interior bang arcs is denoted by v(s) with s the

duration of the corresponding first bang arc. Point (iii) of Proposition III.2 is illustrated in

Fig. 3, and the explicit expression of v(s) is given in Appendix B.
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FIG. 3. Duration between interior switchings as a function of the first switching time s, for β = π/8

with α = 0.25 (left) and α ≈ π/4 (right). The blue curve corresponds to initial control u = ±(1, 1)

and the red to u = ±(1,−1).

Corollary III.3. If 0 < α < π/4 and β = π/4, we have

(i) smax = arccos

(
− sin2 α

1 + cos2 α

)
.

(ii) v(s) = arccos

[
d− A(s)−B(s)− C(s)

e− A(s) +B(s)

]
, where A(s) := 8 cosα sin2 α sin(s), B(s) =

2 sin2 2α cos(s), C(s) := 4 sin4 α cos(2s), d := sin2 2α, and e := 5 + 2 cos 2α + cos 4α.

(iii) v(0) = v(smax) = smax.

(iv) All the switching points of the extremals having their first switching at smax are located

on the great circles passing through N and containing x1− or x2−axis.

Proof. Point (i) is a direct consequence of Point (ii) of Proposition III.2. Points (ii)-(iv) are

proved in Appendices B and C.
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The next proposition concerns abnormal extremals. It holds without Assumption (A1).

Proposition III.4. There are no abnormal bang-bang trajectories starting from the north

pole.

Proof. Assume by contradiction that there exists an abnormal bang-bang trajectory starting

from the north pole. Then, (ii) of Lemma III.1 implies that

φ0(t) + |φ1(t)|+ |φ2(t)| = 0.

Since φ0(0) = 0, we have φ1(0) = φ2(0) = 0. This contradicts the non triviality of the

co-vector λ.

B. Singular trajectories

The results presented in this section characterize singular trajectories of (3). They are

consequences of Lemmas II.6, II.7, and III.1. The normalization used here for the co-vector

λ is given by λ(0) = (cos θ, sin θ, 0) with θ ∈ [0, 2π[. The corresponding initial conditions for

the switching functions are:

φ0(0) = 0, (10)

φ1(0) = − sinα sin β sin θ, (11)

φ2(0) = − sinα cos β cos θ. (12)

With this normalization, the constant K in (iii) of Lemma III.1 is equal to cos2 α. Moreover,

it follows from (ii) of the same lemma that minθ λ0 = − sinα.

Proposition III.5. The sets where the support of singular trajectories should belong to are

characterized as follows.

(i) The support of a totally singular trajectory must be contained in the equator C0 of

S2. The corresponding totally singular control satisfies u1 ≡ 0 and u2 ≡ 0 almost

everywhere.
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(ii) The support of a u1-singular (resp. u2-singular) trajectory must be contained in the

set C1± := S2 ∩ {± tanα cos β x2 = x3} (resp. C2± := S2 ∩ {± tanα sin β x1 = −x3}).

The corresponding u1-singular (resp. u2-singular) control satisfies a.e. u1 ≡ 0 and

u2 ≡ ū, where ū ∈ {±1} (resp. u1 ≡ ū and u2 = 0 a.e.).

Proof. For (i), applying Lemma II.6, G1x(t) must be parallel to G2x(t). Therefore, x3(t) = 0

on [a, b], i.e., a totally singular trajectory can only stay on the equator of S2. For (ii), assume

for instance φ1 = 0 and φ2 6= 0 on some interval [a, b]. Applying Lemmas II.7 and III.1,

G1x(t) is parallel to (G2 − u2 tan2 α cos2 β F )x(t), i.e.,
0

−x3

x2

 ∧

u2 tanα cos β x2 − x3

−u2 tanα cos β x1

x1

 = (u2 tanα cosαx2 − x3)x = 0.

Therefore, a u1-singular trajectory must stay in the set C1± := S2 ∩ {± tanα cos β x2 = x3}.

The proof for u2-singular trajectory is similar.
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FIG. 4. C0, C1±, and C2± are represented respectively by green, red, and blue lines for α = π/5

and β = π/6.
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Corollary III.6. Assuming (A1), a normal bang-bang extremal starting from the north pole

cannot connect to a totally singular arc.

Proof. Assume by contradiction that a normal bang-bang extremal is connected to a totally

singular extremal at tc. Then by Lemma III.1, we have

φ0(tc) = −λ0, φ2
0(tc) = cos2 α,

implying that λ2
0 = cos2 α. However, we already now that

max
θ
λ2

0 = sin2 α < cos2 α, if α < π/4,

which yields a contradiction.

Corollary III.7. If α < π/4, a normal bang-bang extremal starting from the north pole

cannot connect to a partially singular arc.

Proof. Assume for instance φ2(tc) = φ̇2(tc) = 0 and φ1(tc) 6= 0. Note that if φ1(tc) = 0, then

we proceed as in the proof of Corollary III.6 to achieve a contradiction. From (ii) and (iii)

of Lemma III.1, we obtain

φ0(tc) + |φ1(tc)| = −λ0,

φ2
0(tc)

cos2 α
+

φ2
1(tc)

sin2 α sin2 β
= 1,

which imply

φ0(tc) =
−λ0

(
sin2 α sin2 β − cos2 α

)
∓
√

∆

sin2 α sin2 β + cos2 α
,

|φ1(tc)| =
−λ0 sin2 α sin2 β ±

√
∆

sin2 α sin2 β + cos2 α
,

where ∆ := 1− λ2
0 − sin2 α cos2 β. From (i) of Lemma III.1, we also have

φ̇2(tc) =
sin2 α sin β cos β

cosα
u1φ0(tc)−

cosα

tan β
φ1(tc)

= ∓sin2 α cos2 β + cos2 α

cosα cos β
sin βu1

√
∆ = 0,

which implies ∆ = 0. However, if α < π/4, then λ2
0 < cos2 α and

∆ > sin2 α sin2 β > 0,

which yields a contradiction.
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IV. OPTIMAL SYNTHESIS FOR SMALL α AND β =
π

4

Assuming (A2), i.e., α small and β = π/4, we prove in this section that the extremal

trajectories issued from the north pole are globally optimal until they reach a neighborhood

of the south pole. In the following we use S2 \ O(α) to denote the sphere S2 minus a

neighborhood of order α of the south pole.

In general, proving global optimality of solutions of the PMP is not an easy task since

one has to compare for each final point all extremals reaching that point. In our case, we

get the result by a set of arguments similar to those used for the problem with one bounded

control, see [7, 15]. We only give a sketch of these arguments (to avoid lengthy computations

similar to those made in [7, 15]) except for one crucial proposition that is proved in detail.

These arguments are described in the following steps.

STEP 1 We consider all extremals starting from the north pole. They are divided into 4 families

depending on the value taken by the controls at the beginning, namely (1, 1), (1,−1),

(−1,−1), (−1, 1). Let Xsign(u1)sign(u2) := F + u1G1 + u2G2. Then, the first family of

extremals has the form:

Ξ(t, s, α) := m(t, s, α)M̄n(s, α)esX++N, s ∈ [0, smax], (13)

where n is an integer, M̄(s, α) is defined by

M̄(s, α) := ev(s)X++ev(s)X−+ev(s)X−−ev(s)X+− , (14)

and m(t, s, α) has one of the following forms,

m(t, s, α) =



e(t−τ1(n,s))X+− , τ1(n, s) := 4nv(s) + s,

e(t−τ2(n,s))X−−ev(s)X+− , τ2(n, s) := (4n+ 1)v(s) + s,

e(t−τ3(n,s))X−+ev(s)X−−ev(s)X+− , τ3(n, s) := (4n+ 2)v(s) + s,

e(t−τ4(n,s))X++ev(s)X−+ev(s)X−−ev(s)X+− , τ4(n, s) := (4n+ 3)v(s) + s,

with 0 < t − τi(n, s) < v(s). Note that the integer n and the function m(t, s, α) are

determined by the target. All the three other families can be defined in a similar

manner. The extremal trajectories having their first switchings at smax are called
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“boundary-trajectories” of the family. Each extremal of the family switches a certain

number of times before reaching the south pole, and all the switching points of the

different extremals form smooth curves called switching curves. See Figure 6.

Definition 7. A (geometric) smooth curve C is called a switching curve if each point

of C is a switching point.

By construction, the following curves Ck(s, α) defined by induction are switching curves

of the first family:

C1(s, α) = esX++N, Ck(s, α) = M̄(s, α)Ck−1(s, α), (15)

with k > 1, s ∈ [s, smax], and M̄(s, α) defined by (14).

the trajectories
refracting the trajectories

switching curve

reflecting the rajectories

switching curve
switching curve

reflecting and refracting

FIG. 5. Local optimality of switching curves

STEP 2 Each switching curve can “refract” or “reflect” the extremals (see Fig. 5). The main

argument of the proof is that up to a neighborhood of the south pole, all the switching

curves are “locally” optimal, i.e., they always “refract” extremals.

Definition 8. Let C be a switching curve. Assume that extremal trajectories switch

on C from a smooth vector field Y1 to another smooth vector field Y2. Let C(s) be a

smooth parameterization of C with s ∈ Domain(C). We say that C is locally optimal

if, for every s ∈ Domain(C) and for every pair (c1, c2) such that c1c2 ≥ 0, we have

∂sC(s) 6= c1Y1(C(s)) + c2Y2(C(s)).
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Proposition IV.1. Let α be small enough and consider the set of extremals issued

from the north pole before they reach a neighborhood of the south pole. Then all the

switching curves formed by this extremal flow are locally optimal.

The proof of this proposition is given in detail at the end of the section. It is clear

from numerical simulations that the neighborhood of the south pole where extremal

flow loses optimality is approximately a disk of radius 3α.

(1,1)

(1,-1)

(-1,-1)

S
n
ak

e
1

(1,-1)

(-1,-1)

north pole

= trajectory

= switching curve

smax

boundary trajectories

FIG. 6. The four-snake structure.

STEP 3 Proposition IV.1 has two main byproducts (which are not completely obvious, but can

be proved as in [7, 15]).

– The four families of extremals defined in STEP 1 are well organized in a structure

of four snakes (see Fig. 6 and Fig. 1), in the sense that the four families do not

intersect until they reach a neighborhood of the south pole.
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– In each snake, trajectories do not intersect each other until they reach a neigh-

borhood of the south pole.

As a consequence, each point of S2 \ O(α) is reached by one and only one extremal

issued from the north pole before reaching a neighborhood of the south pole. By

construction, these trajectories are optimal.

The four snakes intersect in a neighborhood of order α of the south pole. Hence the proof

fails in that region. One can also see that in a neighborhood of the south pole there exist

non locally optimal switching curves. An analysis on how the trajectories lose optimality in

a neighborhood of the south pole is very complicated and out of the purpose of this paper,

but it can be pursued as in [15]. The extremal front, defined as the set of the endpoints

of extremal trajectories at time t, is homeomorphic to a circle up to a neighborhood of the

south pole. In a neighborhood of the south pole it develops singularities (cusps and self-

intersections) showing the presence of a cut locus (locus at which trajectories lose optimality).

See Figure 7.

FIG. 7. Top view of the extremal front, far from the south pole (left) and close to the south pole

(right).

Proof of Proposition IV.1. By (15), we obtain

Ck+1(s, α) := M(s, α)Ck(s, α) = Mk(s, α)C1(s, α). (16)
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The curves Ck(s, α) correspond to a switching from (+,+) to (+,−). Assume that there

exist two real numbers c1 and c2 such that c1c2 ≥ 0, and

∂sCk+1 = (c1X++ + c2X+−)Ck+1.

Therefore,

(c1X++ + c2X+−)MkC1 = Mk∂sC1 +
k∑
i=1

M i−1∂sMMk−iC1. (17)

By Taylor expansion, we also have

C1(s, α) =


√

2

2
(1− sin s− cos s) α

−
√

2

2
(1 + sin s− cos s) α

1

+O(α2),

∂sC1(s, α) =


√

2

2
(− cos s+ sin s) α

−
√

2

2
(cos s+ sin s) α

0

+O(α2)

M(s, α) =


1 0 0

0 1 −4
√

2α

0 4
√

2α 1

+O(α2) = R(θ) +O(α2),

∂sM(s, α) =


0 4(sin s− cos s) α2 0

−4(sin s− cos s) α2 0 0

0 0 0

+O(α3) = O(α2),

with R(θ) :=


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

, and θ := 4
√

2α.
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By (17), we obtain

(c1 + c2)


sin kθ

0

0

 =


∂sf1(s) + (c1 + c2) cos kθ f2(s) + (c1 − c2)

√
2

2
cos kθ

cos kθ ∂sf2(s)− (c1 + c2)[f1(s)−
√

2

2
cos kθ]

sin kθ ∂sf2 + (c1 + c2)

√
2

2
sin kθ

α +O(α2),

(18)

with f1(s) :=

√
2

2
(1 − sin s − cos s) and f2(s) := −

√
2

2
(1 + sin s − cos s). Eq. (18) implies

that

sin kθ = sin 4
√

2kα = O(α). (19)

Clearly this condition can be satisfied only in a neighborhood of order α of the north pole

or of the south pole. Direct computation shows that it is not satisfied in a neighborhood of

the north pole. It follows that the switching curves Ck are locally optimal until intersecting

a neighborhood of order α of the south pole. All the other cases can be treated in a similar

manner.

V. SIMPLE SUBOPTIMAL CONTROLS AND COMPARISON WITH OTHER

STRATEGIES

A. Two simple suboptimal strategies realizing complete spin flip

Based on the optimal synthesis described in Sec. IV and the computational lemmas

gathered in Appendix C, we present in this section two simple suboptimal strategies for the

case where the two controls have the same bound M and the ratio M/E is small, i.e., α is

small and β = π/4. This case is the most relevant one for NMR applications.

1. A really simple suboptimal strategy

We first present the strategy for the normalized system (3) with k = 1. For small α, we

obtain from Lemma C.4 that v(s) ≈ π/2. Consider the following sequence of controls

(S1) : (+1,−1)→ (−1,−1)→ (−1,+1)→ (+1,+1),
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where each combination of (u1, u2) lasts for a duration of π/2. By Lemma C.5 (see also the

proof of Proposition IV.1), the action the sequence (S1) produces approximately a rotation

around x1−axis of angle 4
√

2α. Let n := d π

4
√

2α
e, where dKe denotes the smallest integer

not less than K. It is clear that
π

4
√

2n
≤ α <

π

4
√

2(n− 1)
. Then, starting from the north

pole, applying the sequence S1 for n times steers the system close to the south pole (see Fig.

8), and the error is of the order of α.

0 2 4 6 8 10 12

−1.5

−1

−0.5

0

0.5

1

1.5

Time

u
1

0 2 4 6 8 10 12

−1.5

−1

−0.5

0

0.5

1

1.5

Time

u
2

0 50 100 150 200 250 300 350
−1

−0.5

0

0.5

1

0 50 100 150 200 250 300 350
−1

−0.5

0

0.5

1

0 50 100 150 200 250 300 350
−1

−0.5

0

0.5

1

Time

FIG. 8. On the left u1 (top) and u2 (bottom) over two periods. On the right, suboptimal trajectories

for α = 0.01 and k = 1.

We now take into account the time normalization constant k which is approximately equal

to 2E in the case of small α. The suboptimal controls corresponding to the sequence S1 are

periodic rectangular signals of period π/E, and the total transfer time is equal to nπ/E. The

advantage of this strategy is that it only requires the knowledge of the Larmor frequency

of the system and the bound on the control fields; it does not necessitate any computation.

Note also that the three other sequences obtained from cyclic permutations of (S1) are also

suboptimal in a similar manner. Finally, this strategy is suboptimal in the sense that the

south pole is not exactly reached.
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2. A more accurate suboptimal strategy

We investigate more carefully properties of the sequence (S1) to derive another suboptimal

strategy that steers (3) from the north pole to the south pole exactly. The new strategy is

based on the following proposition, which is a direct consequence of Corollaries C.2 and C.3.

Proposition V.1. Let θ(α) := arcsin

(
−2
√

2 sinα cosα

1 + cos2 α

)
, and M̄(s, α) be defined by Eq.

(14). For any interger n and any α < π
4
, we have

Mn
1 (0, α)N =


0

sin(4nθ(α))

cos(4nθ(α))

 , Mn
1 (smax, α)esmaxX++N =


0

sin((4n+ 1)θ(α))

cos((4n+ 1)θ(α))

 . (20)

In other words, Proposition V.1 states that for any α less than π/4 the switching curve’s

two endpoints stay on the great circle orthogonal to the x1−axis under the action of the

sequence (S1). We now construct a suboptimal strategy from the formula for Mn
1 (0, α)N .

Let n := d π

4θ(α)
e. It is easy to check that θ(α) is a monotonically increasing function of α

for α ∈ [0, π/4]. Then, there exists a unique ᾱ ≤ α such that 4nθ(ᾱ) = π. In other words,

we have

Mn
1 (0, ᾱ)N =


0

0

−1

 . (21)

Let γ :=
sin ᾱ

sinα
≤ 1. Then, the action of M1(0, ᾱ) is realized by applying the following

sequence

(S2) : (+γ,−γ)→ (−γ,−γ)→ (−γ,+γ)→ (+γ,+γ),

where each combination of controls lasts for a duration equal to arccos

(
− sin2 ᾱ

1 + cos2 ᾱ

)
, which

is approximately π/2. This strategy is suboptimal in the sense that the transfer time is not

optimal, because the controls do not satisfy the Pontryagin Maximum Principle (the controls

are bang-bang, but do not saturate the bounds ±1). The advantage of this strategy is that

the south pole is exactly achieved for any α less than π/4, and the transfer time is close

to the optimal one if α is small. See Fig. 9 for a comparison with the strategy (S1) for

27



different values of α. Three other similar suboptimal sequences can also be built from cyclic

permutations of (S2).
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FIG. 9. Trajectories of x3 corresponding to strategy S1 (blue line) and strategy S2 (red line) for

α = 0.1 (left) and α = 0.01 (right).

B. Comparison of suboptimal controls with optimal control bounded on the circle

In this section we compare the times needed to steer system (2) from the north pole to

the south pole for two different bounds on the controls:

(S) : |Ωi(t)| ≤M, i = 1, 2, (C) :
√

Ω2
1(t) + Ω2

2(t) ≤M.

We are only interested in the case where M is much smaller than E, i.e., α is small. It was

shown in [5],[6] that the following control is time optimal for the control system with control

bound of type (C):

Ω1(t) = M sin (ωrt+ φ) ,

Ω2(t) = M cos (ωrt+ φ) ,
(22)

where ωr = 2E, and that the optimal time to steer from the north pole to the south pole is

given by

TC(M) =
π

2M
. (23)
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We now estimate TS(M), the optimal transfer time for (S). Recall that if TΣ(α) is the optimal

time for the normalized system (3) with k = 1, then we have TS(M) = TΣ(α)/(2
√
E2 + 2M2).

Using for instance the first suboptimal strategy presented in Sec. V A (the second suboptimal

strategy gives the same result up to an error of order α), we obtain

TΣ(α) = 2π

(
π

4
√

2α

)
+ o(α) =

π2

2
√

2α
+ o(α). (24)

We also have 2
√
E2 + 2M2 = 2E + o(α). Therefore, TS(M) is approximately given by

TS(M) ≈ π2

4
√

2αE
≈ π2

8M
. (25)

Eqs. (23) and (25) imply that
TS(M)

TC(M)
≈ π

4
≈ 0.78. (26)

In other words, there is an improvement of 22% when using suboptimal controls for problem

(S) compared to the optimal ones for problem (C).

FIG. 10. Time evolution of (u1, u2) in the limit α → 0 for the control system on the square (red)

and the circle (black).

Appendix A: Proof of Proposition III.2

Recall that the normalization for the co-vector λ is given by λ(0) = (cos θ, sin θ, 0), and

the corresponding initial conditions for the switching functions are given by Eqs. (11) and

(12). It follows from (ii) of Lemma III.1 that minθ λ0 = − sinα.
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Proof of (i). By (ii) and (iii) of Lemma III.1 we have

φ0(t) + |φ1(t)|+ |φ2(t)|+ λ0 = 0 (A1)

φ2
0(t)

cos2 α
+

φ2
1(t)

sin2 α sin2 β
+

φ2
2(t)

sin2 α cos2 β
= 1 (A2)

We call the sets of (φ0, φ1, φ2) that satisfy equations (A1) and (A2), SH and Sad respec-

tively. By (i) of Lemma III.1 the solution of the adjoint system is defined and unique in

[s, s + t]. This solution must always lie in the intersection SH ∩ Sad, which is visualized in

Fig. 11. The surface defined by SH is a union of four quarter-planes and may as such be

spanned by rays starting at their common intersection,

φ0 = −λ0, φ1 = 0, φ2 = 0. (A3)

FIG. 11. Intersection of the surfaces SH and Sad.

Assume by contradiction that φ2(s) = φ2(s + t) = 0. This implies that there exists a

ray in SH starting from (A3) that intersects Sad more than once, since the solution must

return to the (φ0, φ1)-plane without crossing itself. However, if α < π/4, (A3) belongs to

the interior of Sad, which is a strictly convex set. Thus any ray starting from (A3) can only

intersect Sad once. Thus φ2 can never switch two times consecutively. The same reasoning

holds for φ1.
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Proof of (ii). Assume that the initial control is (1, 1), i.e. θ ∈ [π, 3π/2]. By (i) of Lemma

III.1 with the initial condition given by λ(0), for a given θ ∈ [π, 3π/2], s is the first switching

time if and only if f(θ, s) = 0 with

f(θ, s) :=

(
2
(
1− sin2 α cos2 β

)
sin2 α

cos θ − sin 2β sin θ

)
cos s

− 2 cosα

sin 2α
sin θ sin s+ (1 + cos 2β) cos θ + sin 2β sin θ.

It follows directly that cos s(π) =
− sin2 α cos2 β

1− sin2 α cos2 β
. Consider the following initial value

problem 
s′ = −∂θf(θ, s)

∂sf(θ, s)
,

s(π) = arccos

(
− sin2 α cos2 β

1− sin2 α cos2 β

)
,

(A4)

where s′ denotes the derivative of s with respect to θ. It is easy to show that (A4) has a

unique solution for θ ∈ [π, π + ε[ with ε > 0 small enough.

The first step consists of showing global existence of the solution to Eq. (A4) over the

interval [π, 3/2π]. We have

∂θfp(θ, s) = −

(
2
(
1− sin2 α cos2 β

)
sin2 α

sin θ + sin 2β cos θ

)
cos s− 2 cosα

sin2 α
cos θ sin s

− (1 + cos 2β) sin θ + sin 2β cos θ,

∂sfp(θ, s) = −

(
2
(
1− sin2 α cos2 β

)
sin2 α

cos θ − sin 2β sin θ

)
sin s− 2 cosα

sin2 α
sin θ cos s.

It is clear that there exists a constant K > 0 such that |∂θf(θ, s)| ≤ K. We need a uniform

estimate for 1/∂sf(θ, s). Let

a(θ) :=
2
(
1− sin2 α cos2 β

)
sin2 α

cos θ − sin 2β sin θ, b(θ) :=
2 cosα

sin2 α
sin θ,

c(θ) := (1 + cos 2β) cos θ + sin 2β sin θ.

We have that f(θ, s) = a(θ) cos s− b(θ) sin s+ c(θ). It follows that

f(θ, s)√
a2(θ) + b2(θ)

= cos γ cos s− sin γ sin s+
c(θ)√

a2(θ) + b2(θ)

= cos(s+ γ) +
c(θ)√

a2(θ) + b2(θ)
,
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where cos γ :=
a(θ)√

a2(θ) + b2(θ)
and sin γ :=

b(θ)√
a2(θ) + b2(θ)

.

Therefore, |∂sfp(θ, s)| =
√
a2(θ) + b2(θ) |sin(s+ γ)|.

Since f(θ, s) = 0, we also have that

|sin(s+ γ)| =
√

1− cos2(s+ γ) =

√
1− c2(θ)

a2(θ) + b2(θ)
,

which implies

|∂sfp(θ, s)| =
√
a2(θ) + b2(θ)− c2(θ).

We simplify the expression within the square root, and obtain

a2(θ) + b2(θ)− c2(θ) =
2

sin2 α

(
2 cot2 α− 2 cos 2β cos2 θ − sin 2β sin 2θ

)
.

We deduce that

|∂sfp(θ, s)| ≥
2
√

cot2 α− cos2 β

sinα
, (A5)

and it follows that ∣∣∣∣∂θfp(θ, s)∂sfp(θ, s)

∣∣∣∣ ≤ K sinα

2
√

cot2 α− cos2 β
. (A6)

which implies that the solution of (A4) is globally defined on [π, 3π/2].

Let s(·) be the solution to Eq. (A4). The second step consists of showing that s is

decreasing on [π, 3π/2]. We deduce from (A5) that ∂sf(θ, s) does not change sign on [π, 3π/2]

and it is easy to show that it is positive. We now show that ∂θf(θ, s) does not change sign

neither. By contradiction, assume that ∂θf(θ, s) = 0 for some s. Together with the fact that

f(θ, s) = 0, we obtain

 c1 cos θ − c4 sin θ −c2 sin θ

−c1 sin θ − c4 cos θ −c2 cos θ

cos s

sin s

 =

−c3 cos θ − c4 sin θ

c3 sin θ − c4 cos θ

 , (A7)

with

c1 :=
2
(
1− sin2 α cos2 β

)
sin2 α

, c3 := 1 + cos 2β,

c2 :=
2 cosα

sin2 α
, c4 := sin 2β,
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which implies

cos s = − sin2 α cos2 β

1− sin2 α cos2 β
,

sin s =
sin2 α sin β cos β(

1− sin2 α cos2 β
)

cosα
.

Therefore,

cos2 s+ sin2 s =
sin2 α cos2 β(

1− sin2 α cos2 β
)

cos2 α
. (A8)

However, it is easy to show that (A8) is less than one if α < π/4, thus yielding a contradiction.

Therefore ∂θf(θ, s) does not vanish and s′ has a constant sign on [π, 3π/2]. Using

cos s(π) =
− sin2 α cos2 β

1− sin2 α cos2 β
, sin s(π) =

√
1− 2 sin2 α cos2 β

1− sin2 α cos2 β
,

it is easy to show that ∂θf(π, s(π)) > 0. Therefore s′(π) < 0, which implies that s′ < 0 on

[π, 3π/2]. We conclude that max
θ∈[π,3π/2]

s(θ) = s(π). The other cases with initial control equal

to (−1,−1), (−1, 1), or (1,−1) are similar.

Proof of (iii). Assume for instance φ2(s) = φ1(s + t1) = φ2(s + t1 + t2) = 0. Let Xu1u2 :=

F + u1G1 + u2G2. Then, we have

λ(s+ t1) exp(t1Xu1u2)G2 exp(−t1Xu1u2)z(s+ t1)

= λ(s+ t1)G1z(s+ t1)

= λ(s+ t1) exp(−t2X−u1u2)G2 exp(t2X−u1u2)z(s+ t1)

= 0. (A9)

Recall that the Lie algebra (so(3), [, ]) is isomorphic to the Lie algebra (R3,∧), where ∧

denotes the vector product in R3, and we use the following isomorphism:

i :


0 −c b

c 0 −a

−b a 0

→

a

b

c

 .

Then, (A9) is equivalent to

det(i(G1), et1Xu1u2 i(G2), e−t2X−u1u2 i(G2)) = 0,
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which may be simplified to the following equation

sin

(
t2 − t1

2

)
D(t1, t2) = 0, (A10)

where

D(t1, t2) := 2 sin
(
t2
2

) (
4 cosα cos β cos

(
t1
2

)
+ sin

(
t1
2

) (
(cos 2α + 3) sin β − 2 sin2 α sin 3β

))
+ 8 cos

(
t2
2

) (
cosα cos β sin

(
t1
2

)
+ sin β cos

(
t1
2

))
.

It is easy to check that D(t1, t2) 6= 0 if (t1, t2) ∈ [0, π]2, which implies that t1 = t2. Lemma

A.1 guarantees that t1 and t2 indeed belong to [0, π]. Therefore, the duration between any

two switchings is the same.

Lemma A.1. Let s, s + t1 and s + t1 + t2 be three consecutive switching times. Then

(t1, t2) ∈ [0, π]2.

Proof of Lemma A.1. To simplify the notation, set a1 := cosα cot β, a2 := cosα tan β, and

a3 := cosα tan2 α sin β cos β. We have

P (u1, u2) =


0 u2a1 −u1a2

−u2a3 0 a2

u1a3 −a1 0

 , and a1a2 + a1a3 + a2a3 = 1.

Let

v1(u1, u2) :=


a2

u2a3
u1a2

u2a1

1

 , v2(u1, u2) :=


− u2a1

a1 + a3

− u1u2a3

a1 + a3

1

 , v3(u1, u2) :=


− u1

a1 + a3

1

a1 + a3

0

 ,

It is straightforward that Pv1 = 0, Pv2 = v3, and Pv3 = −v2.

Let Q(v1, v2) := [v1(u1, u2), v2(u1, u2), v3(u1, u2)]. We have Q−1PQ =


0 0 0

0 0 −1

0 1 0

 , with
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Q−1 =


u2a1a3 u1u2a1a3 a1a3

−u2a1a3 −u1u2a1a3 a2(a1 + a3)

−u1a3 a1 0

 . Therefore,


φ0(s+ t)

φ1(s+ t)

φ2(s+ t)

 = Q(u1, u2)


1 0 0

0 cos t − sin t

0 sin t cos t

Q−1(u1, u2)


φ0(s)

φ1(s)

φ2(s)

 , (A11)

where (u1, u2) are the controls used in the interval [s, s+ t].

Let s and s+ t be two consecutive switching times. We show that t ∈ [0, π]. Without loss

of generality, we can assume that φ2(s) = 0. Then, we have φ1(s + t) = 0. We also know

that φ0(s) = −λ0 − u1φ1(s). Therefore, (A11) implies

φ1(s+ t) = (p cosα + λ0 cosα sin2 α sin2 β) cos t+ u1u2 sin β cos β sin2 α(p+ λ0) sin t

−λ0 cosα sin2 α sin2 β = 0, (A12)

where p := u1φ1(s) = |φ1(s)| is the positive solution of

(1 +
1

tan2 α sin2 β
)p2 + 2λ0p+ λ2

0 − cos2 α = 0. (A13)

Note that (A12) has exactly one positive solution if α < π/4. Therefore, we obtain

p =
−λ0 sin2 α sin2 β + cosα sinα sin β

√
∆

sin2 α sin2 β + cos2 α
, (A14)

with ∆ := 1− λ2
0− sin2 α cos2 β. Substituting (A14) in (A12), we obtain after simplification

c1 cos t+ c2 sin t+ c3 = 0, (A15)

where

c1 :=
cosα

√
∆

sinα
− λ0 sin β sin2 α cos2 β,

c2 := u1u2 cos β(sinα sin β
√

∆ + λ0 cosα),

c3 := −λ0 sin β(sin2 β + cos2 α cos2 β).

Eq. (A15) is equivalent to

(c3 − c1) tan2 t

2
+ 2c2 tan

t

2
+ (c3 + c1) = 0, (A16)
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and we only need to show that (A16) has positive solution. Prove that
c3 + c1

c3 − c1

< 0, which

implies that (A16) has exactly one positive solution. As λ0 < 0, it is clear that c3 + c1 > 0.

Therefore, we only need to check the sign of c3 − c1.

c3 − c1 = −λ0 sinα sin β(1− 2 sin2 α cos2 β) + cosα
√

∆

sinα
.

Let λ̄0 := −λ0 > 0. We have

cosα
√

1− λ̄2
0 − sin2 α cos2 β − λ̄0 sinα sin β(1− 2 sin2 α cos2 β)

=
cos2 α(1− λ̄2

0 − sin2 α cos2 β)− λ̄2
0 sin2 α sin2 β(1− 2 sin2 α cos2 β)2

cosα
√

1− λ̄2
0 − sin2 α cos2 β + λ̄0 sinα sin β(1− 2 sin2 α cos2 β)

≥ cos2 α(1− λ̄2
0 − sin2 α cos2 β)− λ̄2

0 sin2 α sin2 β(1− 2 sin2 α cos2 β)

cosα
√

1− λ̄2
0 − sin2 α cos2 β + λ̄0 sinα sin β(1− 2 sin2 α cos2 β)

=
cos2 α(1− sin2 α cos2 β)− λ̄2

0(cos2 α + sin2 α sin2 β − 2 sin4 α sin2 β cos2 β)

cosα
√

1− λ̄2
0 − sin2 α cos2 β + λ̄0 sinα sin β(1− 2 sin2 α cos2 β)

. (A17)

Using the fact that, for α < π/4, cos2 α > λ̄2
0, and

(1− sin2 α cos2 β)− (cos2 α + sin2 α sin2 β − 2 sin4 α sin2 β cos2 β)

= 2 sin4 α sin2 β cos2 β > 0,

we conclude that (A17) is positive, which implies that c3 − c1 < 0.

Appendix B: Expression of v(s)

We establish in this section the expressions for the duration between switchings on a

normal extremal as a function of the the first switching time s. For convenience we set cα

and sα to denote respectively cosα and sinα.

Lemma B.1. If the extremal trajectory is starting from the north pole with control (1, 1)

or (−1,−1) (resp. with control (1,−1) or (−1, 1)) then v(s) = v1(s) (resp. v(s) = v2(s)),

where

vi(s) = arccos

[
Ai(s) +Bi(s)

√
Ci(s) + Ei

Di(s) + Fi

]
, i = 1, 2,
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with

A1(s) = 4s6
αs

2
2β + 8s2

2αsβ(cαcβ sin(s) + sβ cos(s)) + 2s4
α

(
(3 + c2α)s2

2β cos(2s) + 2cαs4β sin(2s)
)
,

A2(s) = 4s6
αs

2
2β + 8s2

2αcβ (cαsβ sin(s) + cβ cos(s)) + 2s4
α

(
(3 + c2α)s2

2β cos(2s)− 2cαs4β sin(2s)
)
,

B1(s) =
√

2s2
αcβ (cβ sin(s) + cαsβ(cos(s)− 1)) ,

B2(s) =
√

2s2
αsβ (sβ sin(s) + cαcβ(cos(s)− 1)) ,

C1(s) = 256s2
αcαcβ

(
3 + c2α + 2s2

αc2β

)
(cαcβ cos(s)− sβ sin(s))

+ 64s4
αs

2
β

((
(3 + c2α)c2β − 4s2

α

)
cos(2s)− 4cαs2β sin(2s)

)
,

C2(s) = 256s2
αcαsβ

(
3 + c2α − 2s2

αc2β

)
(cαsβ cos(s)− cβ sin(s))

− 64s4
αc

2
β

((
(3 + c2α) c2β + 4s2

α

)
cos(2s) + 4cαs2β sin(2s)

)
,

D1(s) = 16s2
αcαcβ

(
3 + c2α + 2s2

αc2β

)
(sβ sin(s)− cαcβ cos(s)) ,

D2(s) = 16s2
αcαsβ

(
3 + c2α − 2s2

αc2β

)
(cβ sin(s)− cαsβ cos(s)) ,

E1 = 234 + 384s4
αc2β − 16s4

αc4β(1 + 3c2α) + 205c2α + 70c4α + 3c6α,

E2 = 234− 384s4
αc2β − 16s4

αc4β(1 + 3c2α) + 205c2α + 70c4α + 3c6α,

F1 = −17− 16s4
αc2β + c2α

(
4s4

αc4β −
39

4

)
− 5c4α −

1

4
c6α,

F2 = −17 + 16s4
αc2β + c2α

(
4s4

αc4β −
39

4

)
− 5c4α −

1

4
c6α.

Proof. Similar to the proof of (iii) of Proposition III.2, assume

φ2(s) = φ1(s+ v) = 0,

where s is the first switching time. Therefore,

λ(s)G2x(s) = λ(s) exp(−vX+−)G1 exp(vX+−)x(s) = 0,

which implies that

g(s, v) := det(i(G2), i(exp(−vX+−)G1 exp(vX+−)), exp(sX++)x(0))

= 0. (B1)

After simplification, we obtain

a(s) cos v + b(s) sin v + c(s) = 0, (B2)
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with

a(s) := − cos2 β cos s+ cosα sin β cos β sin s− cot2 α,

b(s) := − cosα sin β cos β cos s− cos2 β sin s+ cosα sin β cos β,

c(s) := − sin2 β cos s− cosα sin β cos β sin s.

The result follows.

Lemma B.2. For the special case of β = π/4, we obtain a simpler expression:

v(s) = arccos

[
d− A(s)−B(s)− C(s)

e− A(s) +B(s)

]
,

where

A(s) = 8cαs
2
α sin(s), d = s2

2α,

B(s) = 2s2
2α cos(s), e = 5 + 2c2α + c4α,

C(s) = 4s4
α cos(2s).

(B3)

From Lemma B.2 and (ii) of Proposition III.2, we deduce the following corollary.

Corollary B.3. For β =
π

4
, we have v(0) = v(smax) = smax.

Proof. From (ii) of Proposition III.2, we have

cos smax = − sin2 α

1 + cos2 α
, sin smax =

2 cosα

1 + cos2 α
. (B4)

Substituting (B4) into (B.2), it is easy to check that cos(v(smax)) = cos(smax). In a similar

manner, we check that v(0) = smax.

Appendix C: Some computational lemmas for the case β = π/4

The following result is a consequence of Corollary B.3. It can be checked by direct

computation.
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Lemma C.1. Let θ(α) := arcsin

(
−2
√

2 sinα cosα

1 + cos2 α

)
. Then, we have

ev(smax)X++ =


0 −1 0

cos θ(α) 0 sin θ(α)

− sin θ(α) 0 cos θ(α)

 , ev(smax)X+− =


0 − cos θ(α) − sin θ(α)

1 0 0

0 − sin θ(α) cos θ(α)

 ,

ev(smax)X−− =


0 −1 0

cos θ(α) 0 − sin θ(α)

sin θ(α) 0 cos θ(α)

 , ev(smax)X−+ =


0 − cos θ(α) sin θ(α)

1 0 0

0 sin θ(α) cos θ(α)

 .

Note that sin θ(α) =
−2
√

2 sinα cosα

1 + cos2 α
and cos θ(α) =

3 cos2 α− 1

1 + cos2 α
. By Lemma C.1, we

obtain an exact expression for M̄(smax, α).

Corollary C.2. We have

M̄(0, α) = M̄(smax, α) =


1 0 0

0 cos 4θ(α) sin 4θ(α)

0 − sin 4θ(α) cos 4θ(α)

 , (C1)

where θ(α) is defined in Lemma C.1.

In other words, M̄(0, α) and M̄(smax, α) are rotations around x1−axis of angle 4θ(α).

This fact is crucial for the derivation of suboptimal strategies presented in Sec. V A. It is

worth noticing that formula (C1) is exact for any α smaller than π/4. If α is small enough,

we have 4θ(α) = −4
√

2α+o(α) which agrees the first order approximation used in the proof

of Proposition IV.1.

Corollary C.3. Starting from the north pole, the switching points of the extremals having

their first switching at smax are located on the great circles passing through N and containing

the x1− or x2−axis.

Proof. Note that the switching points of these extremals are given by

m2(α)M̄n(smax, α)m1(α)N,
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where n is an integer, m1(α) denotes one of four exponentials in Lemma C.1, and m2(α) :=

esmaxX++ , or esmaxX+−esmaxX++ , or esmaxX−−esmaxX+−esmaxX++ . Corollary C.3 is then proved by

induction on n, using Lemma C.1 and Corollary C.2.

The following two lemmas are valid for α small enough and β = π/4.

Lemma C.4. Let v(s) be the second switching time as a function of the first one s. For α

small enough, we have

v(s) =
π

2
+ f1(s) α2 + f2(s)α4 +O(α6), for s ∈ [0, smax], (C2)

where smax =
π

2
+

1

2
α2 +

1

12
α4 +O(α5), and

f1(s) := −1

2
+ cos s+ sin s,

f2(s) :=
25

24
− 1

3
sin s+

1

6
cos s+ cos s sin s− cos2 s.

Lemma C.5. We have

M̄(s, α) =


1 + f3(s)α4, f4(s)α2 + f5(s)α4 f6(s)α3

−f4(s)α2 − f5(s)α4, 1− 16α2 + f7(s)α4 −4
√

2α− f8(s)α4

f6(s)α3, 4
√

2α + f8(s)α4, 1− 16α2 + f9(s)α4

+O(α5)

:= M̄a(s, α) +O(α5),

where

f3(s) := 16 sin s− 16 cos s sin s− 16 + 16 cos s, f4(s) := 4− 4 cos s− 4 sin s,

f5(s) := −70

3
+

58

3
cos s+

64

3
sin s+ 4 cos2 s, f6(s) := 8

√
2(−1 + cos s+ sin s),

f7(s) :=
112

3
− 16 cos s sin s, f8(s) :=

2
√

2

3
(−34 + 3 cos s+ 3 sin s),

f9(s) :=
160

3
− 16 sin s− 16 cos s.

Moreover, M̄−1(s, α) = M̄−1
a (s, α) +O(α5) = M̄T

a (s, α) +O(α5).
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