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The Generalised Discrete Algebraic Riccati Equation
arising in LQ optimal control problems: Part Il

Augusto Ferrante and Lorenzo Ntogramatzidis

Abstract—In this paper we develop an analytic approach this paper a direct method is developed which generalises
to the solution of a very general class of discrete finite- the technique in [3] and [4] in two directions. First, we
horizon optimal control problems. This method hinges on a do not require the symplectic pencil to be regular, nor to

new decomposition of the so-called extended symplectic pgh h t d id of ei | th it circle. A
Interestingly, the results established in this paper hold nder ave a spectrum devoid ot eigenvaiues on the unit circie. AS

assumptions that are weaker than the ones considered in the SU_Ch, here regular and singglar problems can be_tackl_ed ina
literature so far. unified manner. Second, unlike the other contributions @n th

| INTRODUCTION topic, t_h_e method presented in this paper doe_s not invoklve th
) _ i solvability of the closed-loop Lyapunov equation. Therefo
The aim of this paper is to present a method t0 SOlVgyen the modulus controllability assumption can be dropped
the most general class of finite-horizon linear-quadrai@)(  The technique presented in this paper only requires a saluti
optimal control problems in the discrete time with positivey the so-called generalised discrete-time algebraic dicc
sem|—def|n|te cost index and affine constraints at the engdyyation, which may exist even when the symplectic pencil is
points. o _ not regular (while in this case the standard discrete algebr
. The approach taken in this paper is based on a parametgfcati equation cannot be solved). Such solution is used to
isation of the set of trajectories generated by the so@aligjerive a decomposition of the extended symplectic pencil
extended symplectic difference equation (ESDE). The idea ¢4t yields a natural parameterisation of the solutions of
solving finite-horizon LQ problems by exploiting expres®0 the symplectic difference equation. A large number of LQ
of the trajectories generated by the Hamiltonian systerhén t ,ropjems dealt with in the literature by resorting to diéiet
continuous time or the ESDE in the discrete time originated ofen jterative — techniques can be tackled in a unified
in the papers [2], [14] and [5] for the continuous time, angramework and in finite, nonrecursive terms, by means of
in [3] and [4] for the discrete time. In both situations, theihe method developed in this paper.
expressions parameterising the trajectories of the Hamilt
nian system and the symplectic equation hinge on particu- Il. STATEMENT OF THE PROBLEM
lar solutions of the associated continuous/discrete adgeb  Consider the linear time-invariant discrete-time system
Riccati equations and on the solution of the corresponding
closed-loop continuous/discrete Lyapunov equation. &/hil X(t+1) = Ax(t) + Bu(t), @
controllability of the given system was required in the firstvhere, for allt € N, x(t) €eR" is the stateu(t) e R™ is the
papers [2] [3], because both the stabilising and antistabitontrol input, AcR"*" and BeR"*™M. Let TeN\ {0} be
ising solutions of the ARE were involved, in more recenthe length of the time horizon. L&, Vr € R9%" andve RY;
times it has been shown that generalisations of the sargensider the two-point boundary-value affine constraint
technique are possible under the much milder assumption of
sign-controllability in the continuous case [5] and modulu Vox(0) +Vr x(T) =v. @)
controllability in the discrete case, see [4]. The assumpAle can conside¥ £ [Vp Vr] to be of full row rank with
tions of sign/modulus-controllability (or stabilisaltyl) were g |oss of generality. Lefl = |:(?I' Sl_pr >0 be a square
needed in the above-mentioned papers because the squt{'on
f

resented there was based on the existence of a solution ng- m)-dimensional matrix withQER™", SeR™*™ and
b éRmxm; note that we do not assume the non-singularity

the closed-loop Lyapunov equation. In the discrete case, t . :
other standing assumption was the regularity of the exiénde R. We H?eanote byz the Popov triple(A, B, ). Finally,

symplectic pencil. The goal of this paper is to propose a nelft H = HT Hg) — HT >0 with Hy,Hz,H3€R"™" and the

approach aimed at overcoming these limitations. Indeed, target statesip, hr e R".
Problem 2.1: Find u(t), te{0,...,T—1} and x(t),
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The formulation of Problem 2.1 is very general, since thby the Moore-Penrose pseudo-inverse. Eq. (10) is known
cost index in (3) involves the most general type of positivén the literature as theeneralised discrete-time algebraic
semidefinite quadratic penalisation on the extreme statdgiccati equation GDARER), [15], [9]. GDAREEZ) with the
and (2) represents the most general affine constraint alditional constraint given by (11) is sometimes refered t
these states. As particular cases of Problem 2.1 we have theeconstrained generalised discrete-time algebraic Riccati
standard case wher€0) is assigned and(T) is weighted equation CGDAREE). Clearly (10) constitutes a generali-
in (3), the fixed end-point case, where the states at theation of the classic DARE], in the sense that any solution
end-points are sharply assigned, and the point-to-pos#,ca of DARE(Y) is also a solution of GDARE() — and therefore
where the extreme values of an outpyt)=Cx(t) are also of CGDAREE) — but the converse is not true in general.
constrained to be equal to two assigned vectors. FurtherSince as aforementioned the Popov matfifixs assumed
non-standard LQ problems that can be useful in practice at@ be symmetric and positive semidefinite, we can consider
particular cases of Problem 2.1, see e.g., [3], [4], [5]. a standard factorisation of the forfh= {g” [c p], where

Lemma 2.1: [4, Lemma 3]If u(t) andx(t) are optimal for Q=C'C, S=C'D andR=D'D. We now introduce some
Problem 2.1, therk (t) eR", t€{0,..., T} andn €RY exist notation that will be used throughout the paper. First, tp an
such thatx(t), A(t), u(t) andn satisfy the set of equations matrix X = XT € R™" we associate the following matrices:

X(t+1) = Ax(t)+Bu(t), te{0,...,T—1}, 4) Sk 2 A™XB+S Rx2R+B'XB, Gx2In—RiRx, (12)
v [ X(((T))) } v g KoERSL ACZA-BKx C2C-DRISL  (13)
X )

The termR;Rx is the orthogonal projector that projects onto
At) =Qx(t)+ATA(t+1)+Su(t), te{0,....,T—1},(6) im Rl = imRx so thatGy is the orthogonal projector that
[ - (0) } _H { x(0) — hg } LT ) projects onto keRy. Hence, keRx = im Gy.

AT | X(T)—=hr N Let %x denote the reachable subspace associated
0=S'x(t)+B A(t+1)+Ru(t), te{o.. T—1}. (8 With the pair (ABGx), in symbols #x =
imBGx AxBGx A%BGx ... A} 'BGx].

Conversely, if equations (4-8) admit solutiomgt), u(t), The following results were proved in [6, Lemma 4.1,

A(t), n, thenx(t), u(t) minimise J(x,u) subject to (1-2). Lemma 4.2, Theorem 4.2].

Lemma 3.1: Let X = X7 be a solution of CGDAREY).

Then,

(i) Zx C kerCx;

(i) kerRx = ken(XB)NkerR;

The variables (t) in (4-8) represent the Lagrange multipliers
associated with the constraint (1), [12], [10], whijec RY is
the Lagrange multiplier vector associated with (2).

[1l. THE GENERALISEDRICCATI EQUATION AND THE (iiiy #x is the reachability subspace on the output-nulling
EXTENDED SYMPLECTIC PENCIL subspace kef.
Since in the present setting we are not assumingRiat We also have the following results, see [6, Theorems 4.3-
4.4].

positive definite, (8) cannot be solved uift). A convenient

form in which (4), (6) and (8) can be written, that does not -€MMa 3.2: The subspaces kBk and #x, and the re-

require inversion oR, is the descriptor form striction Ax|s, do not depend on the solutiok = X7 of
CGDAREE).
Mp(t+1)=Np(t) te{0,...,T—-1}, 9) The following result adapts [8, Lemma 2.5] to the case
where when the matrix penciN —zM may be singular.
Lemma 3.3: Let X = X be a solution of CGDAREY).
lh O O A OB X(t) Then,Ux,Vx € R2¥M exist such that
M2|0 -ATO|, N2 | Q —In S|, pt)= | A(t)
0 —B" O S 0 R u(t) Ax=2h O B
Ux (N—zM)Vx = o] lh—zAy O |. (14)
The matrix pencilN —zM is known as theextended sym- (0] -zBT  Rx
plectic pencil, [12], [10], herein denoted by ESP( We do Proof: The statement follows by using
not make the assumption of regularity of this pencil. l, O O l, O O
We now §hovy how a solution of a generalls_ed discrete y, 2 AXX In —KJ |, W2 | X -1, O.
algebraic Riccati equation can be used to obtain a decom- BTX O Iy —Kx O In
position of ESPX) that can be used to solve Problem 2.1. -

In particular, we will exploit the solutions of the followgn

constrained matrix equation If X is a solution of CGDAREY), from the triangular

structure in (14) we have
_ AT T T -1/pT T

T C T
ker(R+BXB) C ker(A'XB+S), (11) WhenR is non-singular (i.eX is a solution of DAREEX)),

where the matrix inverse that appears in the standard digie dynamics represented by this matrix pencil are decom-
crete algebraic Riccati equation (DARE) has been replacgabsed into a part governed by the generalised eigensteuctur



of Ax —zly, a part governed by the finite generalised eigen- Example 3.1: Consider the following matrices

structure ofl, — zAY, and a part which corresponds to the T2 0 0 0 1 0
dynamics of the eigenvalues at infinity. WhXris a solution 10 0 -3 0 3

of DARE(Z), the generalised elgen_vaIL}eef N—Mz are A=1 09 00 ol B=l2 ol
given by the eigenvalues &, the _reC|pr(_)caI of the non-zero 0O 00 1 0 -2
eigenvalues of\x, and a generalised eigenvalues at infinity y 00 0 1 0 0

whose algebraic multiplicity is equal tm plus the algebraic C = 00 0 0} , D= [ 0 1 } ,

multiplicity of the eigenvalue ofAx at the origin, and we L

have with Q=C"C =diag{0,0,0,1}, S=C'D=0,R=D"D =

lh—zAL O diag{0,1}. In this case, DAREY) has no solutions. A
_BT Ry D (16)  solution of CGDAREE) is X.. = diag{0,0,0, £¢2}. Let us

consider the positive semidefinite soluti¥n= X, . The gain
When the matrixRx is singular, (15) still holds but ,atrix is Ky = [000 0 } and the closed-loop matrix is

o(N—zM) = U(Ax—zln)ua({

provides no information as in this case Bet= 0, while (16) 00012
is no longer true. We show this fact with a simple example. 2 00 0
Theorem 3.1: Let CGDAREE) admit a solutionX = XT. Ay — -1 0 0 3+v2-2
Two matricedUx andVx exist such that X = 0O 0O 0
O (N — 2M) Vi 0 0 0 3-22
Ax11-2Zr By O Ax.12 o Bu1 A basis matrix of the subspace keis [3], and is output-
© © 'r*ZA%.n o o o nulling. A simple computation shows that 0 2 0T is a
O o -zB 0 0 0 i i ili
= o2 T 5 g5 |-(17) basis matrix for keXNB kerD. The reach_ablht_y subspace on
_ AT _ AT
o 0 -2l o Inr—2A] ,, O kerX can be computed as the smallégtinvariant subspace
o o 7ZBir1 o *ZBsz’ Reo containing keX N B kerD. It is given by
where the pair (Ax11,B21) is reachable andRxp 1273 2
is invertible. Moreover, the matrix pencilP(z) £ Fx =im | .
Ax 22— ZIn—r o B12 2 4
0 |n7rszAT>Izz RO in (17) is regular, and the 0 O
—Z X0
generalised eigleznvalues of the pendll—zM are the In order to find the fixed internal eigenvalues of Kewe
generalised eigenvalues Bf(z). choose a change of badis=[T; T, T3] where iml; = %X,

Proof: The statement can be proved by considering wBN[T1 T2] = kerX and T is such thafT is invertible. For
changes of coordinates: one £ diagln,In, T), where example, let us choose

T =[T1w T2] is an orthogonal transformation in the input 17 0 0 0
space with inT; = imRx and imT, =im Gx = kerR, so that T — -8 1 T, 0 T 0
TTRx T = diag{Rx 0,0}, whereRy is invertible. The sec- 1~ | 2 4 |’ 2= 1 |° S=1lo |’
ond is given byJ = diag{U,U, Im,,m, }, whereU = [U; U] 0 0 0 1
is such that int; is the reachable subspace associated witky, 14t
the pair(Ax,By), which coincides with the subspagéx, so
that 2 0]|0 0
. -1 0|0| 3(v2-2)
U-lAU = { Ax11 Axa2 ] 7 T "A&T=|""%9"0ol0 202-v2) |- (19)
O Ax22

5 5 0 ofo] 3-2v2
U'B; = { 51 } , Ul = { BE ] . (18)  The eigenvalues 2 and 0 in the top left block are eigenvalues
of Ax but are not generalised eigenvalues of the extended
Thus, defining the matriceB; = BT; and B, £ BT,, the symplectic pencil. The eigenvalue @fx induced in the
statement follows by simply reordering the blocks via twajuotient space ket/%x is equal to zero, and it appears
unimodular matrices. B as generalised eigenvalue of the extended symplecticlpenci
From these considerations, it turns out that the eigenvalhe eigenvalue ofx induced in the quotient spad®/ kerX
ues of Ax restricted to%x do not appear as generalisedis equal to 3-2v/2, and it appears as generalised eigenvalue
eigenvalues of ESEJ, whereas the eigenvalues of the mapf the extended symplectic pencil along with its reciprocal
induced byAx in the quotient spac®"/%x — along with 3+ 2v/2. In fact, these values are uncontrollable eigenvalues
the reciprocals of those that are different from zero — aref the pair(Ax,By). First, we computdx and Gx:
generalised eigenvalues of ESP(

. : . - 0 0 10
IRecall that a generalised eigenvalue of a matrix peMeilzM is avalue Ry = [ 03 2\/2] , Gx= {0 ol BGx =
of ze C for which the rank of the matrix penchl —zM is lower than its +

normal rank.
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The reachability subspace of the pé#x,BGx) coincides Plugging (28) and (29) into (23) gives
with Zx. We perform the Kalman reachability canonicalX 0 = AL (0
decomposition usingd = [H; Ha] such that inH; = %x. 2(t) = Ax22%2(0)

We take e.g. [ ~ i
° + 5 Ack R BT AL (T (30
1 8 0O 0 1=
Hy — 0 -5 T 0 Note thatxx(T) = A} ,,X2(0) — PAz(T), where
2 —4 | 0 0| .
0 O 0 1 — T—j— _ i
p= %A;,zjz lBlZRx,%)sz(A;(,,zz)T -1 (31)
we get i=
2 16|g 0 0 1 It is easy to see that matriR can be re-written a® =
. g é ‘0 0 . o lo ZjT;ol'?‘_i(,zzBlZRi,%BIz(A;,zz)J- ThereforeP satisfies the dis-
- — - — . crete Lyapunov equation
0 0|0 3-2V2 -2|0 P:AX,22PA>T<,22—A>T<,22312R>?}JBIZ(A>T<,22)T+BlZR>?,%)BIz-

éf Ax 22 has unmixed spectrum, this equation can be used to
determineP instead of computing the sum in (31). At this
point we can solve (20), which can be written as

Hence, zero and 3 2/2 are both generalised eigenvalue
of the extended symplectic pendil— zM, and therefore so
is 1/(3—2v/2). The multiplicity of the eigenvalue at infinity

is equal to the multiplicity of the eigenvalue at zero of x(t+1) = Axarxa(t) +Baug(t) +&(t), (32)
0 0 0 whereé (t) = Ax 12X2(t) +Bi1ux(t). Using (30) and (29) we
3(vV2-2) 3-2v2 0 . find
0 0 3+2v2 _ e
[3+2v2 &) = Ax,letx,zzxz(O)+(311Rx,%)sz(A>T<,22)T 1
Notice that in (19), the eigenvalud®,2} of Ax restricted 1 .
to #Zx do not depend ofX. O +Ax,12%A;"Zlelszi,BIz(A;’ZZ)TJ1) A2(T).
J:
IV. SOLUTION OF THELQ PROBLEM _
) ) ) ) Let Ry = [521 | AX,llBZl | A>2<’11821 | | A;’ljile] and
!n the basis constructed in the previous section, (9) can lpg =[I'| Ax11 | A>2<,11 B AI(E%J' Then, we can write
written fort € {0,...,T —1} as §(T—-1)
x1(T) = AL 1%1(0) + Ro=+ Ry U; where= £ [ : ] and
Xl(t + 1) = Ax!llxl(t) + 821u1(t) ul(T;l) £(0)
+Ax 12%2(t) + Brrup(t), (200 U & ( e We assume thafl is greater than the
' u (0
A(t) = Ax At +12), (21) controllablility index of the paifAx 11,Bz1). All the solutions
0 = —BjA1(t+1), (22) of this equation are parameterised by
Xo(t+1) = Ax22%2(t) 4+ Braua(t), (23) Uy =R! (x(T) — AL 1%1(0) — Re=) + (I = RIRy)v1. (33)
)\Z(t) = A)T(,ZZ)‘Z(t + 1) + A)T(,lz)‘l(t + 1)3 (24) Wherev1 is arbitrary.
U(t) = Ry pBIAa(t+1) + Ry Bl Ax(t+1). (25)

A. Boundary conditions

Since by construction the paifAx11,Bz1) is reachable,  Consider the change of coordinates given by the matrix
ker| X1t | — {0}, which means (21-22) yield\,(t) =0 U =[U1 Uz, where inl; is the reachable subspace of the
T ! . Xl(t) . -1 .
for allt € {0,...,T —1}. This implies that (24-25) can be P&" (AX’B_GX)' Let x2_t(l =U"x() b.e. the coordinates of
simplified as the state in the basis induced by partitioned conformably
with U. The state, co-state and transversality equations can
A(t) = A)T<’22/\2(t+ 1), (26) be written again as in (4), (6) and (8), whekeB, Q, S, V,
U(t) = ReLBLAa(t+1). 27) H.hoandhr are replaced by “1AU,U1B,UTQU,UTS,
’ \Y; [U o [U O} H 38 , U=thg andU ~ht, respectively.

: ; ; : ou|' [ou
It is clear at this point that we can parameterise all th@\is can now write ) and (7) with respect to this basis. We

trajectorigs generated by the difference equations (28), ( a1 eliminate the multiplien from (7) by premultiplying
and (27) in terms okz(0) andAz(T). Indeed, (26) leads t0 p5th sides of this equation by a basis of kerV:

N I TS

In this way, (5) and (34) can be written together as a set of
Ua(t) = R pBI2 (A 22) T A2(T). (29) 2nlinear equations ix(0), X(T), A(0) andA (T). However,

This expression can be plugged into (27) and leads



in (31) the component,(T) is expressed as a linear which leads to
function of x2(0) and A»(T), and A(0) can be expressed
as a linear function im(T) by (28). Finally we know that o(t) = { 0 te{0,..., T—2}
A1(t) must be identically zero, so that(0) = A1(T) = 0.

Therefore, in this basis (5) and (7) can be expressed as a

single linear equation of the form and
x1(0) 0
_ _ | xa(T) *2(0 t=0
Fx=g, where x= %2(0) (35) xo(t)=4 0 te{l,...,T-1}
Ao(T) BILR, 6BIA2(T) = A2(T) t=T.

We have just proved the following result.

Theorem 4.1: Problem 2.1 admits solutions
and only if (35) does. For any solutionx =
[xI(0) >></T(T) (XTEO) AJ(T)]T we yget an optimal (34) can be written ag(0) +x1(T) = hy andxz(0) +x2(T) +

! 1 ) A2(0) — A2(T) = hy. SinceA2(0) =0 andxx(T) = Ax(T), the
initial state x(0) = and a class of optimal controls |4tter can be written as,(0) = hy. Therefore, the boundary
parameterised by (Zé) and (33). The solutions obtained gbnditions can be written in the form (35):
this way are all the solutions of Problem 2.1.

if In this basis, (5) gives rise t®y (0) = x1(T) and x2(0) =
X2(T) = A2(T), which are linear inx;(T) and A(T), while

10 -1 0 x1(0) 0

V. AN ILLUSTRATIVE EXAMPLE 01 0 -1 %(0) | 0

Consider a finite-horizon LQ problem in the time interval 1 0 1 0 x(T) | |
{0,..., T}, involving the matrices 01 0 O Ao(T) ho

A= [é ﬂ , B= [i ﬂ , C=[01], D=[0 0]. Thislinear equation admits only the solutief{0) =x1(T) =
hy/2 andx,(0) = A2(T) = h,. Now we can compute the op-

Let Q=C'C, S=C'D andR=DTD. The extended sym- timal control law. FII’StUz( ) is zero for allt € {0,..., T -2}

plectic pencil in this case is not regular. As such, DARE( andux(T —1) = Ry 4B{,A2(T) = hy/2. In order to compute

in this case does not admit solutions. On the other hand, ih, we write (20) as

this case GDAREY) admits the solutioiX = diag{0, 1}, that

can be computed for example by resorting to the algorithm X1 (t4+1) = 1-xq(t) — 2uy(t) + & (t). (36)

proposed in [1]. In this casd&x = R+ BTXB_CFi , and

the corresponding closed-loop matrix A& = diag{1,0}. The term &(t) in this case is equal to zero for all

Observe that the spectrum & is not unmixed. For this t € {0,...,T — 2} and &(T — 1) = BiiRyxBL,A2(T) =

system we haveGy = Iy — RI( Rq = 1 {—11 711 _Since X A2(T) =hy,. We can write (33) explicitly as hy

satisfies (11), being k& = kerSx = im fl , then X is B 2 T_1 0
also a solution of CGDAREY). [ } xa(T) = %(0)+ { DA A - Axad :
Suppose the initial and final states arﬁ constrained to be 0
equal, i.e.x(0) = x(T). LetH = I, hg = {hﬂ andhr = (T —1)
= T ur (T — 2
By taking T = L 1} we obtainT "Ry T = diag{4,0}, so 211 1] ( | )
that Ry x = 4. Moreover,BT = B 02], so thatB; = [2} _}z—’ :
uy(0
and B, = {702} Therefore, the reachable subspace of the 1(0)
pair (Ax,By) is im é , which means this system is alreadywhich gives
in the desired basis. Thu#\x 11 =1, Ax12 = Ax22 =0,
B = Bip = 2 and By = —2. In this case, (23), (26) and 1, (T _1) 1 11T ZST 8
(27) become U (T —2) hy | 1 . o
=_= oo v,
X(t+1) = BraUa(t), : 2T | " 1 1 1 ’
/\Z(t) = O')‘Z(t+1)a Ul(O) 1 1 1 _1

Ua(t) = R oBIoA2(t+1).

This implies that wherev is arbitrary and represents the degree of freedom
in the controlu;. At this point it is easy to check that the

0 te{0,..., T—1} trajectories generated with this control satisfy (20-26)ve

Aa(t) :{ A(T) t=T, choose for example to be equal to the second canonical



basis vector oRT 1, using (36) we find

x1(0) :%
X (1) = %—2(%+1)
x (T —2) = %—Z(T—Z) <2h—2+1>
x(T—1) = %—Z(T—Z) <:—_T_+1>—2(:—_2|_+2—T)
¥ (T) = %—Z(T—Z) <2h—$+1>—2(2h—$—T+2)
—22h—_T_+E(T—1).

Sinceé (T — 1) = hy, the latter yieldsq (T) =h; /2 =x3(0).

This confirms that the optimality conditions are satisfie

using these controlsii(t) and uy(t), which are therefore
optimal.

A. Existence of optimal solutions
In general, the existence of a state trajectqty satisfying

the constraints (1-2) for some(t) is not ensured, since
we have not assumed reachability on (1). A necessary ang]

sufficient condition for the existence of optimal solutiaas
that there exist state and input trajectories satisfyin@)(1
(feasible solutions). In fact, since the optimal contralgem

formulated in Section Il involves a finite number of variable

— precisely,L = m-T for the control plusn for the initial

state — Problem 2.1 can be restated as a quadratic static

optimization problem in thes& + n variables with linear

constraints. Thus, a solution to Problem 2.1 exists if and’]
only if a feasible solution — i.e., a state and input funcsion

satisfying both (1) and (2) — exists.

Remark 5.1: The approach presented in this paper can®
successfully tackle even more general LQ problems, where
the performance index is not necessarily positive semidefit!

nite. E.g., consider

T-1
Z} [XT(t) u™(t)]n [

=
+X"(TYHX(T) +2 "x(T).

J(x,u)

Although all the variational analysis remains unaffectbe,

presence of the term{X(T) deserves some considerations.

Indeed, this linear term may cause the divergence ¢oof

the cost index in correspondence to a sequence of admissibid
controls so that, even in the presence of feasible solutions

the optimal control may fail to existIn this case, the linear

equation representing the boundary conditions is inféasib
Two simplea priori sufficient conditions for the existence

2Consider for example the case whekeB and Q are the 2< 2 identity
matrices, whileR, SandH are the zero matrices arfd=[1 1]". For this
system, the LQ problem in one step (i.€.= 1) has no solution; in fact,
the controlu(0) = —x(0) —m({ yields a value of the cost which goes-t@o
as the parameten goes to-+co.

of the optimal control and hence for the solvability of the
two-point boundary-value problem are the following:

1) kerH C ker T. Under this condition, the cost on the

final state (and hence the overall cost index) is bounded
from below. Indeed, such a cost may be rewritten as
a constant plus a positive semi-definite quadratic form

(X(T)—=X) "H(x(T) —x) in the difference betweex(T)
and a suitable “target state’ [n this case the solution
of the problem indeed exists.

cally with the norm of the control input with the largest

norm and, in the best situation, decreases linearly with
the same norm. Thus the search for the optimal control

input can be restricted to a compact sefRft<T and
hence the optimal solution does exist.
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