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Dynamic Pricing of Power in Smart-Grid Networks
Qingsi Wang, Mingyan Liu and Rahul Jain

Abstract

In this paper we introduce the problem of dynamic pricing of power for smart-grid networks. This is studied

within a network utility maximization (NUM) framework in a deterministic setting with a single provider, multiple

users and a finite horizon. The provider produces power or buys power in a (deterministic) spot market, and

determines a dynamic price to charge the users. The users then adjust their demand in response to the time-

varying prices. This is typically categorized as the demandresponse problem, and we study a progression of

related models by focusing on two aspects: 1) the characterization of the structure of the optimal dynamic prices

in the Smart Grid and the optimal demand and supply under various interaction with a spot market; 2) a greedy

approach to facilitate the solution process of the aggregate NUM problem and the optimality gap between the

greedy solution and the optimal one.

I. INTRODUCTION

As the Smart Grid takes shape, new possibilities of efficientmanagement of the electric power grid open

up. One of these is pricing of electricity to consumers. Currently, temporal variations in the cost of electricity

are hidden behind inflexible rate designs. This leads to inefficiencies with over-consumption during peak times,

and under-consumption during off-peak times. It also makesthe problem of matching demand and supply, both

of which are uncertain, and affect grid stability, particularly acute. In the United States, only 60-100 hours of

the year can account for 10-18 percent of the system peak load[1]. Meeting this critical peak load requires

installation, operation and maintenance of expensive combustion gas-turbine generators, since these start almost

instantaneously.

Dynamic pricing of electricity to consumers can remedy thisproblem by inducing consumers to switch off or

defer some of the non-urgent, non-critical loads. For example, dish-washers in most households have a delayed

start option. And yet, only a small fraction of consumers utilize this feature and use the appliance later at

night at off-peak times. Dynamic pricing can make consumerssensitive to their time and amount of electricity

consumption, thus potentially smoothing out peak-time system loads, and enhancing economic efficiency.

Dynamic pricing rate designs are receiving increased attention by state commissions, with the California Public

Utilities Commission (CPUC) having set a deadline of 2011 for the state electric utilities to propose dynamic

pricing rate structures. These are defined as an electric rate structure that reflects the actual wholesale market

conditions. Dynamic pricing can take various forms such ascritical peak-pricing, time-of-use pricing andreal-time

pricing. CPUC defines the real-time price as the rate linked to the actual price in the wholesale hourly electricity

market [2]. Such prices can be communicated to the consumersover theadvanced metering infrastructure (AMI),

or a smart-grid network [3] and displayed on asmart meter.

Literature Overview. Problems related to the design and operation of a Smart Grid are receiving increasing

attention. The problem of dynamic pricing to shape demand istypically calleddemand response. There exists
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a large literature on demand response; the most relevant is [4]. This paper formulates the problem of optimal

demand response in discrete time over a finite time horizon when users have some storage available, and the

formulation can be categorized as a network utility maximization (NUM) problem (see [5], [6] and the references

therein). Using Lagrangian duality, it establishes the existence of a solution, and gives a distributed algorithm

based on gradient projection to compute this solution. The modeling of various appliances into the proposed

optimization framework is also studied. In [7], a differentapproach is taken wherein demand is required to match

supply, and users bid for load-shedding in an iterative supply function bidding mechanism, that was first proposed

in [8]. Both competitive and Nash equilibrium analysis is provided but the focus is on a single instant, and without

storage. In [9], the focus is on optimal power flow through thenetwork, wherein existence of a zero duality gap

solution is proved. In contrast to aforementioned work, particularly [4], in this paper we study a progression of

related models by focusing on two aspects: 1) the characterization of the structure of the optimal dynamic prices

in the Smart Grid and the optimal demand and supply under various interaction with a spot market; 2) a greedy

approach to facilitate the solution process of the aggregate NUM and the optimality gap between the greedy

solution and the optimal one.

Other works have focused on electricity markets. While [10]provides a stability analysis of the wholesale

electricity market, [11] has focused on means for wind powergenerators to participate in the day-ahead electricity

market. The difficulty in this is that wind-power generatorscannot enter into binding contracts for a day-ahead

power supply without assuming a huge risk. Thus, alternative market architectures are considered in [12], wherein

entities called “aggregators” buy power from the wind powergenerators and participate in the day-ahead markets.

The paper proposes optimal mechanisms that the aggregatorscan use to get the wind power generators to reveal

their true distributions, and thus minimize the risk due to uncertainty in supply from the contracted wind power

generators. A related paper is [13], wherein mechanisms forriskless dispatch by the generators are given for use

with the current market architecture.

Results and organization of this paper. The system model is first presented in Section II, and three related problems

are introduced. The first problemSYSTEM is a simplified special case of the main model with internalized

production cost, which provides a preliminary framework for more realistic refinement. Its optimal solution is

characterized in Section III based on a dual decomposition;moreover, a distributed algorithm to solveSYSTEM,

which can be readily adapted for problems in the same family,is also proposed. In Section IV we extend the

SYSTEM problem to the scenario where the provider may purchase in part from a spot market with an exogenous

cost to narrow the demand-supply gap. This is referred to as theSYS_SPOT problem, and the interaction between

the decision of purchase and the spot market price is investigated. We then consider the explicit effect of the

production cost in a third problem in Section V, and the structure of its optimal control in the single-user scenario

is studied. A greedy algorithm to approximate the solution to SYSTEM is presented in Section VI, where an upper

bound on the optimality gap is established and heuristics onevaluating this gap are discussed. Numerical results

of sample problems are illustrated in Section VII. We present an attempt of adopting distributed Newton’s method

to problems in this work in Section VIII, and Section IX concludes the paper.

II. SYSTEM MODEL AND NOTATION

Consider a smart-grid network that consists ofn users or households, and one provider. We consider a discrete-

time model with a finite horizontf . A user i consumesxi(t) power at time stept, and the supply by the grid

is denoted aszi(t). The excess supply/demand is charged to/discharged from the user’s battery with capacity

Bi. The energy level/state of the battery before operation at time t is denoted byyi(t). We assume that the
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total supply from the grid at timet is upper bounded byCt, and the total demand of useri over time is upper

bounded byDi. For convenience we define the following vector forms of the above quantities: the demand

of user i, xi =
[
xi(0), xi(1), · · · , xi(tf )

]T
; the supply of the gridzi =

[
zi(0), zi(1), · · · , zi(tf )

]T
;

the state of useri’s battery, yi =
[
yi(1), yi(2), · · · , yi(tf + 1)

]T
; the battery capacities of usersB =

[
B1, B2, · · · , Bn

]T
; the supply constraint of the gridC =

[
C0, C1, · · · , Ctf

]T
; the demand constraint

of usersD =
[
D1, D2, · · · , Dn

]T
. Also, x = vect(x1, . . . , xn) with vect(u1, . . . , un) being the stacked

vector fromu1 to un, and similarly definey and z. When useri draws powerxi over time, her satisfaction is

measured by the utility function

Ui(xi) =

tf∑

t=0

Vi(xi(t)),

whereVi : R+ → R+ is a strictly increasing, strictly concave and twice differentiable function ofxi(t). Denote

by ẏi(t) the change of battery state of useri at time t:

ẏi(t) = yi(t+ 1)− yi(t) = zi(t)− xi(t).

Assuming zero initial state,y(0) = 0, we then have

yi(t) = yi(0) +

t−1∑

s=0

ẏi(s) =

t−1∑

s=0

(zi(s)− xi(s)).

Therefore,

yi = H(zi − xi),

where

H =




1 0 · · · 0 0

1 1
. . . 0 0

...
. . . . . .

...

1 1 · · · 1 0

1 1 · · · 1 1




∈ R(tf+1)×(tf+1).

In addition, since the battery suffers wear and tear due to usage, we model maintenance and operational costs as

M(yi) =

tf+1∑

t=1

m(yi(t)),

wherem : R+ → R+ is a strictly increasing, strictly convex and twice differentiable function ofyi(t). The

objective is to maximize the sum of individual utilities of both users and the provider or the social welfare.

Formally, we consider the following related problems in this paper. The main model is given as follows.

maximize
n∑

i=1

(
Ui(xi)−M(yi)

)
− P (z) (1)

subject to yi � Bi1 (2)

yi = H(zi − xi) (3)
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n∑

i=1

zi � C (4)

1Txi ≤ Di (5)

xi, yi, zi � 0, i = 1, 2, . . . , n (6)

whereP : Rn(tf+1)
+ → R+ is the production cost function to be specified later, and1 = (1, 1, . . . , 1)T with

proper sizes. We begin with a simplified special case of this problem by assumingP = 0; this is denoted as

SYSTEM (U,M,B,H,C,D). The motivation for studying this degenerated model is twofold: 1) it models the

scenario when the production cost is realized thus fixedbefore the distribution of energy or when the marginal

cost is zero such as in the case of renewable energies; 2) morecritically, it provides a preliminary framework that

reveals the basic structure of optimal solutions and their algorithmic implementation that can be readily extended

to more realistic models.

We then consider the setting wherein the grid may purchase power from an external spot market to narrow the

demand-supply gap, while incurring an exogenous cost; thisis formulated as theSYS_SPOT (U,M,B,H,C,D;σ)

problem as follows.

maximize
n∑

i=1

(
Ui(xi)−M(yi)

)
− σT

[
n∑

i=1

zi − C

]+
(7)

subject to yi � Bi1 (8)

yi = H(zi − xi) (9)

1Txi ≤ Di (10)

xi, yi, zi � 0, i = 1, 2, . . . , n (11)

whereσ =
[
σ0, σ1, . . . σtf

]
is the price vector of unit power in the spot market, and[·]+ = max{·, 0}. Our

main interest in this problem is the characterization of spot market prices that may incentivize the exogenous

purchase. In particular, we show that there is a threshold price below which this purchase is justified, and it is

closely related to the optimal solution toSYSTEM.

Our last model considers non-trivial production costs. We consider the linear cost in the original setting with

multiple users, that is,P (z) = σTdz, wheredz =
∑n

i=1 zi is the vector of aggregate demands, andσ can be either

interpreted as the unit power generation cost or the spot market price when the provider produces nothing of its

own and completely resorts to the spot market for supply. This model is denoted bySYS2 (U,M,B,H,C,D).

We also consider a general convex cost in the single-user case that has an explicit control structure.

In the next section we start with theSYSTEM problem, and note that when constraint (4) is decoupled, the

SYSTEM problem can be separated into several subproblems. This observation motivates us to consider the

dual-decomposition based technique to solve theSYSTEM problem [5], [6], which we show next.

III. D UAL DECOMPOSITION OFSYSTEM AND THE PROPERTIES OFITS SOLUTIONS

In this section theSYSTEM problem is analyzed based on a dual decomposition, which also prompts a distributed

first-order algorithm to solve it, and the properties of boththe primal and the dual optimal solutions (demand,

supply and prices) are discussed.



5

A. Dual decomposition

We first reformulateSYSTEM (U,M,B,H,C,D) as

maximize
n∑

i=1

(
Ui(xi)−M(yi)

)
(12)

subject to vect(x, y, z) ∈ F (13)

over vect(x, y, z) ∈ D (14)

where the domain and the feasible region are respectively given by

D =

{
vect(x, y, z)

∣∣∣∣∣
xi � 0, 1Txi ≤ Di,

0 � yi � Bi1, zi � 0,∀i

}
,

and

F =
{
vect(x, y, z)

∣∣∣ yi = H(zi − xi),
∑

zi � C,∀i
}
.

Note thatrelintD ∩ F 6= ∅ whenB, C andD are all positive, as we shall assume so. Indeed, letǫ > 0 be

chosen later, and consider

x̂i(t) = α
Di − ǫ

tf + 1
,

where0 < α ≤ 1 satisfying

α

∑n
i=1 Di

tf + 1
< min

t
Ct,

ẑi(t) = x̂i(t) +
αǫ

tf+1 and ŷi(t) =
∑t−1

s=0(ẑi(s) − x̂i(s)). Let ǫ < mini{min{Bi,Di}}, and it can be verified that

vect(x̂, ŷ, ẑ) ∈ relintD ∩ F . In addition, since this problem is convex and the inequality constraint is affine,

Slater’s condition is then satisfied, and hence, strong duality will hold. Because of the strict concavity of the

objective function inx andy, there are unique optima forx, y andz. As pointed out before, the structure of the

SYSTEM problem prompts a solution based on a dual decomposition. Its Lagrangian is given by

L =

n∑

i=1

(
Ui(xi)−M(yi)

)
+

n∑

i=1

νTi
(
H(zi − xi)− yi

)
+ θT

(
C −

n∑

i=1

zi
)

=

n∑

i=1

(
Ui(xi)− νTi Hxi

)
−

n∑

i=1

(
M(yi) + νTi yi

)
−

n∑

i=1

(θ −HT νi)
T zi + θTC.

Let ν = vect(ν1, . . . , νn). The dual function is then given by

g(ν, θ) = max
vect(x,y,z)∈D

L(x, y, z, ν, θ)

=

n∑

i=1

max
xi�0,

1Txi≤Di

Wi(xi; νi)−
n∑

i=1

min
0�yi�Bi1

Ri(yi; νi)−
n∑

i=1

min
zi�0

(θ −HT νi)
T zi + θTC,

where

Wi(xi; νi) = Ui(xi)− νTi Hxi,

and

Ri(yi; νi) = M(yi) + νTi yi,
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and we introduce
USERi : maximize Wi(xi; νi)

subject to xi � 0, 1Txi ≤ Di

(15)

and
USER

′
i
: minimize Ri(yi; νi)

subject to 0 � yi � Bi1
(16)

as two subproblems for useri. Since the minimization with respect tozi is a linear problem, which is readily

solved, the dual problem is given byDUAL_SYS (U,M,B,H,C,D):

minimize
n∑

i=1

(
W ⋆

i (νi)−R⋆
i (νi)

)
+ θTC

subject to θ −HT νi � 0, θ � 0, i = 1, 2, . . . , n

whereW ⋆
i (νi) andR⋆

i (νi) are the optimal values of problem (15) and (16) for a givenνi. Given now this dual

decomposition structure, a distributive algorithm can be readily proposed to solveSYSTEM, and this is widely

studied in the literature, see e.g. [5], [4]. We report our version of the algorithm in Appendix A and show its

convergence.

B. Properties of solutions to SYSTEM and DUAL_SYS

Denote byx⋆ = vect(x⋆1, . . . , x
⋆
n) the optimum forx in SYSTEM; ν⋆ is an optimal solution forν of DUAL_SYS,

and similarly definey⋆, z⋆ and θ⋆, respectively. We first note thatHT νi can be interpreted as the price vector

that the provider charges from useri for each unit of consumed energy, in light of subproblemUSERi, given that

it is component-wise non-negative. Indeed, the following result establishes this premise.

Proposition 1: HT ν⋆i � 0 for all i.

Proof: The proof can be found in Appendix B.

Remark 1: Sincezi(t) is the total amount of energy distributed to useri at time t, under the interpretation of

HT νi being a price vector it is as if the energy buffered in batterywere only charged when it is later consumed

while incurring astorage cost before the consumption. This obviously is not what actually happens in practice,

but serves as an interesting interpretation of the result. We do note that if there is no battery buffering in the

model, this interpretation is consistent with the notion ofshadow price in the literature (see e.g. [14], [15]), i.e.,

entries ofHT νi are shadow prices of power.

Hence,θ⋆(t) = maxi
(
HT ν⋆i

)
t

for all t. Moreover, 1) if we assume thatx⋆i ∈ intXi for all i, whereXi is

the feasible set of (15), i.e.,Xi =
{
xi | xi � 0, 1Txi ≤ Di

}
, HT ν⋆i is then uniquely determined for eachi;

2) alternatively, if we assume thatx⋆i ∈ intXi for at least onei, say ik, andz⋆ik ≻ 0, HTν⋆ik is then uniquely

determined and from the minimization with respect tozik we get thatθ⋆ = HT ν⋆ik . In either case,θ⋆ is also

uniquely determined.

In Section IV, we will consider the situation where there is agap between the users demand and the power

generation capacity of the grid at some time instants. At those instants, the grid may purchase power from the

spot market to narrow the demand-supply gap. We will show therein that the above uniqueθ⋆ is a “lower bound”

on the price of unit power in the spot market above which the grid decides to make no purchase.
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Also, we can determine the closed form ofy⋆ given ν⋆ based on (16). Since the objective and the constraint

are both separable in time, we conclude

y⋆i (t) = [m′−1(−ν⋆i (t− 1))]Bi

0

for all i and t > 0, where [·]ba is the projection operator onto[a, b], i.e., [x]ba := min{max{x, a}, b}. Let

ρ⋆i := HT ν⋆i , and ρ̇⋆i (t) := ρ⋆i (t)− ρ⋆i (t− 1) = −ν⋆i (t− 1). We then obtain

y⋆i (t) = [m′−1(ρ̇⋆i (t))]
Bi

0 .

If we assume that0 < y⋆i (t) < Bi, the above result can be rewritten as

ρ̇⋆i (t) = m′(y⋆i (t)).

Therefore, at optimality the marginal cost of reallocatingthe power purchase fromt − 1 to t is equal to the

marginal cost of storing the energy in battery after purchasing in t − 1, which is intuitively appealing. When

the demand is known and fixed a priori, some structural results on the optimal power generation and battery

scheduling in a single user setting can be found in [16]. In Section V, we will also discuss in detail the explicit

structure of optimal control in the single-user problem when a non-zero production cost is incorporated in our

main model.

IV. SPOT MARKET

In this section, we consider theSYS_SPOT problem. As before, we reformulate this problem and its domain

and the feasible region are the same as in theSYSTEM problem. Also, there are unique optima forx, y and z

because of the strict concavity of the objective function inx andy.

Denote byz⋆(σ) = (z⋆1(σ), . . . , z
⋆
n(σ)) the optimal solution forz of SYS_SPOT givenσ. Define

S =

{
σ

∣∣∣∣∣

n∑

i=1

z⋆i (σ) � C

}
.

In the following, we characterizeS using the solutions of theSYSTEM problem and its dual problemDUAL_SYS.

To avoid ambiguity, symbols without hat are variables inSYS_SPOT, and others are for theSYSTEM problem

and its dual. We assume that either of the two cases below is true:

Assumption 1:
a) x⋆i ∈ intXi for all i, or

b) x⋆i ∈ intXi for at least onei, sayik, andz⋆ik ≻ 0.

Recall thatx⋆i denotes the optimal solution to theSYS_SPOT problem forxi, andXi is the feasible set of (15).

In the following proposition, we show thatS can be characterized with a threshold of prices.

Proposition 2: σ ∈ S if and only if σ � θ̂⋆, noting that θ̂⋆ is the optimal dual variable inDUAL_SYS

(U,M,B,H,C,D).

Proof: 1) Necessity. First of all, the Lagrangian ofSYS_SPOT is given byL(x, y, z, ν, µ),

L =

n∑

i=1

(Ui(xi)−M(yi))− σT

[
n∑

i=1

zi − C

]+
+

n∑

i=1

νTi
(
H(zi − xi)− yi

)

=

n∑

i=1

(
Ui(xi)− νTi Hxi

)
−

n∑

i=1

(
M(yi) + νTi yi

)
− σT

[
n∑

i=1

zi − C

]+

+

n∑

i=1

νTi Hzi.
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Group the terms in a similar way as inDUAL_SYS, and the dual problem is

minimize
n∑

i=1

(
W ⋆

i (νi)−R⋆
i (νi)

)
−G⋆(ν;σ)

subject to µi + νi � 0

µi � 0, i = 1, 2, . . . , n

whereW ⋆
i andR⋆

i are the respective optimal values of problems (15) and (16) for a givenνi as inDUAL_SYS,

andG⋆(ν;σ) is the optimal value of

minimize σT

[
n∑

i=1

zi − C

]+

−
n∑

i=1

νTi Hzi

subject to zi � 0, i = 1, 2, . . . , n

(17)

Because of strong duality1, the optimal solution(x⋆, y⋆, z⋆) to SYS_SPOT is also the maximizer of the

LagrangianL(x, y, z, ν⋆) whereν⋆ is an optimal solution of the dual. Therefore,z⋆ is an optimal solution of

(17) whenν = ν⋆. Since
∑n

i=1 z
⋆
i is finite, we must haveσ � HT ν⋆i for all i. On the other hand, provided∑n

i=1 z
⋆
i � C, we can obtain the same solution(x⋆, y⋆, z⋆) of SYS_SPOT by solving theSYSTEM problem with

the same parameter set(U,M,B,H,C,D). Recalling the properties of solutions toSYSTEM in Section III-B,

under assumption a) we haveν⋆i and ν̂⋆i are uniquely determined andν⋆i = ν̂⋆i for all i. In addition, θ̂⋆(t) =

maxi
(
HT ν̂⋆i

)
t

for all t. Under assumption b) we haveν⋆ik = ν̂⋆ik and θ̂⋆ = HT ν̂⋆ik . In either case, it follows that

σ � θ̂⋆.

2) Sufficiency. We only provide an outline of the proof here. Our strategy is to show that the optimal solution

(x̂⋆, ŷ⋆, ẑ⋆) to the SYSTEM problem with optimal dual variables(ν̂⋆, θ̂⋆) also satisfies the KKT conditions of

SYS_SPOT whenσ � θ̂⋆, and then because of strong duality and convexity ofSYS_SPOT, it is also the optimal

solution ofSYS_SPOT with optimal dual variablesν⋆ = ν̂⋆, given the spot market priceσ. To this end, note that

the KKT conditions ofSYS_SPOT only differ from those ofSYSTEM in the dual feasibility and the stationarity

conditions because of the replacement ofθ̂ with σ and the non-differentiable term in the objective function.Recall

that θ̂⋆(t) = maxi
(
HT ν̂⋆i

)
t

for all t, and we haveσ � HT ν̂⋆i if σ � θ̂⋆. Let ∂ziL denote the subdifferential

of the Lagrangian ofSYS_SPOT with respect tozi for all i. Hence, whenσ � θ̂⋆ and νi = ν̂⋆i , 0 ∈ ∂ziL for

all zi = ẑ⋆i , and hence combining other optimality conditions, we obtain (x̂⋆, ŷ⋆, ẑ⋆, ν̂⋆) is a primal-dual optimal

solution givenσ � θ̂⋆.

V. SYS2 AND THE STRUCTURE OFOPTIMAL CONTROL FOR ASINGLE USER

Under some circumstances, we have an explicit form of the solution to theSYS2 problem, which is given by

the following proposition.

Proposition 3: At time t,
∑n

i=1 z
⋆
i (t) = Ct if (HT ν⋆i )t > σt for somei, andz⋆i (t) = 0 if (HT ν⋆i )t < σt.

Proof: The results follow from the KKT conditions. Firstly, the dual feasibility and the complementary

slackness specify that

θ � 0, θT
(
C −

n∑

i=1

zi
)
= 0.

1It can be shown that the reformulatedSYS_SPOT problem is convex and Slater’s condition is satisfied.
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Furthermore, consider the Lagrangian ofSYS2 and by the stationarity condition we have

σ + θ −HT νi � 0, (σ + θ −HT νi)
T zi = 0.

for all i. Thus, if (HT νi)t > σt for somei at time t, thenθ(t) > 0. Therefore,
∑n

i=1 zi(t) = Ct. On the other

hand, if (HT νi)t < σt, we haveσt + θ(t)− (HT νi)t > 0, and hencezi(t) = 0.

In the rest of this section, we focus on the decision-making by a single user and a single provider, and derive

the structure of optimal policy. We relax our previous constraints such that they are now separable in time, and

we assume thaty(t + 1) ∈ [0, B], x(t) ∈ [0,D] and z(t) ∈ [0, C] for all t = 0, · · · , tf , where the user index

i is now omitted. We assume that if a quantityz(t) is produced at timet, the cost isPt(z(t)) wherePt is

strictly increasing and convex inz(t). Most of our notation is consistent with previous sections except thatM

will signify the scalar maintenance cost. Then, the decision-making problem is given by the following optimal

control problem,OPT_CONTROL:

max
∑tf

t=0[V (x(t))− Pt(z(t)) −M(y(t+ 1))] (18)

s.t. ẏ(t) = z(t)− x(t),∀t }ρ(t)

µ0(t){ 0 ≤ y(t) ≤ B, ∀t, }µ1(t)

λ0(t){ 0 ≤ x(t) ≤ D, ∀t, }λ1(t)

θ0(t){ 0 ≤ z(t) ≤ C, ∀t, }θ1(t)

y(0) = y0,

whereẏ(t) = y(t+1)−y(t). Denote the dual variables to the above constraints byρ(t), µ0(t), µ1(t), λ0(t), λ1(t), θ0(t)

andθ1(t), as shown above. Then, due to strong duality, the KKT conditions suggest that there existy⋆, x⋆, z⋆,

ρ⋆, µ⋆
0, µ

⋆
1, λ

⋆
0, λ

⋆
1, θ

⋆
0, θ⋆1 that satisfy

V ′(x⋆(t))− ρ⋆(t)− λ⋆
1(t) + λ⋆

0(t) = 0, (19)

−P ′
t(z

⋆(t)) + ρ⋆(t)− θ⋆1(t) + θ⋆0(t) = 0, (20)

−M ′(y⋆(t)) + ρ̇⋆(t)− µ⋆
1(t) + µ⋆

0(t) = 0, (21)

µ⋆
0(t)y

⋆(t) = 0, µ⋆
1(t)[B − y⋆(t)] = 0, (22)

λ⋆
0(t)x

⋆(t) = 0, λ⋆
1(t)[D − x⋆(t)] = 0, (23)

θ⋆0(t)z
⋆(t) = 0, θ⋆1(t)[C − z⋆(t)] = 0, (24)

such that(x⋆, z⋆) is the optimal control law andy⋆ is the state of the system, whereρ̇(t) = ρ(t)− ρ(t− 1) for

t ≥ 1.

Now, from KKT conditions (21), we have

ρ⋆(t) =

t∑

s=1

M ′(y⋆(s)) +

t∑

s=1

[µ⋆
1(s)− µ⋆

0(s)] + ρ⋆(0). (25)

Further, from KKT conditions (20), we have

Pt(z
⋆(t)) = ρ⋆(t)− [θ⋆1(t)− θ⋆0(t)]
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for all t. From this, using the complementary slackness conditions (24), we can conclude that eitherPt(0) =

ρ⋆(t) + θ⋆0(t), or Pt(C) = ρ⋆(t)− θ⋆1(t), or Pt(z
⋆(t)) = ρ⋆(t). We can summarize this as

z⋆(t) =
[
P−1
t (ρ⋆(t))

]C
0
. (26)

Similarly, from KKT conditions (19), we get

V ′(x⋆(t)) = ρ⋆(t) + (λ⋆
1(t)− λ⋆

0(t)),

which together with the complementary slackness conditions (23), implies that

x⋆(t) =
[
V ′−1(ρ⋆(t))

]D
0
. (27)

From (26) and (27), we conclude thatz⋆(t) is non-decreasing andx⋆(t) is non-increasing inρ⋆(t) for each

t. Moreover,x⋆(t + 1) ≤ x⋆(t) wheneverρ⋆(t + 1) ≥ ρ⋆(t). In the following, we assume thatPt = P , and

consequentlyz⋆(t + 1) ≥ z⋆(t) wheneverρ⋆(t + 1) ≥ ρ⋆(t). Using (25) and the complementary slackness

conditions (22), we also conclude that ify(t) > 0 for all t ∈ T = {τ1, τ1 + 1, . . . , τ2}, ρ(t) is then strictly

increasing int over T .

Combing the results obtained above, we conclude the following only possible dynamics of the optimal control,

and the detailed analysis can be found in Appendix D.

(i) x⋆(0) > z⋆(0) when y0 > 0, and x⋆ is non-increasing,y⋆ decreasing,z⋆ non-decreasing int. Either

tx=z = ty=0 ≤ tf (i.e., x⋆(t) = z⋆(t) andy⋆(t) = 0 simultaneously) and from then on the control and the

state maintain fixed untilt = tf , or x⋆(t) > z⋆(t) andy⋆(t) > 0 until the time horizon.

(ii) x⋆(0) = z⋆(0) wheny0 = 0, and the control and the state maintain fixed untilt = tf .

In addition, oncex⋆(t) = z⋆(t) = u, we haveu = [min{C,D, ũ}]+ whereũ is such thatV ′(ũ) = P ′(ũ).

To conclude, we sketch the dynamics of the optimal control and the state of case (i) in Figure 1. Note that the

change ofx⋆, y⋆ andz⋆ are not necessarily linear.

x, z

y

0

0

t

t

z

y0

tf

tx=z

ty=0

u

x
u = [min{C,D, ũ}]+

ũ : V ′(ũ) = P ′(ũ)

Fig. 1. The optimal policy for a single user

VI. A G REEDY APPROACH

In this section, we consider a greedy approach to approximating the solution to theSYSTEM problem. The

need for a greedy approach can be motivated by the following considerations:

1) depending on the definition of time scale of a step, the convergence time may exceed the time step;
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2) some parameters such asB, C andD may be stochastic within the time horizon, and we can only observe

their realizations a posteriori.

Thus, we consider the following sequence of single-step optimization problems as approximations to theSYSTEM

problem. We denote each bySYS_GREEDY (V,B,Ct,D; t),

maximize
n∑

i=1

Vi(xi(t)) (28)

subject to
n∑

i=1

xi(t) ≤ Ct (29)

xi(t) +

t−1∑

s=0

x⋆i (s) ≤ Di (30)

xi(t) ≥ 0, i = 1, 2, . . . , n (31)

where(x⋆i (s), i = 1, . . . , n) is the optimal solution toSYS_GREEDY (V,B,Cs,D; s). Note that because of the

myopic nature of each single-step optimization, it does notconsider utilizing battery to store energy for future

use, and thus the dimension of the greedy formulation reduces to that of the space ofx.

There are a number of interesting problems to investigate. One of them is whether there is a speed advantage of

SYS_GREEDY overSYSTEM, and the other is the optimality gap between them. We will present numerical results

on the convergence rate ofSYS_GREEDY in Section VII, and in the rest of this section we will characterize the

solution ofSYS_GREEDY and subsequently the optimality gap.

In the following presentation including Section VII, we limit our discussion to the case where the utility

functions of users at a given time step are identical, i.e.,Vi = V . We denote byx⋆i andxg,⋆i the optimal solutions

of SYSTEM andSYS_GREEDY, respectively. Defineχ⋆,g
i = 1Txg,⋆i andχ⋆

i = 1Tx⋆i , and denote byχi, N0 and

N1 the output of the following procedure.

Procedure GetChi(B, C, D)

Initialize N0 ← {1, 2, . . . , n}, N1 ← ∅,prev N0 ← N0

repeat

prev N0 ← N0

for i ∈ N0 do

if (1TC −
∑

j∈N1
Dj)/|N0| < Di then

χi ← (1TC −
∑

j∈N1
Dj)/|N0|

else

χi ← Di

N0 ← N0 − {i}, N1 ← N1 ∪ {i}

end if

end for

until N0 = prev N0 or N0 ← ∅

return χi, i = 1, . . . , n,N0,N1

The above procedure can be literally described as a best-effort balanced water-filling process. That is, it attempts

to fill each water tank (user) the same amount of water (energy), subject to their capacity (demand) constraints,

and whenever smaller ones of them overflow, the excess goes tolarger tanks in equal amounts. The following

proposition asserts that this procedure in fact results in the optimal total per-user amount of energy.
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Proposition 4: χ⋆,g
i = χ⋆

i = χi for all i.

Proof: Thatχ⋆,g
i = χi for all i is straightforward, and we prove thatχ⋆

i = χi for all i in Appendix C.

Remark 2: The balanced property of optimal solutions is a consequenceof the concavity and the user-

independence of utility function that we assumed. For user-dependent utility functions, we conjecture that the

solution may be in a scaled form of balanced power distribution.

Let p⋆ andpg,⋆ be the optimal value ofSYSTEM and the sum of optimal values ofSYS_GREEDY, respectively.

Note that xi(t) = χ⋆
i

(
Ct

1TC

)
, i = 1, . . . , n, t = 0, . . . tf , are feasible solutions to the sequence of greedy

optimization. The optimality gap is then upper bounded by

p⋆ − pg,⋆ ≤(tf + 1)

n∑

i=1

V (
χ⋆
i

tf + 1
)−

tf∑

t=0

n∑

i=1

V (χ⋆
i

Ct

1TC
). (32)

Eqn. (32) suggests that the optimality gap would shrink as the power generation capacityC is more balanced

among time steps. Moreover, observe that the loss of optimality of the greedy approach results from the myopic

optimization that overlooks the use of energy buffer (i.e.,battery) to balance energy dispatch between steps. We

thus conjecture that the vectorC in a roughly ascending order could yield a smaller optimality gap.

VII. N UMERICAL ILLUSTRATION

In this section, we illustrate the demand sensitivity to spot market price that we studied in Section IV, using

two sample problems that are specified in Table I. We also empirically show the advantage in the convergence

rate of the proposed greedy approach compared to theSYSTEM problem, when the respective optimization is

performed using the same distributed algorithm based on gradient projection.
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Fig. 2. Demand sensitivity to spot market price for the sample problemn = 10, tf = 4.
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Fig. 3. Demand sensitivity to spot market price for the sample problemn = 20, tf = 6.

As shown in Proposition 2,̂θ⋆ assumes the threshold value of spot market priceσ, and in Figure 2 and 3

we tuneσ in three different ways to demonstrate the behaviors of optimal demand. The tests are performed

for both sample problems and we elaborate the one withn = 10, tf = 4 for example. In the first scenario, we
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setσ(t) = θ̂⋆(t) for t > 0 andσ(0) = κ · θ̂⋆(0), whereκ is a tunable parameter. We scale the third entry of

σ in the second scenario and the entire price vector in the third one. In Figure 2 and 3, we plot the curves of

‖[
∑n

i=1 zi−C]+‖1 versusκ, respectively. As can be seen in the figures, the demand increases asκ decreases when

κ < 1 until hitting the demand constraint, and remains unchangedwhenκ ≥ 1, as suggested by Proposition 2.

TABLE I
PARAMETERS OF THE TWO SAMPLE PROBLEMS INSECTION VII.

B C D

n = 10, tf = 4 [10, . . . , 10]T [8, 7, . . . , 4]T [1, 2, . . . , 10]T

n = 20, tf = 6 [10, . . . , 10]T [10, 9, . . . , 4]T [0.5, 1, . . . , 10]T

V (a) = log(1 + a) andm(b) = 1
2b

2

TABLE II
TOTAL RUNTIME (ITERATIONS) OF SAMPLE PROBLEMS.

SYSTEM SYS_GREEDY

n = 10, tf = 4 25.0959s(100) 0.0206s(210)
n = 20, tf = 6 68.0778s(158) 0.0316s(197)

In Table II, we report the respective convergence rates ofSYSTEM andSYS_GREEDY. Though these records

are machine-dependent, it demonstrates the significant comparative advantage of the latter in speed, and the

greedy approach can be used as a good approximation toSYSTEM when the optimality gap bounded by (32) is

acceptable.

VIII. A D ISTRIBUTED PRIMAL -DUAL ALGORITHM: NEWTON’ S METHOD

In this section, we present a distributed second-order algorithm, namely Newton’s method, to solve theSYSTEM

problem. We first reformulateSYSTEM and approximate it with an equality-constrained problem, and apply

Newton’s method on the primal problem. Theory and application of distributed Newton’s method in network

optimization can be found in [17], [18], [19] and etc. Instead of solving the dual problem where updating

Lagrange dual variables can be interpreted as dynamic pricing, this algorithm works on the primal side and

the solving process can be regarded as dynamic resource slicing [5]. In this section, we assume that−Ui is

self-concordant [20] for alli for the proof of convergence. A convex functionf : R → R is self-concordant if

|f ′′′(x)| ≤ 2f ′′(x)3/2 for all x ∈ dom f , and self-concordant functions include linear, convex quadratic functions,

negative logarithm and etc.

We first introduce non-negative slack variables to three inequality constraints, that is,

1Txi + pi = Di, yi + qi = Bi1,
n∑

i=1

zi + r = C,

and using the logarithmic barrier function for non-negative constraints, we approximate our original problem with

an equality constrained problem as follows. Letp = vect(p1, . . . , pn) andq = vect(q1, . . . , qn). To simplify our

notation, we also definew = vect(x, y, z, p, q, r), that is, for instance,wi = xi for 1 ≤ i ≤ n andwi(t) = xi(t)

and etc. We also define the logarithm for vectoru = (u1, . . . , um) ∈ Rm to be

log u =
∑

t

log ut.
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Let

f(w) = −
n∑

i=1

Ui(wi) +

2n∑

i=n+1

M(wi)− τ

5n+1∑

i=1

logwi,

andf is also self-concordant forτ ≥ 1. Define

A =




Ξ 0 0 In 0 0

0 In(tf+1) 0 0 In(tf+1) 0

Γ In(tf+1) −Γ 0 0 0

0 0 S 0 0 Itf+1




whereI(m) is them×m identity matrix,

Ξ =




1T

. . .

1T


 ,Γ =




H
. . .

H


 ,

andS = [Itf+1, . . . , Itf+1], and also defineb = vect (D,B11, . . . , Bn1, 0, C). The original problem can be then

approximated as

minimize f(w)

subject to Aw = b

It can be shown that asτ approaches zero, the optimum of the above approximating problem converges to that

of the original one.

Like the gradient projection method, the Newton’s method solves the above problem through an iterated update

procedure. In each iteration, we have

wk+1 = wk + γmαk∆wk,

whereαk is the step-size,∆wk is the Newton direction,γ is the discounting factor and

m = min{m′ ∈ Z+ | w
k + γm

′

αk∆wk � 0}.

Let Hk = ∇2f(wk) andgk = ∇f(xk). The Newton direction is then given by the solution to the following KKT

system, [
Hk AT

A 0

][
∆wk

vk

]
= −

[
gk

0

]

wherevk are dual variables associated with the equality constraintand0 is null matrices with proper dimensions,

and it yields

∆wk = −H−1
k (gk +AT vk),

(AH−1
k AT )vk = −AH−1

k gk.
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Note thatf is separable for eachwi(t), and hencegk only depends on local information with terms

∂f

∂wi(t)
=





−V ′
i (xi(t))−

τ
xi(t)

, wi(t) = xi(t)

m′(yi(t))−
τ

yi(t)
, wi(t) = yi(t)

− τ
u(t) wi(t) = u(t),

u = zi, pi, qi, r

andHk is a diagonal matrix with terms on the diagonal

∂2f

∂wi(t)2
=





−V ′′
i(xi(t)) +

τ
xi(t)2

, wi(t) = xi(t)

m′′
i(yi(t)) +

τ
yi(t)2

, wi(t) = yi(t)

τ
u(t)2 wi(t) = u(t),

u = zi, pi, qi, r

Therefore,∆wk can be computed from collected data distributedly given thevector vk. Define the Newton

decrementλ(wk) as

λ(wk) = (∆wT
k Hk∆wk)

1/2,

and use the step-size [18]

αk =





c
λ(xk)+1 , if λ(xk) ≥ 1

4

1, o.w.

wherec is some positive scalar that satisfies5/6 < c < 1. The description of algorithm is then as follows.

Second-Order Algorithm for Power Distribution

User i’s algorithm At iterationsk = 1, 2, . . .,

1) Receives from the grid∆wk andλ(wk), and updatesαk andwk+1.

2) Computes the associated terms ingk+1 andHk+1, and communicates them to the grid.

Grid’s algorithm At iterationsk = 1, 2, . . .,

1) Receives from each usergk andHk.

2) Computesvk, ∆wk andλ(wk), and broadcast them to all users.

Note that our implementation is different from that in [17] and [18], where the computation ofvk is centralized

at the grid, due to our introduction of partial computational capacity of the grid. The self-concordance based

convergence analysis is similar to [18] whereτ is assumed greater than 1 to preserve the self-concordance of f ,

and the analysis is omitted for brevity2.

IX. CONCLUDING REMARKS

In this paper, we have studied key features of optimal dynamic prices in smart-grid networks. Moreover, an

attempt of adopting distributed Newton’s method to the model in this paper, namely theSYSTEM problem, is also

presented, which is however mainly designed to solve the primal problem and is categorized in the domain of

dynamic resource slicing instead of dynamic pricing. In this work, the explicit control structure for time-invariant

power production and energy buffering costs has been studied, and continuation of this effort under more general

2For the simplicity of presentation, we implicitly assume that the error in computingvk is negligible. In [18], the authors assume the
Hk-quadratic norm of error is upper bounded.
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cost functions is one direction of our future research. On the other hand, deviating from the deterministic setting

and investigating the optimal pricing with stochastic demand and supply is also one ongoing research project.

APPENDIX A

A DUAL -DECOMPOSITIONBASED DISTRIBUTED ALGORITHM

Let

Q(ν, θ) =

n∑

i=1

(
W ⋆

i (νi)−R⋆
i (νi)

)
+ θTC,

and

E =
{
vect(µ, ν, θ)

∣∣∣ θ −HT νi � 0, θ � 0,∀i
}
.

Definex⋆i (νi) andy⋆i (νi)
3 as the respective unique maximizers of (15) and (16). LetQk = Q(νk, θk). We solve

DUAL_SYS using the gradient projection method, and the updating rulein the kth iteration is given by

ν̃k+1
i = νki − αk∇νi

Qk = νki + αk
(
Hx⋆i (ν

k
i ) + y⋆(νki )

)

θ̃k+1 = θk − αk∇θQ
k = θk − αkC

and

vect(νk+1, θk+1) =
[
vect(ν̃k+1, θ̃k+1)

]
E
,

whereαk is a diminishing step-size satisfying

∞∑

k=1

αk =∞,

∞∑

k=1

(αk)2 <∞,

e.g.,αk = 1+Γ
k+Γ with Γ a fixed non-negative number, and[x0]X is the projection ofx0 onto a setX , or defined

as the following constrained quadratic program

minimize
1

2
‖x− x0‖

2
2

subject to x ∈ X

Because all gradients are bounded with diminishing step-size αk, the gradient projection method converges

for the dual problem [21], [22], [5]. Sincex⋆i (νi) andy⋆i (νi) are the respective unique maximizers of (15) and

(16) and the strong duality holds,x⋆i (ν
⋆
i ) andy⋆i (ν

⋆
i ) are primal optimal, whereν⋆i are the solutions of the dual

problem. To summarize, we have the following:

First-Order Algorithm for Power Distribution

User i’s algorithm At iterationsk = 1, 2, . . .,

1) Receives from the grid the dual variablesνki
2) Computesx⋆i (ν

k
i ) andy⋆i (ν

k
i ), and communicates them to the grid

Grid’s algorithm At iterationsk = 1, 2, . . .,

1) Receives from each userx⋆i (ν
k
i ) andy⋆i (ν

k
i ) for all i

2) Computes the dual variableνk+1
i andθk+1 for all i, and communicates them accordingly to each user

3With a slight abuse of notation, we will usex(t) to denote thetth entry ofx, andx(ν) as a function ofν.
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The algorithm would terminate when the following stopping criterion is satisfied:

‖vect(νk, θk)− vect(νk−1, θk−1)‖ ≤ ǫ,

whereǫ is a predefined constant.

APPENDIX B

PROOF OFPROPOSITION1

We prove by contradiction. Assume that there exists at leastone i such that(HT ν⋆i )t =
∑tf

s=t ν
⋆
i (s) < 0 for

somet. Let I = argmint(H
T ν⋆i )t. We first note thatx⋆ 6= 0 and further more there existst0 ∈ I such that

x⋆i (t0) > 0. Otherwise, one can switch the value ofx⋆i (t0) with that of some positive entry inx⋆i and obtain

an improved value ofWi(xi; ν
⋆
i ), which is a contradiction to the fact thatx⋆i is the maximizer ofWi(xi; ν

⋆
i ).

Therefore,

1) if there existst < t0 such that(HT ν⋆i )t > (HT ν⋆i )t0 , let t1 = max{t : (HT ν⋆i )t > (HT ν⋆i )t0 , t < t0} and

we then haveν⋆i (t1) > 0; otherwise(HT ν⋆i )t1 < (HT ν⋆i )t0 . Moreover,ν⋆i (t) = 0 for t1 < t < t0 if any.

We then set

ν⋆i (t0)← ν⋆i (t0) + ǫ

and

ν⋆i (t1)← ν⋆i (t1)− ǫ

where0 < ǫ < min{ν⋆i (t1),−(H
T ν⋆i )t0}, where “y ← x” signifies assigning the value ofx to y. By doing

so, the value ofWi is strictly decreased while that ofRi is non-decreasing and the feasibility constraints

are maintained. We thus obtain an improved dual objective value, which leads to a contradiction.

2) If (HT ν⋆i )t = (HT ν⋆i )t0 for all t < t0 if any, we set

ν⋆i (t0)← ν⋆i (t0) + ǫ

where0 < ǫ < −(HT ν⋆i )t0 , and the same argument applies as in 1).

APPENDIX C

PROOF OFPROPOSITION4

Note first that
∑n

i=1 χ
⋆
i =

∑n
i=1 χi = min{1TC, 1TD}. The proof of this claim is straightforward and we

thus omit it here for brevity. Without loss of generality, weassume thatD is sorted in an ascending order,

and thereforeχi is non-decreasing ini as the procedure suggests. Moreover, ifχj < χi for somej < i, then

χj = Dj . Assume for contradiction thatχ⋆
i < χi ≤ Di for somei, and there then exists at least onej 6= i such

thatχ⋆
j > χj. Thus,

1) if j < i, thenχj ≤ χi. If χj < χi, we haveχ⋆
j > χj = Dj , which is infeasible. Therefore,χj = χi

and consequentlyχ⋆
j > χ⋆

i . Hence, there exists somet such thatx⋆j(t) > x⋆i (t). Consider anǫ such that

0 < ǫ ≤ min{Di − χ⋆
i , (x

⋆
j (t) − x⋆i (t))/2} and setx⋆j(t) ← x⋆j (t) − ǫ and x⋆i (t) ← x⋆i (t) + ǫ. We then

obtain a feasible but improved objective value, which is a contradiction.

2) If j > i, thenχj ≥ χi. Henceχ⋆
j > χ⋆

i and the same argument applies.

The above argument also applies symmetrically to the case whenχi < χ⋆
i ≤ Di for somei. Therefore,χ⋆

i = χi

for all i.
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APPENDIX D

DYNAMICS OF THE SINGLE-USER OPTIMAL CONTROL

We rule out the suboptimal cases as follows.

1. If x⋆(0) < z⋆(0), theny⋆(1) > 0 andρ⋆(1) = ρ⋆(0)+M ′(y⋆(1)) +µ⋆(1) > ρ⋆(0). Hence,z⋆(1) ≥ z⋆(0) and

x⋆(1) ≤ x⋆(0), and the battery keeps charging until either fully charged before the time horizon and maintain

the state, or the time horizon is reached; however, this is clearly suboptimal.

2. If x⋆(0) > z⋆(0), which is only feasible wheny0 > 0, let us consider the sequence of eventsx⋆(t) ≤ z⋆(t)

andy⋆(t) = 0. Let tx≤z be the first time step whenx⋆(t) ≤ z⋆(t) or be infinity if it does not happen before the

horizon, and similarly we define other quantities.

2a) If x⋆(t) ≤ z⋆(t) happens beforey⋆(t) = 0, i.e, t̃ := tx≤z < ty=0, theny⋆(t̃ + 1) ≥ y⋆(t̃) > 0 and thus

ρ⋆(t̃+ 1) = ρ⋆(t̃) +M ′(y⋆(t̃+ 1)) + µ⋆(t̃+ 1) > ρ⋆(t̃). Hence,z⋆(t̃+ 1) ≥ z⋆(t̃) andx⋆(t̃+ 1) ≤ x⋆(t̃),

and again we are in case 1, which is suboptimal. For the boundary case thattx<z = tf , the suboptimality

is also immediate, and we omit the discussion of boundary cases in the following.

2b) If tx≤z > ty=0 =: t̃, i.e., y⋆(t̃) = 0 while x⋆(t̃) > z⋆(t̃), this however is infeasible.

2c) If tx<z = ty=0 =: t̃, theny⋆(t̃+ 1) > 0 andρ⋆(t̃+ 1) > ρ⋆(t̃). Hence,x⋆(t̃+ 1) < z⋆(t̃+ 1), and we are

in case (2a), which is suboptimal.

3. If x⋆(0) = z⋆(0) andy0 > 0, then this is clearly suboptimal.
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