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Dynamic Pricing of Power in Smart-Grid Networks

Qingsi Wang, Mingyan Liu and Rahul Jain

Abstract

In this paper we introduce the problem of dynamic pricing ofvpr for smart-grid networks. This is studied
within a network utility maximization (NUM) framework in aederministic setting with a single provider, multiple
users and a finite horizon. The provider produces power os lpgwer in a (deterministic) spot market, and
determines a dynamic price to charge the users. The usensattjast their demand in response to the time-
varying prices. This is typically categorized as the demesgponse problem, and we study a progression of
related models by focusing on two aspects: 1) the charaatern of the structure of the optimal dynamic prices
in the Smart Grid and the optimal demand and supply undeowarinteraction with a spot market; 2) a greedy
approach to facilitate the solution process of the aggeeiiM problem and the optimality gap between the
greedy solution and the optimal one.

. INTRODUCTION

As the Smart Grid takes shape, new possibilities of efficimahagement of the electric power grid open
up. One of these is pricing of electricity to consumers. €uoily, temporal variations in the cost of electricity
are hidden behind inflexible rate designs. This leads tdigieficies with over-consumption during peak times,
and under-consumption during off-peak times. It also makesproblem of matching demand and supply, both
of which are uncertain, and affect grid stability, partamly acute. In the United States, only 60-100 hours of
the year can account for 10-18 percent of the system peak|[ljadMeeting this critical peak load requires
installation, operation and maintenance of expensive cmitidn gas-turbine generators, since these start almost
instantaneously.

Dynamic pricing of electricity to consumers can remedy thrigsblem by inducing consumers to switch off or
defer some of the non-urgent, non-critical loads. For eXangish-washers in most households have a delayed
start option. And yet, only a small fraction of consumerdizdi this feature and use the appliance later at
night at off-peak times. Dynamic pricing can make consunserssitive to their time and amount of electricity
consumption, thus potentially smoothing out peak-timeesysloads, and enhancing economic efficiency.

Dynamic pricing rate designs are receiving increased titteby state commissions, with the California Public
Utilities Commission (CPUC) having set a deadline of 201d tfee state electric utilities to propose dynamic
pricing rate structures. These are defined as an electecstaicture that reflects the actual wholesale market
conditions. Dynamic pricing can take various forms sucbrégcal peak-pricing, time-of-use pricing andreal-time
pricing. CPUC defines the real-time price as the rate linked to theahprice in the wholesale hourly electricity
market [2]. Such prices can be communicated to the consumwersheadvanced metering infrastructure (AMI),
or asmart-grid network [3] and displayed on amart meter.

Literature Overview. Problems related to the design and operation of a Smart Gddreceiving increasing
attention. The problem of dynamic pricing to shape demantypgally called demand response. There exists
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a large literature on demand response; the most relevad].iF is paper formulates the problem of optimal
demand response in discrete time over a finite time horizoeanwlsers have some storage available, and the
formulation can be categorized as a network utility maxatian (NUM) problem (see [5]/[6] and the references
therein). Using Lagrangian duality, it establishes thestexice of a solution, and gives a distributed algorithm
based on gradient projection to compute this solution. Tlelating of various appliances into the proposed
optimization framework is also studied. In [7], a differepproach is taken wherein demand is required to match
supply, and users bid for load-shedding in an iterative sufymction bidding mechanism, that was first proposed
in [8]. Both competitive and Nash equilibrium analysis isyided but the focus is on a single instant, and without
storage. In[[9], the focus is on optimal power flow through tieéwork, wherein existence of a zero duality gap
solution is proved. In contrast to aforementioned work tipalarly [4], in this paper we study a progression of
related models by focusing on two aspects: 1) the charaat@n of the structure of the optimal dynamic prices
in the Smart Grid and the optimal demand and supply undeowsrinteraction with a spot market; 2) a greedy
approach to facilitate the solution process of the aggeediM and the optimality gap between the greedy
solution and the optimal one.

Other works have focused on electricity markets. WHilel [p63vides a stability analysis of the wholesale
electricity market,[[1l1] has focused on means for wind pogererators to participate in the day-ahead electricity
market. The difficulty in this is that wind-power generateesnot enter into binding contracts for a day-ahead
power supply without assuming a huge risk. Thus, altereatiarket architectures are considered in [12], wherein
entities called “aggregators” buy power from the wind pogenerators and participate in the day-ahead markets.
The paper proposes optimal mechanisms that the aggregatonsse to get the wind power generators to reveal
their true distributions, and thus minimize the risk due tzertainty in supply from the contracted wind power
generators. A related paper s [13], wherein mechanismedhkless dispatch by the generators are given for use
with the current market architecture.

Results and organization of this paper. The system model is first presented in Sedfion Il, and thiegee problems
are introduced. The first problersySTEM is a simplified special case of the main model with interrealiz
production cost, which provides a preliminary framework foore realistic refinement. Its optimal solution is
characterized in Sectidnllil based on a dual decompositimreover, a distributed algorithm to solge STEM,
which can be readily adapted for problems in the same fansilglso proposed. In Sectién]lV we extend the
SYSTEM problem to the scenario where the provider may purchaserirfrpan a spot market with an exogenous
cost to narrow the demand-supply gap. This is referred tbests_sPOT problem, and the interaction between
the decision of purchase and the spot market price is igastl. We then consider the explicit effect of the
production cost in a third problem in Sectioh V, and the dtrreeof its optimal control in the single-user scenario
is studied. A greedy algorithm to approximate the solutmsYSTEM is presented in Sectign VI, where an upper
bound on the optimality gap is established and heuristicevatuating this gap are discussed. Numerical results
of sample problems are illustrated in Secfion] VIl. We présenattempt of adopting distributed Newton’s method
to problems in this work in Sectidn V]Il, and SectibnlIX condés the paper.

Il. SYSTEM MODEL AND NOTATION

Consider a smart-grid network that consists:afsers or households, and one provider. We consider a discret
time model with a finite horizor;. A useri consumese;(t) power at time step, and the supply by the grid
is denoted ag;(t). The excess supply/demand is charged to/discharged frenughr's battery with capacity
B;. The energy level/state of the battery before operatiorina t is denoted byy;(¢). We assume that the



total supply from the grid at time is upper bounded by, and the total demand of uséiover time is upper
bounded byD;. For convenience we define the following vector forms of thewe quantities: the demand

of useri, z; = [mi(o), xi(1), -, :nz-(tf)r; the supply of the grid; = [zi(O), zi(1), -, z(ty) T;
the state of usei’s battery,y;, = [y,-(l), vi(2), -, wailty + 1)}T; the battery capacities of used3 =
[Bl, By, -, Bn]T; the supply constraint of the grid = [C‘O, Cy, -+, thr; the demand constraint
of usersD = {Dl, Dy, -+, Dn} . Also, x = vect(zy,...,x,) With vect(u,...,u,) being the stacked

vector fromu; to u,, and similarly definegy and z. When user draws powerz; over time, her satisfaction is

measured by the utility function
12
Ui(zi) = > _ Vi(zi(t)),
t=0
whereV; : Ry — Ry is a strictly increasing, strictly concave and twice diéfetiable function of;(¢). Denote
by 7i(t) the change of battery state of ugeat time:

Git) = it +1) —yilt) = zi(t) — 2(t).

Assuming zero initial statey(0) = 0, we then have

t—1 t—1
vit) = 4i(0) + Y di(s) = Y _(zi(s) — wi(s)).
s=0 s=0
Therefore,

Yi = H(Zz - xl)a
where ) }
1 0 0 0
11 .0 0

H=|: | e RUHDx( D),

11 --- 1 0
11 11

In addition, since the battery suffers wear and tear due ageiswe model maintenance and operational costs as

ti+1
M(y;) = Z m(yi(t)),
t=1
wherem : Ry — Ry is a strictly increasing, strictly convex and twice diffetiable function ofy;(¢). The
objective is to maximize the sum of individual utilities obth users and the provider or the social welfare.
Formally, we consider the following related problems irstpaper. The main model is given as follows.

n

maximize > (Us(z:) — M(y)) — P(2) 1)
=1
subjectto y; < B;1 2

yi = H(z — x;) 3)



n

Y m=cC 4)

i=1

1"z, < D; )
xi7yiazii07i:1727"'7n (6)
where P : Rﬁ(tfﬂ) — R, is the production cost function to be specified later, ang (1,1,...,1)” with

proper sizes. We begin with a simplified special case of thiblem by assuming® = 0; this is denoted as
SYSTEM (U, M, B, H,C, D). The motivation for studying this degenerated model is ohbf1) it models the
scenario when the production cost is realized thus fixfdre the distribution of energy or when the marginal
cost is zero such as in the case of renewable energies; 2)aritically, it provides a preliminary framework that
reveals the basic structure of optimal solutions and thHgwréghmic implementation that can be readily extended
to more realistic models.

We then consider the setting wherein the grid may purchasempivom an external spot market to narrow the
demand-supply gap, while incurring an exogenous costigfiemulated as theys_spoT (U, M, B, H,C, D; o)
problem as follows.

n n +

maximize Z (Us(zi) — M(y;)) — o™ [Z zi —C (7

i=1 i=1
subject to y; < B;1 (8)
yi = H(zi — x;) )
1"z; < D; (10)
Ti, iz = 0,0 =1,2,...,n (12)
whereo = [0—0, o1y ... th} is the price vector of unit power in the spot market, afitl = max{-,0}. Our

main interest in this problem is the characterization oftgparket prices that may incentivize the exogenous
purchase. In particular, we show that there is a threshat grelow which this purchase is justified, and it is
closely related to the optimal solution BY STEM.

Our last model considers non-trivial production costs. Wasider the linear cost in the original setting with
multiple users, that isP(z) = o7d,, whered, = > I, z; is the vector of aggregate demands, anchn be either
interpreted as the unit power generation cost or the spoteharice when the provider produces nothing of its
own and completely resorts to the spot market for supplys Tidel is denoted bgys2 (U, M, B, H,C, D).

We also consider a general convex cost in the single-usertbas has an explicit control structure.

In the next section we start with th&ySTEM problem, and note that when constrainit (4) is decoupled, the
SYSTEM problem can be separated into several subproblems. Thesnaii®n motivates us to consider the
dual-decomposition based technique to solve3keTEM problem [5], [6], which we show next.

I1l. DUAL DECOMPOSITION OFSYSTEM AND THE PROPERTIES OATS SOLUTIONS

In this section thesYSTEM problem is analyzed based on a dual decomposition, whichpatsnpts a distributed
first-order algorithm to solve it, and the properties of bt primal and the dual optimal solutions (demand,
supply and prices) are discussed.



A. Dual decomposition

We first reformulatesySTEM (U, M, B, H,C, D) as

maximize > (Us(z:) — M(ys)) (12)
=1

subject to vect(x,y,z) € F (13)

over vect(z,y,z) € D (14)

where the domain and the feasible region are respectivegnddy

D = {vect(x,y, z)

z; = 0,17z; < D;,
0=y, Bl z =0,Yi
and

F = {Vect(x,y, z) ‘ yi = H(z; — 1’z’),22’i = C,Vi}.

Note thatrelint D N F # () when B, C' and D are all positive, as we shall assume so. Indeeds let0 be

chosen later, and consider
Dz’ — €

5 (4) =
2i(t) atf—l—l

where0 < « < 1 satisfying .
aZi:I D;

1 < mtlnC’t,

Z(t) = &i(t) + 125 andgi(t) = S Zo(Zi(s) — i(s)). Let e < min;{min{B;, D;}}, and it can be verified that
vect(Z, 9, 2) € relint D N F. In addition, since this problem is convex and the inequaliinstraint is affine,
Slater's condition is then satisfied, and hence, strongitguaill hold. Because of the strict concavity of the
objective function inz andy, there are unique optima far, y andz. As pointed out before, the structure of the
SYSTEM problem prompts a solution based on a dual decompositisriLdgjrangian is given by

L:Z(Ui(ac,-) () +ZV i—w) —yi) +0T(C =Y %)
: i=1

= Z i(zi) — v Hw,) Z (M(y,) + VZTy,) - Z(G —HTv) Tz +67C.

i=1 =1

Let v = vect(vy,...,v,). The dual function is then given by

‘g(y’ 0) = max L(ZL’,y,Z,I/, 9)
Vect(ac,y7 )eD
n n
= : 17T \T . T

Z max Wiz v) — 0{2}1{1}91R(y,7l/l) glél(l)(e H' vi) 2z +6"C,

i=1 1Tgc <D i=1 i=1
where

Wi(xsvs) = Us(a) — v Ha,

and

Ri(yi;vi) = M(y;) + v i,



and we introduce
USER; : maximize W;(x;;v;)
(15)
subject to z; = 0,17z; < D;

and
USER] : minimize R;(yi; ;)
(16)
subjectto 0 <y; <X B;1
as two subproblems for usér Since the minimization with respect tg is a linear problem, which is readily
solved, the dual problem is given AL _sSys (U, M, B, H,C, D):

minimize " (W} (i) — Ri () +07C
i=1
subjectto § — HTv; = 0,0 = 0,i =1,2,...,n

whereW}(v;) and R} (v;) are the optimal values of probledn_(15) andl(16) for a givenGiven now this dual
decomposition structure, a distributive algorithm can éadily proposed to solveYSTEM, and this is widely
studied in the literature, see e.@! [E]] [4]. We report oursian of the algorithm in AppendikJA and show its
convergence.

B. Properties of solutions to SYSTEM and DUAL_SYS

Denote byr* = vect(z7, ..., z}) the optimum forr in SYSTEM; v* is an optimal solution for of DUAL_SYS,
and similarly definey*, z* and 6*, respectively. We first note thaf”v; can be interpreted as the price vector
that the provider charges from usefor each unit of consumed energy, in light of subproblé$gRr;, given that
it is component-wise non-negative. Indeed, the followiaguit establishes this premise.

Proposition 1: HTv} = 0 for all i.

Proof: The proof can be found in AppendiX B. |
Remark 1: Sincez;(t) is the total amount of energy distributed to uset time¢, under the interpretation of
H™v; being a price vector it is as if the energy buffered in bati@eye only charged when it is later consumed

while incurring astorage cost before the consumption. This obviously is not what actually hagpi@npractice,
but serves as an interesting interpretation of the resudt.de&/ note that if there is no battery buffering in the
model, this interpretation is consistent with the notiorsb&dow price in the literature (see elg./[14],/[15]), i.e.,

entries of Hv; are shadow prices of power.

Hence,0*(t) = max; (HTul-*)t for all . Moreover, 1) if we assume that’ € int &; for all 4, whereX; is
the feasible set of (15), i.e; = {z; | z; = 0, 17z, < D;}, H'v? is then uniquely determined for each
2) alternatively, if we assume thaf € int X; for at least one, sayix, andz; > 0, HTui*k is then uniquely
determined and from the minimization with respectztp we get thatd* = HTuz-*k. In either casef* is also
uniquely determined.

In Section[ 1V, we will consider the situation where there igap between the users demand and the power
generation capacity of the grid at some time instants. Ase¢hiastants, the grid may purchase power from the
spot market to narrow the demand-supply gap. We will showethahat the above unigug is a “lower bound”

on the price of unit power in the spot market above which thé decides to make no purchase.



Also, we can determine the closed formgf given v* based on[{16). Since the objective and the constraint
are both separable in time, we conclude

yi(t) = [m'~ (= (t = D)y

for all i and¢ > 0, where[-]’ is the projection operator ontf,b], i.e., [z]% := min{max{x,a},b}. Let
pr = HTv¥, andp;(t) := pi(t) — pi(t — 1) = —v¥(t — 1). We then obtain

g () = [m' ()

If we assume tha < y(t) < B;, the above result can be rewritten as

pi (8) = m/ (7 (t).

Therefore, at optimality the marginal cost of reallocatihg power purchase from— 1 to ¢ is equal to the
marginal cost of storing the energy in battery after purtcigagn ¢ — 1, which is intuitively appealing. When
the demand is known and fixed a priori, some structural reswit the optimal power generation and battery
scheduling in a single user setting can be found_in [16]. latiBe[\, we will also discuss in detail the explicit
structure of optimal control in the single-user problem wleenon-zero production cost is incorporated in our
main model.

IV. SPOT MARKET

In this section, we consider theys_SPOT problem. As before, we reformulate this problem and its dama
and the feasible region are the same as indie TEM problem. Also, there are unique optima feyy and z
because of the strict concavity of the objective functionziandy.

Denote byz*(c) = (2] (0),..., z;(0)) the optimal solution for: of SYS_sSPOT giveno. Define

S = {O’ Xn:zi*(a) jC}.
1=1

In the following, we characteriz& using the solutions of theysTEM problem and its dual problemuaL_sYs.
To avoid ambiguity, symbols without hat are variablessms_spoT, and others are for theyYSTEM problem
and its dual. We assume that either of the two cases belowes tr

Assumption 1:
a) z; € int &; for all 4, or

b) x} € int X; for at least one, sayij, andz} > 0.

Recall thatz} denotes the optimal solution to tlsers_SpoT problem forz;, and X; is the feasible set of (15).
In the following proposition, we show th& can be characterized with a threshold of prices.
Proposition 2: ¢ € S if and only if o > 0, noting thaté* is the optimal dual variable imUAL_SYS
(U,M,B,H,C,D).
Proof: 1) Necessity. First of all, the Lagrangian 8fs_SPOT is given by L(z,y, z, v, u),

n

L=> (Ui(z:) - M(y:)) — 0" [Z zi—C
i=1

n n

Y W) — o H) = (M) + ) — o [z aocC
i=1

i=1 =1

+ n
+ Z I/Z-T(H(Zi — 1’2) — yl)
1=1

T oon
+ E I/iTHZi.
i=1




Group the terms in a similar way as fWUAL_SYS, and the dual problem is

n
minimize Z (Wi (vi) — Ri (1)) — G*(v;0)
i=1
subjectto p; +v; = 0
W= 0,i=1,2,....n
whereW and R} are the respective optimal values of problems (15) (@6nfgiveny; as iNDUAL_SYS,
andG*(v; o) is the optimal value of

n + n
minimize o’ Z 5 —C| — Z vl Hz;
i—1 i1 (17)

subjectto z; = 0,i=1,2,...,n

Because of strong duaﬂythe optimal solution(z*,y*, z*) to SYS_SPOT is also the maximizer of the
LagrangianL(z,y, z, v*) wherev* is an optimal solution of the dual. Therefore; is an optimal solution of
(A7) whenv = v*. Since>_IL, z* is finite, we must haver = HT v for all i. On the other hand, provided
>om, zF = C, we can obtain the same soluti¢e*, y*, z*) of SYS_SPOT by solving thesysSTEM problem with
the same parameter s@t, M, B, H,C, D). Recalling the properties of solutions 8¥STEM in Section[1l[-B,
under assumption a) we haw¢ and 7* are uniquely determined ang = ©* for all i. In addition, §*(t) =

max; (H797), for all t. Under assumption b) we haw¢ = i and6* = H”7? . In either case, it follows that
1/t k 1k Tk

~

o > 0*.

2) Sufficiency. We only provide an outline of the proof hereirGtrategy is to show that the optimal solution
(x*,y*,z*) to the SYSTEM problem with optimal dual variable@?*ﬁ*) also satisfies the KKT conditions of
SYS_SPOT wheno = 6*, and then because of strong duality and convexitgv§_SPOT, it is also the optimal
solution of sys_spoT with optimal dual variables* = o*, given the spot market price. To this end, note that
the KKT conditions ofsys_SPOT only differ from those ofSYSTEM in the dual feasibility and the stationarity
conditions because of the replacemenfﬁ\With o and the non-differentiable term in the objective functiBecall
that 5*(75) = max; (HTﬁ;)t for all ¢, and we haver = HTv* if o = 0*. Let d.,L denote the subdifferential
of the Lagrangian o6YS_SPOT with respect toz; for all i. Hence, wherv > * andv; = v, 0 € 0., L for
all z; = z¥, and hence combining other optimality conditions, we abtai, y*, z*,7*) is a primal-dual optimal
solution giveno > 0*. [ |

V. SYS2 AND THE STRUCTURE OFOPTIMAL CONTROL FOR ASINGLE USER

Under some circumstances, we have an explicit form of thetisol to thesys2 problem, which is given by
the following proposition.
Proposition 3: At time t, S1" | 25(t) = C; if (HTv}); > oy for someid, and 2 (¢t) = 0 if (HTv}); < oy
Proof: The results follow from the KKT conditions. Firstly, the du@asibility and the complementary
slackness specify that

n

0=0,67(C—> z)=0.

i=1

It can be shown that the reformulated s_spoT problem is convex and Slater’s condition is satisfied.



Furthermore, consider the Lagrangiansafs2 and by the stationarity condition we have
o+60—H"y; =0, (c+0 —HTV,-)Tzi =0.

for all i. Thus, if (HTv;); > o, for somei at timet, thené(t) > 0. Therefore,>"!, z;(t) = C;. On the other
hand, if (H”v;); < o, we haveo, + 0(t) — (H'v;); > 0, and hencey;(t) = 0. |

In the rest of this section, we focus on the decision-makin@ Isingle user and a single provider, and derive
the structure of optimal policy. We relax our previous coaists such that they are now separable in time, and
we assume thag(t + 1) € [0, B], z(t) € [0,D] and z(t) € [0,C] for all t = 0,--- ,t¢, where the user index
i is now omitted. We assume that if a quantityt) is produced at timeg, the cost isP(z(t)) where P, is
strictly increasing and convex ia(t). Most of our notation is consistent with previous sectioresept that)/
will signify the scalar maintenance cost. Then, the denisimking problem is given by the following optimal
control problemOPT_CONTROL:

max Yy o[V (@(t) — Pi(2(t) — M(y(t +1))] (18)
s.t. y(t) = 2(t) — a(t), vt Yo(t)
po(t){ 0<y(t) < B, Vt, b (t)
Xo(8){ 0<a(t) <D, Vt, FAL(t)
Oo(t){ 0<z(t) <C, Vt, 101(t)
y(0) = o,

wherey(t) = y(t+1)—y(t). Denote the dual variables to the above constrainig(by 1o (t), ¢1(t), Ao(t), A1 (t), 0o (%)
andé,(t), as shown above. Then, due to strong duality, the KKT comtisuggest that there exigt, x*, z*
Pr s, 113, NG, AT, 65, 07 that satisfy

V/(@*(t) = p*(t) = AT(t) + A5(2) =0, (19)
—P{(z"(t)) + p*(t) — 07(t) + 05(t) = O, (20)
—M'(y*(8)) + p*(t) — pi(t) + p5(t) = 0, (21)
po(H)y™(t) =0, pit)[B —y*(t)] =0, (22)
Ap()z*(t) =0,  N(@)[D —a*(t)] = 0, (23)
05(t)="(t) = 0, 67(1)[C —="()] =0, (24)

such that(z*, z*) is the optimal control law ang* is the state of the system, wheié&) = p(t) — p(t — 1) for
t>1.
Now, from KKT conditions[(2]L), we have
t

=D My () + D _ui(s) = mi(s)] + p*(0). (25)

s=1

Further, from KKT conditions[{20), we have

Fi(27() = p"(8) — [07(2) — 05(1)]
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for all ¢. From this, using the complementary slackness conditi@d$, (ve can conclude that eithé}(0) =
pr(t) + 65(t), or P(C) = p*(t) — 05(t), or P,(z*(t)) = p*(t). We can summarize this as

2(t) = [P ()] - (26)

Similarly, from KKT conditions [IB), we get

V/(2*(1) = p"(8) + (NI () = A5(1)),

which together with the complementary slackness conditi@3), implies that

(1) = [V )]y - (27)
From [26) and[(27), we conclude that(¢) is non-decreasing ang*(¢) is non-increasing inp*(¢) for each
t. Moreover,z*(t + 1) < z*(t) wheneverp*(t + 1) > p*(¢). In the following, we assume tha, = P, and
consequentlyz*(t + 1) > z*(¢t) wheneverp*(t + 1) > p*(¢). Using [25) and the complementary slackness
conditions [(2R), we also conclude thatyft) > 0 for all t € T = {m,71 + 1,..., 72}, p(t) is then strictly
increasing int over 7.

Combing the results obtained above, we conclude the faligwinly possible dynamics of the optimal control,

and the detailed analysis can be found in Appendix D.

(i) =z*(0) > z*(0) whenyy, > 0, and z* is non-increasingy* decreasing:* non-decreasing irt. Either
to—z = ty—o < ty (i.€.,27(t) = 2*(t) andy*(t) = 0 simultaneously) and from then on the control and the
state maintain fixed until = ¢;, or 2*(¢) > 2z*(t) andy*(t) > 0 until the time horizon.

(i) 2*(0) = 2*(0) wheny = 0, and the control and the state maintain fixed uhti ¢ ;.

In addition, oncer*(t) = 2*(t) = u, we haveu = [min{C, D, a}]" wherea is such thatt’(a) = P'(u).
To conclude, we sketch the dynamics of the optimal contrdithe state of case (i) in Figuté 1. Note that the
change ofr*, y* and z* are not necessarily linear.

T,z

u = [min{C, D, a}]"
T a:V'(a)=P'(a)

Fig. 1. The optimal policy for a single user

VI. A GREEDY APPROACH

In this section, we consider a greedy approach to approxmahe solution to thesYSTEM problem. The
need for a greedy approach can be motivated by the followingsiderations:

1) depending on the definition of time scale of a step, the em@®nce time may exceed the time step;
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2) some parameters such Bs C and D may be stochastic within the time horizon, and we can onlenles
their realizations a posteriori.
Thus, we consider the following sequence of single-stepropation problems as approximations to thesTEM
problem. We denote each l§ys_GREEDY (V, B, Cy, D;t),

maximize Xn: Vi(zi(t)) (28)
=1
subject to zn:a:i(t) < Cy (29)
= t—1
vi(t)+ Y x(s) < D; (30)
s=0
zi(t) >0,i=1,2,...,n (31)

where (z7(s),i = 1,...,n) is the optimal solution t®&Ys_GREEDY (V, B, (s, D;s). Note that because of the
myopic nature of each single-step optimization, it doesawstsider utilizing battery to store energy for future
use, and thus the dimension of the greedy formulation redt@é¢hat of the space af.

There are a number of interesting problems to investigate. @ them is whether there is a speed advantage of
SYS_GREEDY overSYSTEM, and the other is the optimality gap between them. We wilkené numerical results
on the convergence rate 8frs_GREEDY in Sectior VI, and in the rest of this section we will chaextze the
solution of SYS_GREEDY and subsequently the optimality gap.

In the following presentation including Sectién VII, we linour discussion to the case where the utility
functions of users at a given time step are identical, Ve= V. We denote by} andz{™* the optimal solutions
of SYSTEM and SYS_GREEDY, respectively. Defing*? = 1729 and x = 172, and denote by;, NV, and
N1 the output of the following procedure.

Procedure GetChi(B, C, D)

Initialize Ny < {1,2,...,n}, N1 < 0,prev_.Ny < Ny

repeat

prev_ Ny <+ N
for i € Ny do
it (1"C —.cn, Dj)/INo| < D; then
Xi ¢+ (17C =X e, Di)/INo]
else
X; < D
N() <—N0 — {Z}, Nl %N1 U {Z}
end if
end for

until Ay = prev_.Ny or Ny < 0

return ;i =1,...,n,Np, M1

The above procedure can be literally described as a best-bfflanced water-filling process. That is, it attempts
to fill each water tank (user) the same amount of water (efesypject to their capacity (demand) constraints,
and whenever smaller ones of them overflow, the excess goesger tanks in equal amounts. The following
proposition asserts that this procedure in fact resulthiénaptimal total per-user amount of energy.
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Proposition 4: x7 = x; =; for all i.

Proof: That x;*Y =; for all i is straightforward, and we prove thgf = ; for all i in Appendix[C. =
Remark 2: The balanced property of optimal solutions is a consequericthe concavity and the user-
independence of utility function that we assumed. For degendent utility functions, we conjecture that the

solution may be in a scaled form of balanced power distriouti
Let p* andp?* be the optimal value o YSTEM and the sum of optimal values efrS_GREEDY, respectively.

Note thatz;(t) = X7 (19—'0) i = 1,...,n,t = 0,...t5, are feasible solutions to the sequence of greedy
optimization. The optimality gap is then upper bounded by
n X* ty n C
Fptr <t 4+1)) V() — VxF—52). 32
p*—p?* <(ty ); (tf+1) ;; (x lTC) (32)

Eqn. [32) suggests that the optimality gap would shrink aspbwer generation capacity is more balanced
among time steps. Moreover, observe that the loss of optinafl the greedy approach results from the myopic
optimization that overlooks the use of energy buffer (ibattery) to balance energy dispatch between steps. We
thus conjecture that the vectar in a roughly ascending order could yield a smaller optirgagiap.

VIlI. NUMERICAL ILLUSTRATION

In this section, we illustrate the demand sensitivity totaparket price that we studied in Section] IV, using
two sample problems that are specified in Tdble |. We also ieafly show the advantage in the convergence
rate of the proposed greedy approach compared ts#®&TEM problem, when the respective optimization is
performed using the same distributed algorithm based odigyraprojection.

30 30 30

=25 =25 =25

it = =

QO 20 QO 20 QO 20

| | |

5 15 15 515

:‘:‘lO :‘:‘10 :‘:‘10

I A A

= 5 = 5 = 5
O0 0.25 05 0.;5 1 125 1t O0 0.25 05 0.;5 1 125 1t O0 0.25 05 0.;5 1 12515
(@) o(0) = « - 0*(0) (b) 0(2) = k- 0% (2) ©o=r-0

Fig. 2. Demand sensitivity to spot market price for the sanpbblemn = 10, ¢y = 4.
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= = =

40 40 40

l; 30 l; 30 l; 30

:Ezo =EZO :EZO

W W W

=10 =10 =10
00 0.25 05 0.}35 1 125 1t 00 0.25 05 0.}35 1 125 1t 00 0.25 05 0.}35 1 125 15
(@) o(0) = - 6*(0) (b) o(3) = k- 6*(3) ©o=r-0*

Fig. 3. Demand sensitivity to spot market price for the sapbblemn = 20, ¢y = 6.

As shown in Propositiof] 20* assumes the threshold value of spot market pricand in Figurd R anfl3
we tuneo in three different ways to demonstrate the behaviors ofnmgdtidemand. The tests are performed
for both sample problems and we elaborate the one with 10,¢; = 4 for example. In the first scenario, we
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seto(t) = 5*(t) fort >0 ando(0) = ~ - 5*(0), wherex is a tunable parameter. We scale the third entry of
o in the second scenario and the entire price vector in the tme. In Figuré 2 andl 3, we plot the curves of
I>-", zi—C] 7|1 versusk, respectively. As can be seen in the figures, the demandaiseseas decreases when
x < 1 until hitting the demand constraint, and remains unchangeeh ~ > 1, as suggested by Propositiobh 2.

TABLE |
PARAMETERS OF THE TWO SAMPLE PROBLEMS INSECTION[VII]

B C D

n=10,ty =4 | [10,...,10]T | [8,7,...,4]T [1,2,...,10]T

n=20,ty =6 | [10,...,10]T | [10,9,...,4T | [0.5,1,...,10]T
V(a) =log(1 +a) andm(b) = 5b

TABLE Il
TOTAL RUNTIME (ITERATIONS) OF SAMPLE PROBLEMS

SYSTEM SYS_GREEDY
n—=10,t; — 4 | 25.0959s5(100) 0.0206s(210)
n—=20,t; — 6 | 68.07785(158) 0.0316s(197)

In Table[dl, we report the respective convergence ratestsfTEM and SYS_GREEDY. Though these records
are machine-dependent, it demonstrates the significanpa@tive advantage of the latter in speed, and the
greedy approach can be used as a good approximatie $aEM when the optimality gap bounded Hy {32) is
acceptable.

VIIl. A D ISTRIBUTED PRIMAL-DUAL ALGORITHM: NEWTON' S METHOD

In this section, we present a distributed second-orderighgo, namely Newton’s method, to solve th& STEM
problem. We first reformulatssySTEM and approximate it with an equality-constrained problemd apply
Newton’s method on the primal problem. Theory and applicatf distributed Newton's method in network
optimization can be found in_[17]/[18]/_[19] and etc. Insteaf solving the dual problem where updating
Lagrange dual variables can be interpreted as dynamicngrichis algorithm works on the primal side and
the solving process can be regarded as dynamic resour@egs]i. In this section, we assume thatl; is
self-concordant [20] for alt for the proof of convergence. A convex functigh: R — R is self-concordant if
|f" ()| < 2f"(x)3/? for all z € dom f, and self-concordant functions include linear, convexdyatic functions,
negative logarithm and etc.

We first introduce non-negative slack variables to threguadity constraints, that is,

n
1"2; +p; = Di, i +q = Bil, ZzH-T =C,
i—1

and using the logarithmic barrier function for non-negatbonstraints, we approximate our original problem with

an equality constrained problem as follows. et vect(ps,...,p,) andq = vect(qi, ..., q,). To simplify our
notation, we also define = vect(z,y, z,p, ¢, 7), that is, for instanceyw; = z; for 1 <1i < n andw;(t) = x;(t)
and etc. We also define the logarithm for vectos (uq,...,u,,) € R™ to be

logu = Z log u;.
t
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Let

n 2n 5n+1
fw) :—ZUi(wi)+ Z M(w;) — 1 Z log w;,
i=1 i=n+1 i=1

and f is also self-concordant for > 1. Define

= 0 0 I, 0 0

A _ 0 In(tf-l-l) 0 0 In(tf-l-l) 0

' L+ -I' 0 0 0
0 0 S 0 0 Ii 1

whereI(m) is them x m identity matrix,
17 H
== 7P - )
1r H

andS = [Iy,41,...,1;,41], and also definé = vect (D, B11,...,B,1,0,C). The original problem can be then
approximated as

minimize f(w)
subjectto Aw =b

It can be shown that as approaches zero, the optimum of the above approximatiniglgmro converges to that
of the original one.
Like the gradient projection method, the Newton’s methdgesothe above problem through an iterated update
procedure. In each iteration, we have
Wt = wh 4™ ak Awk,

wherea” is the step-sizeAw* is the Newton directiony is the discounting factor and
m =min{m’ € Z, | w* 4+ 4™ oFAw* = 0}.

Let H* = V2 f(w*) andg, = V f(«*). The Newton direction is then given by the solution to théofeing KKT

system,
Aw” B Jk
ok | 0
wherev” are dual variables associated with the equality consteaid0 is null matrices with proper dimensions,
and it yields

H, AT
A 0

Awk = —H;  (gp + ATF),
(AHk_lAT)vk = —AH, " g.
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Note thatf is separable for each;(¢), and hencey, only depends on local information with terms

_Vz’/(‘ri(t)) - xiﬁzt)’ (t) = xz(t)

of  Jm'wi®) -5, wilt) =wilt)

Owilt) | -t wi(t) = u(t),
U = zi,Pi,qi, T

\

and H;, is a diagonal matrix with terms on the diagonal

—V/,i(xi(t)) + Iiz—t)z’ w;(t) = x;i(t)

P )+ wilt) = )

IO P wilt) = u(t)
U= zi,Pi,4qi, T

Therefore, Aw* can be computed from collected data distributedly given whetor v*. Define the Newton
decrement\(w*) as
Mw®) = (Aw] HyAwy)'?,

and use the step-size [18]
1
o = Dt A 2 g
1, 0.W.
wherec is some positive scalar that satisfig® < ¢ < 1. The description of algorithm is then as follows.

Second-Order Algorithm for Power Distribution
User ¢'s algorithm At iterationsk = 1,2, ...,

1) Receives from the gridhw* and A(w*), and updates* andw**!.
2) Computes the associated termsyjn; and Hy, 1, and communicates them to the grid.
Grid’s algorithm At iterationsk = 1,2, ...,

1) Receives from each user and Hy.
2) Computes’*, Aw;, and A(w*), and broadcast them to all users.

Note that our implementation is different from that in][1Hce[18], where the computation of is centralized
at the grid, due to our introduction of partial computatiooapacity of the grid. The self-concordance based
convergence analysis is similar {0 [18] wherés assumed greater than 1 to preserve the self-concordénte o
and the analysis is omitted for ty

IX. CONCLUDING REMARKS

In this paper, we have studied key features of optimal dyongmices in smart-grid networks. Moreover, an
attempt of adopting distributed Newton’s method to the nhadéhis paper, namely theysTEM problem, is also
presented, which is however mainly designed to solve thaalrproblem and is categorized in the domain of
dynamic resource slicing instead of dynamic pricing. Irs thiork, the explicit control structure for time-invariant
power production and energy buffering costs has been studie continuation of this effort under more general

2For the simplicity of presentation, we implicitly assumattithe error in computing” is negligible. In [18], the authors assume the
Hy-quadratic norm of error is upper bounded.
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cost functions is one direction of our future research. Gndther hand, deviating from the deterministic setting
and investigating the optimal pricing with stochastic dachand supply is also one ongoing research project.

APPENDIX A
A DUAL-DECOMPOSITIONBASED DISTRIBUTED ALGORITHM

Let

n

Q(v,0) =>_ (Wi (v;) — Rf () + 67 C,

i=1
and
E= {vect(,u,y,ﬂ) ‘ 06— H" v = 0,60 - O,Vi}.

Definez(v;) andyi*(z/i)ﬁ as the respective unique maximizers [ofl (15) (16).Qt= Q(v*,6%). We solve
DUAL_SYS using the gradient projection method, and the updatingirulle kth iteration is given by

= = o, @ = ot () + o o)

2

gFtl = gF — oFv,QF = 0F — oFC

and
vect(vh 1 gE+1) = [vect(ﬂkH, §k+1)]

)

£
wherea” is a diminishing step-size satisfying

[ee] [ee]
Zak = oo,Z(ozk)Q < 00,
k=1 k=1

e.g.,of = ,ﬁi—fﬂ with T" a fixed non-negative number, afich]» is the projection ofry onto a set¥, or defined
as the following constrained quadratic program

| )
minimize 5”95 — x0l|5
subjectto z € X

Because all gradients are bounded with diminishing step-st, the gradient projection method converges
for the dual problem([21],[122][]5]. Since’(v;) andy}(v;) are the respective unique maximizers [of](15) and
(16) and the strong duality holds} (v}) andy; () are primal optimal, where; are the solutions of the dual
problem. To summarize, we have the following:

First-Order Algorithm for Power Distribution
User i's algorithm At iterationsk = 1,2, ...,

1) Receives from the grid the dual variabe’s
2) Computesr? (vF) andyr(vF), and communicates them to the grid
Grid’'s algorithm At iterationsk = 1,2, ...,

1) Receives from each usef (vF) andy?(vF) for all i
2) Computes the dual variabif-f\“rl andg*+1 for all 4, and communicates them accordingly to each user

3with a slight abuse of notation, we will us€(t) to denote theth entry ofz, andz(r) as a function ofv.
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The algorithm would terminate when the following stoppingerion is satisfied:
[vect (¥, 0%) — vect (1, 0F 1) || < e,

wheree is a predefined constant.

APPENDIX B
PrROOF OFPROPOSITIONT

We prove by contradiction. Assume that there exists at least such that(H”v}); = Zf:t vi(s) < 0 for
somet. Let I = argmin,(HTv});. We first note thatz* # 0 and further more there exists € I such that
xf(tp) > 0. Otherwise, one can switch the value «gf(¢y) with that of some positive entry in} and obtain
an improved value ofV;(x;;v}), which is a contradiction to the fact that is the maximizer oflW;(x;; v)).
Therefore,

1) if there existst < to such that(H v}), > (HTv¥)y,, letty = max{t : (HTv¥), > (HTv}),,,t < to} and

we then have/*(t;) > 0; otherwise(HTv}),, < (HTv¥),. Moreover, v (t) = 0 for t; < t < tq if any.
We then set

Vi (to) < v (to) + ¢

and
vi(ty) < vi(t1) — ¢

where0 < e < min{v*(t1), —(HTv});, }, where % «+ z” signifies assigning the value afto y. By doing
so, the value ofV; is strictly decreased while that d?; is non-decreasing and the feasibility constraints
are maintained. We thus obtain an improved dual objectiveeyavhich leads to a contradiction.

2) If (HTvr), = (HTvr),, for all t < tq if any, we set

Vi (to) < v (to) + ¢

where0 < e < —(HTv}),,, and the same argument applies as in 1).

APPENDIXC
PROOF OFPROPOSITIONZ

Note first that}"" , x = >, %; = min{1”C, 17 D}. The proof of this claim is straightforward and we
thus omit it here for brevity. Without loss of generality, vassume thatD is sorted in an ascending order,
and thereforey; is non-decreasing in as the procedure suggests. Moreovefy jf< ; for somej < i, then
X; = D;. Assume for contradiction that; <’x; < D; for somei, and there then exists at least one : such
that x; > x;. Thus,

1) if j <, theny; <X;. If X; < X;, we havex; > X; = D;, which is infeasible. Thereforey; = ¥;

and consequently; > x;. Hence, there exists sontesuch thatz}(¢) > z7(¢). Consider are such that
0 < e < min{D; — x7, (}(t) — z;(t))/2} and setr}(t) « 23(t) — e and 2} (t) < z7(t) + €. We then
obtain a feasible but improved objective value, which is at@iction.

2) If j >4, then; > ;. Hencexj > x; and the same argument applies.

The above argument also applies symmetrically to the casmWh< x; < D; for somei. Therefore x; =;
for all 4.
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APPENDIX D
DYNAMICS OF THE SINGLE-USER OPTIMAL CONTROL

We rule out the suboptimal cases as follows.
1. If 2*(0) < 2*(0), theny*(1) > 0 andp*(1) = p*(0) + M'(y*(1)) + p*(1) > p*(0). Hencez*(1) > 2*(0) and
xz*(1) < 2*(0), and the battery keeps charging until either fully chargetbke the time horizon and maintain
the state, or the time horizon is reached; however, thisearly suboptimal.
2. If 2*(0) > 2*(0), which is only feasible whem, > 0, let us consider the sequence of event§) < z*(t)
andy*(t) = 0. Let t,<. be the first time step when*(t) < 2*(¢) or be infinity if it does not happen before the
horizon, and similarly we define other quantities.
2a) If 2*(t) < 2*(t) happens beforg*(t) = 0, i.e, t := t,<, < ty,—o, theny*(t + 1) > y*({) > 0 and thus
p*(t+1) = p*(t) + M'(y*(t + 1)) + p*(t + 1) > p*(t). Hence,z*(t + 1) > 2*(t) andz*(t + 1) < z*(¢),
and again we are in case 1, which is suboptimal. For the boyrwdese that, . = ¢;, the suboptimality
is also immediate, and we omit the discussion of boundargscasthe following.
2b) If ty<, > ty—o =: ¢, i.e., y*(f) = 0 while 2*(t) > 2*(), this however is infeasible.
2¢) If tye, = ty—o =: 1, theny*(f + 1) > 0 andp*(f + 1) > p*(¢). Hencez*(f + 1) < 2*(f + 1), and we are
in case (2a), which is suboptimal.
3. If 2*(0) = 2*(0) andyp > 0, then this is clearly suboptimal.
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