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Abstract— We study the evolution of gene regulation in
response to environmental fluctuations. For gene dynamics
modeled by a linear system, we compute the optimal gene reg-
ulator that minimizes the expected square difference between
the current protein level and the level that is assumed to be
optimal for the current environment plus the cost of protein
production/decay, integrated over the life span of the cell. We
show that such cost could be represented by a discounted
infinite horizon LQR problem with switching equilibria. We
also derive a necessary and sufficient condition for the existence
of the optimal controller, which can be expressed in terms of
a system of Linear Matrix Inequalities (LMI).

I. INTRODUCTION

Living organisms sense their environmental context and
orchestrate the expression of sets of genes to utilize available
resources and to survive stressful conditions. Recently, sev-
eral researchers have considered the effect of stochastically
varying environment on gene regulation problems [1], [2],
[3]. Following this line of research, we consider a model
of gene regulation where the environment switches between
discrete states at random time intervals. These states could
potentially represent physiological or hormonal states that a
cell senses in multicellular organisms. Different environmen-
tal conditions have different optimal expression levels, and
the performance of the cell improves as the expression level
approaches the optimum. For example, a protein that pro-
vides a useful function under some environmental conditions
may produce deleterious byproducts under other conditions.
A recent study of the yeast Saccharomyces cerevisiae found
that increasing the expression level of a gene leads to slower
growth for one fifth of all genes [4]. Therefore, cells need
to adjust their expression level to the level which is optimal
for the current environment. Our goal is to consider a cost
function that represents the expected cost of deviating from
the optimal expression level in the current environment plus
the cost of protein production/decay over one individual
life span of the cell. We further compute the optimal gene
regulation strategy for this problem.

The model that we use to represent the gene regulation
problem in fluctuating environments is a special case of
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Piecewise Deterministic Markov (PDM) processes [5] and
Stochastic Hybrid Systems (SHS) [6]. SHSs have been
frequently used to model gene regulatory networks. For in-
stance, they can be used to model the uncertainties associated
with activation/deactivation of a gene in response to the
binding/unbinding of proteins to its promoter. By modeling
autoregulatory gene networks as a SHS with two discrete
states, [7] analyzes the reduction of intrinsic noise caused by
the transition of a promoter between its active and inactive
states in a genetic network regulated by negative feedback.
In [8], this model is extended to a network of N genes.
Moreover, SHS models have been shown to be useful for
parameter identification and modeling of subtilin production
in Bacillus subtilis [9] and nutrient stress response in E. Coli
[10].

From the optimal control perspective, several researchers
have considered optimization problems on SHSs. [11] studies
the Linear Quadratic Regulator problem for Markov Jump
Linear (MJL) systems and presents various algorithms to
compute the optimal gains. The author of [11] considers both
infinite and finite horizon cases and provides a sufficient
condition for the existence of solution in the infinite hori-
zon case. Moreover, based on the Stochastic Stabilizability
concept for MJL systems, [12] establishes a necessary and
sufficient condition for finite cost in the infinite horizon case.
Several researchers have constructed iterative algorithms to
solve the system of coupled Riccati equations occurring in
jump linear control systems. For instance, [13] proposes the
construction of a sequence of Lyapunov algebraic equations
whose solutions converge to the solution of the coupled
Riccati equations that appear in this paper.

Inspired by [14], we model the gene regulation problem in
stochastically varying environments in a general framework.
We consider linear dynamical models in every environmental
condition where the parameters depend on the current envi-
ronment. We then derive an optimal controller that minimizes
a discounted infinite horizon LQR problem with switching
equilibria. We also derive a necessary and sufficient condition
for the existence of the optimal control, which can be
expressed in terms of a system of Linear Matrix Inequalities
(LMIs).

When we apply the optimal control results to the com-
putation of optimal gene regulatory responses in variable
environments, we conclude that the optimal rate of protein



production is affine with respect to the current protein level,
which turns out to be consistent with the the biologically
meaningful model for protein degradation considered in [15].
Our results also show that the optimal control in a variable
environment switches between several (affine) feedback laws,
one for each environment. However, the feedback law that
corresponds to each environment would typically not be
optimal for that specific environment, if the environment
was static. The implication of this fact is that an organism
that evolved toward optimality in a variable environment
will generally not be optimal in a static environment that
resembles one of the states of its variable environment.
Intuitively, this is because the individual will always be trying
to anticipate a change that is never realized.

The paper is organized as follows. In Section II, we
start by modeling a simple one-step gene expression process
with two discrete environments and then generalize it to a
n-step process with an arbitrary number of environments.
In Section III, the optimal control strategy for fluctuating
environments is derived, and we establish a necessary and
sufficient condition for the existence of solution in terms of
LMIs. Section IV provides a case study and we conclude the
paper in Section V with some final conclusions and directions
for future research.

Notation. Given a measurable space (£, §) and probability
measure P : § — [0, 1], stochastic process x : € x [0, co] —
X C R" is denoted in boldface.

II. PROBLEM STATEMENT

A. Dynamics of a Simple Gene Regulation

Cells living in complex environments can sense a variety
of signals. They monitor their environment through such
signals and respond to environmental changes by producing
appropriate proteins. The rate of protein productions is de-
termined by transcription regulatory networks composed of
genes that code for special proteins called transcription fac-
tors [16]. Active transcription factors bind into the promoter
region of the DNA and can cause an increase or decrease
of the rate at which the target genes are transcribed. The
genes are transcribed into mRNA which is then translated
into protein. The environmental conditions, mediated through
cellular processes, alter the conformation of the transcription
factors in a way that affects their binding affinities. It is these
changes in the transcription factor proteins that regulate the
expression of the target gene, creating positive or negative
feedback loops.

We focus on the dynamics of a single gene that is regulated
by a single transcription factor. This transcription interaction
can be described by Y—X which reads “transcription factor
Y regulates gene X”. Once the transcription factor Y activates
the gene X, it begins to be transcribed, the mRNA is
translated, and this results in the accumulation of protein
X. We assume that the rate of protein production is denoted
by u (in units of concentration per unit of time).

The process of protein production is balanced by two
additional processes: protein degradation (protein destruction
by specialized proteins in the cell) and dilution (due to
increase of the cell volume during growth). We denote the
total degradation/dilution rate by g which is the sum of
the degradation rate p4., and the dilution rate ji4;. Thus,
the change of concentration of X can be described by the

dynamic equation
dx
ar T

where x describes the protein concentration.

B. Gene Regulation in Fluctuating Environments

We consider a cell encountering a series of environmental
conditions and our goal is to understand what the optimal
gene regulation strategy is.

Let us start by assuming that the cell encounters two
different environmental conditions: environment O favors low
concentration of protein while environment 1 favors high
concentration. These conditions may represent physical pa-
rameters such as temperature or osmotic pressure, signaling
molecules from other cells, beneficial nutrients, or harmful
chemicals. The random environmental shifts are modeled
by exponential waiting times with parameters \;, for which
the history does not influence the future states. Given this
definition, the expected waiting that the environment stays

1

in state i is y-— for i € {0,1}.

We start by considering a scenario where the optimal
concentration of the protein X depends on the current en-
vironment, denoted by env(¢) € {0, 1}, and the degradation
rate is constant. The evolution of protein concentration x(t)
can be modelled by

DX = Ueny — px(t) (1)

where u; is the rate of transcription in environment ¢ € {0, 1}
and p is the protein degradation/dilution rate. Figure 1 shows
a sample path of the resulting stochastic system due to
changing environments.

Let us consider a simple evolutionary scenario. We assume
that the optimal concentration levels of the protein X are 0
and 1 in environments 0 and 1, respectively. At each point
in time, we assume that cost of deviation of the protein
level from the optimal level in the current environment is
a quadratic function of the difference between these values.
This cost can be written as (x(t) — env(t))2, since we
assumed that the optimal protein levels are 0 and 1 in
environments 0 and 1, respectively.

We also consider a term in the cost function that reflects
energetic costs of producing/decaying mRNA and proteins
[17]. This cost may be written as a quadratic function of
the current transcription rate u(t), resulting in a total cost
that is given by (x —env)? +~u? and defines the penalty in
environment env associated with the protein concentration x
plus the cost of instantaneous protein production/decay. The
parameter v determines the tradeoff between keeping x(t)
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Fig. 1. A sample path over one individual’s life span. The solid line

illustrates how the environment changes stochastically while the trajectory
of the protein concentration x(¢) over one sample path is depicted by the
dashed line.

close to its ideal value env(t) and not “wasting” resources
in the protein production/decay. One can also consider the
case in which v is environment-dependent, which will be
discussed in the following subsection.

We assume that organisms die at a rate independent of the
strategy they use to regulate gene expression. If the life span
(T) of a cell is modeled by an exponential random variable
with mean 1/p, the probability that an organism is still alive
at age t is given by P(T > t) = ¢ *t. This assumption is
consistent with the experimental data in [18], [19] and [20].
One can show that the total expected lifetime cost of an
individual is proportional to

J= /OOO e’pt((x(t) - env(t))2 + ’yu(t)2) dt. (2

Equation (2) provides the cost associated with a specific
realization of the stochastic process env(t) that models
environmental changes. Since an individual cannot “guess”
the future evolution of env (t), its best bet is to minimize the
expected value of such cost, given the current environment
and concentration of x

J=E, {/000 e PH((x(t) — env(t))? + yu(t)?) dt} 3)

conditioned upon the initial condition zy = (x(0), env(0)).

One can also interpret (2) by considering a “killed process”
X that is equal to x as long as the cell is alive and X = env
after the organism is dead (which generated no further cost
with the control u = 0), the total lifetime cost of the killed
process is

J=E., {/Ooo(i(t) —env(t))? + yu(t)? dt} .

It can be shown that the killed process generates the same

cost as (3), i.e. J = J, see [5, Chapter 3].

C. Generalization

We now generalize the system described above by
considering a multiple-step gene expression process with
an arbitrary number of environmental conditions. This
can be used to model the multiple-step process in

gene production (e.g., the transcription-translation process
DNA—mRNA—protein) and also regulation based on mul-
tiple transcription factors.

We model the process of switching between environments
by a continuous-time Markov chain r(¢) taking values in the
set S = {1,2,..., N} with transition rate matrix P := {\;;}
where

P(r(t +dt) = jlr(t) = i) = A\ydt + O(dt) i#j. (@)

Here, A\;; > 0 (¢ # j) is the rate of departing from state ¢

N
>N

J=1, j#i

to state j and \;; = —

The different values of r(t) correspond to distinct linear
dynamics according to the following model:

X(t) = Apyx(t) + Benyu(t) + degr) 5)

where x(t) € R™ denotes a stochastic process state with
piecewise continuous sample paths, r(¢) denotes the current
environmental condition, u(t) € R™ an input to be opti-
mized, and dy(;) is an r-dependent bias term. The affine term
dy(t) in the dynamics is needed for environments that create
or consume x at a fixed rate without control cost.

III. MAIN RESULTS

Our goal is to compute the optimal control input u(t)
that minimizes an infinite-horizon discounted criteria of the
following form

J = EZO{IOOO e P ((x — Zr) Qr(x — Ty)

(- ) Re(u—1a)) dty @

by means of a feedback policy that computes u(t) based
on the history of x(7) and r(7), Vr < t where all the Q;
and R, are positive definite matrices. Toward this goal, we
shall provide a necessary and sufficient condition for the
existence of solution, which requires the notion of stochastic
stabilizability that we have adapted from [12].

Consider a Markov Jump Linear (MJL) system given by
(4)-(5) and let x(t,xq,r9,u) denote the trajectory of the
process starting from initial condition zy = (x(to), r(to)) =
(zo,70), and under the control input u(t). The system is
Stochastically Stabilizable (SS) if there exist a symmetric
matrix M and a set of linear gains {L; : ¢ € S} such that
the solution of (4)-(5) with d; = 0 and u(t) = —Lyx(t)
satisfies

T
lim E., {/ x(t)'x(t) dt} < zuMzg (7
T—o0 0

for all finite xy € R™ and 7y € S. Essentially, stochastic
stabilizability of a system is equivalent to the existence of a
set of linear feedback gains that make the state mean-square
integrable when d; = 0 Vi € S. The next result from [12,
Theorem 1] provides a necessary and sufficient condition for
stochastic stabilizability of MJL systems.



Theorem 3.1: The system (4)-(5) is stochastically stabiliz-
able if and only if there exists a set of matrices {L; : i € S}
such that for every set of positive definite symmetric matrices
{N; : i € §}, the symmetric solutions {M; : i € S} of the
coupled equations

N
(Ai_BiLi)/Mi+Mi(Ai_BiLi)+Z AijMj = —N; (8)
j=1

are positive definite for all ¢ € S. ]

In the following theorem, we compute the optimal control
policy u*(t¢) that minimizes the infinite-horizon discounted
criteria (6). Such control signal may depend on the values
of x(7) and r(7) for 7 < t.

Theorem 3.2: Consider the following optimization prob-
lem
min J
u(x(7),x(r)), 7<t

©))

subject to x(t) = Ar(t)X(t) + Br(t)u(t) + drr)

with J given by (6). If there exists a solution A; € R™*™,
I, e R, Q; € R, i € S to the following set of equations

N
AjAi+ AiAs — pAi = ABiRT BN + Qi+ ) Ay =0
j=1
(10)
(A} = AiBiR; ' B} — pI)T; + 2Mi(Biu; + d;)
N
+> ALy =2Qiz (11)
j=1
_izl;gBiRnggFi + Ti(Byu; + d;) — pS;
12)

+Z )\iij + i‘;QZ.’Z‘l =0,

j=1

then the minimal cost for x(0) = x,r(0) = 7 is given by
J* = z(Ayzo + z(Tyy + Qp, and the optimal control is
given by

1
u*(t) = iy — 5R;lB;(zA,.><+F,.) r:[0,00) = 8. (13)

O

Proof of Theorem 3.2: Let us introduce the value
function as V(zg,r9) = minJ conditioned on x(0) =
Zo, r(tg) = ro. From [5], the Hamilton-Jacobi-Bellman

(HJB) equation for this problem is given by
0= min{LV(x,i) — pV(2,4) + (x — Z;)' Qi(x — T;)
+(u— ;) Ri(u — ;) }

(14)
where LV denotes the extended generator of the Markov
pair {r(t),x(t)}, see [6]. The minimization in (14) can be
done explicitly, leading to the optimal feedback

* = 1 —1 v/ av ’
ut =, 2Ri i(ax)’ (15)

that can be replaced in (14). Using (10)-(12), it is straight-
forward to verify that V(z,i) = 2'Ax + 2'T; + Q; is a
piecewise continuous solution to (14), since
N
P(Aiw + Baur +di) + Y Nij(a'Ajo + 2'T; + Q)
j=1
—|—(u* — ﬁz)’RZ(u* — ﬂi).

0=

(16)
Thus, by [5, 42.8], V' and u* are optimal which completes
the proof. |

Next, a necessary and sufficient condition for the existence
of the optimal regulator will be stated in terms of stochastic
stabilizability of the system. We show that under a stochastic
stabilizability assumption, the optimal control policy leads to
a finite cost for which one can compute a finite upper bound
on J. The main result of this section is stated in the following
theorem.

Theorem 3.3: Consider the system (4)-(5) and (6) and
assume that p > —)\;; for all ¢ € S. When the system is
stochastically stabilizable, the minimum cost is finite, the
equations (10)-(12) have solutions, and the control policy
(13) is optimal. Conversely, if for some linear policy the cost
(6) is bounded then the system is stochastically stabilizable.

Proof of Theorem 3.3: We start by proving the first part
of the theorem by showing that Stochastic Stabilizability
results in a finite optimal cost. Then, we show that there
exists a solution to (10)-(12) and therefore the optimality of
(13) follows from Theorem 3.2.

Due to the stochastic stabilizability assumption (Theorem
3.1), there exists a set of gains {L;} such that for any
set of matrices {NZ > 0}, the corresponding solutions
{M;} in (8) are positive definite. In what follows, we show
that choosing the control u(t) = —L,.x(t) (which is not

necessarily optimal) results in a finite cost.

We take matrices IV; in (8) to be N; = Q; + LiR;L; > 0
and M; to be the corresponding positive definite solutions.
Given x(0) = o and r(0) = ro, one can compute the cost
of applying this control policy using

T B[ ek — ) Qelx— 72)
+ (U - ﬂr)/Rr(u - ar)) dt}

= EZO{fOOO e PH(x' Npyx — 2xX/(Qr Ty + L Ryiy)
+  ULRpUy + ThQrZy) dit}.
17
Defining W(x,r) = x'M,x and applying the extended
generator of the stochastic system (5)-(4), see [6], we obtain
LW (x,r) = —x'Nyx. So one can show that

—a  «:=min 7”"”"(]\&)
i Nma:r(Mi)
where « is positive. So LW < —aW and by the Gronwall-
Bellman lemma

E.,{W(x,r)} <e *W(xg,r0).

LW __ _x'er <
W = x'Myx —

1€8



(Ai + 22 1)Q; + Qi
_P!Bl - BiP,

Qi

Qi

Qi .. Qi

?jl 0
31

: <0 Vies. (18)
' Qy

0 N Ain—1

Thus, one can conclude that

T T
EZO{/ x' Myx dt} < (/ e ot dt) oM, To.
0 0

Lebesgue’s Dominated Convergence Theorem in [21] justi-
fies the existence of the limit as T' — oo and we have

B, {77 x' Myx dt} limy o By { [ X/ Myx dt}

S IOMTOIO
We can bound the integral (17) which can be written as

J E., {fo"o e PH UL Relliy + TLQrZy) dt}
E.o { [y e ’N rX) dt}

— 2B, {7 e "X (QuTr + L, Ryliy) dt} .

Since S is finite, the first term in (19) can be bounded by

+

19)

B, {Jfy e P! (upRetiy + 7;Qpy) dt}

< Lwmax (@ Riu; + 7.Q;%;).

P ieS

For the second integral in (19), we have

B {J5 e

—Plx' N,x dt}
ma'Xumaa:(Nz

and the third one can be bounded by
Eay { f37 e (Quite + Ly Reti) dt} <
max |szl + L;RﬂjAEzO {/ 67Pt|X| dt}
¢ 0

Defining <« :=

max |Q;T; , and using the
K3

Cauchy Schwarz inequality for square integrable functions
KE., {[57 e x| dt}
< KB\ JT et dt [ [x[2 dr}
= B, (|7 xI? dt)

< e FE, *° x!Mpx dt
\/Zp min Lnin (M) ol fo }

Note that, by the Cauchy Schwarz inequality, one can show

that F{X} < \/E{X?}, so
ﬂ E. L[ x Mox di
\/2pm_inumin(Mi) O{ fo X x }

< \/Ezo{fo xdet}

\/QPmlanzn
< K ) ral M, x
> f 0t roL0
\/2pmi1num,;n(Mi) a o

therefore the cost is bounded. This finite quantity (resulting
from a not necessarily optimal control) is an upper bound
for the optimal cost to go.

We now show that (10)-(12) has a solution and therefore
the optimality of (13) follows from Theorem 3.2. Due to the
Stochastic Stabilizability assumption, one can guarantee the
existence of a set of positive solutions A; to (10) [12]. From
(10), it is straightforward to show that A; — B; R 1B§A,» +
(Mii — p)/2 I is Hurwitz. Let us define

k :=min |Real {eig(A; — B;R; ' BiA; + (\is — p)/2 1)} |

therefore (A; — B;R; ' BiA; + (\i; — p+k)/2 I) is Hurwitz.
Since, by assumption p > —M\;;, one can conclude that
(A;—B;R; ' BlA;+(k/2—p) I) is a stable matrix. Moreover,
knowing A;, (11) turns out to be a system of linear equations
in T';. Stacking all thezentries of the matrix I'; in a tall
column vector z € R™ , we can write (11) as Mz = w
for an appropriately defined vector w &€ R"" and with the
coefficient matrix M defined as

M=P- gI) ® I, +diag(A, — N;B;R; ' B} + (g —p)I).
By the results of [23], the eigenvalues of the transition rate
matrix P are zero or negative therefore (P — g[ Y®1, is also
Hurwitz. Thus, the system of linear equations (11) has a full
rank coefficient matrix and has a unique solution. Similarly,
knowing the solution of (10)-(11), (12) turns out to be a
system of linear equations in €2; with the coefficient matrix
P — pI. Since all the eigenvalues of P — pI are negative, the
coefficient matrix is full rank and (12) has a unique solution.

To prove the second part of the Theorem, suppose that the
system is not stochastically stabilizable. So there is no linear
feedback law that can result in a finite value for (7), and this
contradicts the existence of a finite cost for a linear policy.
]



Theorem 3.3 provides a necessary and sufficient condition
for the existence of the optimal solution in terms of stochastic
stabilizability property. However, for a given set of matrices
{N;}, the matrix equality (8) is bilinear in the unknowns
{L;}, {M;} and therefore it is not easy to verify if it holds.
The following result provides a system of linear matrix
inequalities (LMIs) that can be equivalently used to check
stochastic stabilizability. Checking feasibility of these LMIs
corresponds to a convex optimization problem that can be
solved efficiently.

Lemma 3.1: The following statements are equivalent.

A) The system (4)-(5) is stochastically stabilizable.

B) There exist sets of matrices {L;} and {M; = M| >
0} such that the following Bilinear Matrix Inequality
(BMI) holds

N
(Ai = B;L;) M; + M;(A; — B;L;) + Y X\ijM; < 0.
=1
’ 20)
C) There exist sets of matrices {P;} and {Q; = Q; > 0}

such that the LMI condition (18) holds for Vi € S and
Jr € S\{i}.
Moreover, the matrices in (B) and (C) are related by @Q; =
M7 "'and P, = L;Q;. O

?

Proof of Lemma 3.1: We start by showing that (A) and
(B) are equivalent. If the system is stochastically stabilizable,
it follows from Theorem 3.1 that there exist matrices {L;}
such that for any set of positive definite matrices {N;},
the solution {M;} to (8) are positive definite. By selecting
{N; = I} in (8), we conclude that (20) holds, which proves
that stochastic stabilizability is a sufficient condition for (20)
to hold. To prove necessity, let us assume that the {L;},
{M,} are such that for some {N;} we have (A;—B;L;) M;+
M;(A; — BL)+ZJ 1 AijM; = —N; < 0. Our goal is
to show that the system is stochastically stabilizable. Let
V(x,r) = x'M,x be the stochastic Lyapunov function for
the system where {M; : i € S} satisfy (20). Applying the
results in [6] to the generator of stochastic hybrid systems,
one can compute the time derivative of the expected value
of V along the solutions of (4)-(5). Given any x(0) =
Zo, I‘(O) =T0,

f EZO{V(X7 I‘)} = Ezo {X/(MI‘(A!‘ - BrLr)+
N

(Ar = BeLy)' My + ) ArjM;)x}
j=1
= min 7)\77”'”(1\&)

Let us define « €8 Amaz(M;)

which is a positive
number therefore
d
dt

Using the Gronwall-Bellman lemma

E..{V(x,r)} < —aE, {V(x,1r)}.

E. {V(x,r)} <e *zyM,, x.

Thus one can conclude

T
EZO{/ t) dt} < </ e dt) xy M, 0.
0

Lebesgue’s Dominated Convergence Theorem in [21] justi-
fies the existence of the limit as 7" — oo and we have

. M;
TlgnC>O EZO{/ t) dt} <z, (mlax oz||Ml|> Zo
Therefore, the system is stochastically stabilizable.

We now prove that (B) and (C) are also equivalent. We
sketch the proof for S = {1,2,3} although similar results
hold for arbitrarily number of modes. Assume that there exist
matrices {M;} and {L;} such that

3
(Ai = BiL;)' M; + M;(A; — BiL;) + Y X\ij M; < 0. (21)

j=1

Define Q; := !> 0and P, := L;Q;, and multiply both
sides of (21) by Ql
(A + 28 1)Q; + Qi(A; + 21) — P/B] — BiPi+
Xijy QiQ5,' Qi + Xij, QiQ,' Q1 < 0.
(22)

Applying the Schur complement [22] to (22), one can get

(Ai+ 3 DQi + Qi A+ 30y
~P!B]~ B;P; U
Q; _Ai_injl
{%l}( 112Q32) [Ql 0]<0

for Vi € S, jr € S\{i}. By applying the Schur complement
again, we get (18). Moreover, the proof of necessity follows
in a similar fashion. Therefore (B) and (C) are actually
equivalent, and this completes the proof. ]

IV. CASE STUDY

We consider again the simple gene regulation prob-
lem from Section II-B. It can be shown that the system
(1) is stochastically stabilizable for any set of parameters
{Xo0, A1, u} and, using Theorem 3.2, one can compute the
optimal control (13) for this stochastic process.

Let us consider two different scenarios. First, we consider
the optimal control policy (13) that is obtained for the
stochastically varying environment. Second, we compute
two policies that are optimal for environments 0 and 1
individually, assuming that there is no fluctuation in the
environment. These policies are obtained by minimizing the
cost (2) when the probability of changing the environment is
zero. If cells were to use these policies when the environment
fluctuates, one can show that the cost of applying this control
is a quadratic function of the initial protein concentration
and depends on the initial environment. Clearly, such cost is
always larger than the optimal cost obtained from Theorem
3.2.



Fig. a: Optimal cost Fig.b: AJ

Fig. 2. Fig. a depicts the cost of using the optimal control (13). Fig. b
illustrates the additional cost (AJ = Jnonopt — Jopt) due to the control
policy that is obtained by minimizing (2) and is optimal for every individual
environment when there is no switching. This control results in a larger cost
when the environmental switching rate is large, with respect to the protein
degradation rate. The system starts from zg = 0.9 and in environment 1
with p = 0.1 and A\g = A1 = \.

X(t)

time

Fig. 3. Sample paths using the control strategies discussed in Section
IV. The dashed line corresponds to the optimal controller in fluctuating
environment while the solid line is the result of the controller which is
optimal in each environment when there is no switching . The system starts
from x¢p = 0 and in environment 1 with p = 0.1and A\g = A1 =1, = 4.

Figure 2 compares the cost of applying the control which
is optimal in each environment (if there was no switching)
and the optimal control policy (13) from Section II-B that
takes into account that the environment changes stochas-
tically. Figure 2.b illustrates that the optimal policy (13)
results in a much smaller cost when the switching rate of the
environment is large, when compared to the degradation rate
of the protein. The biological implication of this observation
is that an organism that evolved through natural selection in
a variable environment is likely to exhibit specialization to
the statistics that determine the changes in the environment.
Opposite to what one could naively expect, such individual
will typically not simply switch between responses that are
optimal for the current environment, as if that environment
were to remain static forever. Figure 3 illustrates sample
paths of the system using the two control strategies discussed
above. One can see that the controller that is optimal for
the changing environment achieves a better cost by being
conservative in its response to the environment.

V. CONCLUSION

We explored the effect of stochastically varying environ-
ments on the gene regulation problem. We used a mathemat-
ical model that combines stochastic changes in the environ-
ments with linear ordinary differential equations describing
the concentration of gene product. Based on this model,
we derived an optimal regulator that minimizes the infinite
horizon discounted cost (6) with switching equilibria and
showed that the regulator in each environment is an affine
function of the expression level x. We have also obtained
a necessary and sufficient condition for the existence of an
optimal control in terms of a set of LMI conditions. For
future work, we plan to consider scenarios where the waiting
times between the environmental changes follow arbitrary
distributions. Furthermore, we plan to synthesize controllers
that achieve a robust performance, where H., controllers
might be applicable.
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