
Stochastic Model Predictive Control: Controlling the Average Number
of Constraint Violations1

Milan Korda, Ravi Gondhalekar, Frauke Oldewurtel and Colin N. Jones

Abstract— This paper considers linear discrete-time systems
with additive bounded disturbances subject to hard control
input bounds and a stochastic requirement on the number of
state-constraint violations averaged over time. This specification
facilitates the exploitation of the information on the number
of past constraint violations, and consequently enables a sig-
nificant reduction in conservatism. For the type of constraint
considered we develop a recursively feasible receding horizon
scheme, and, as a simple modification of our approach, we
show how a bound on the average number of violations can
be enforced robustly. The computational complexity (online
as well as offline) is comparable to existing model predictive
control schemes. The effectiveness of the proposed methodology
is demonstrated by means of a numerical example.

I. INTRODUCTION

There is a significant gap between the theory of model
predictive control (MPC) and its practical usage. Indeed,
theoretical results on stability and recursive feasibility of MPC
are available in nominal as well as robust settings [16, 22].
These results are, however, rarely used in practice: in most
applications the problem of recursive feasibility is circum-
vented by employing soft constraints, and (robust) stability is
not enforced by design but evaluated a posteriori. The main
reason for this discrepancy is the excessive conservatism
of theoretically sound approaches compared to empirical
methods, especially in a robust setting [20].

A possible remedy is for the constraint specification
to be probabilistic rather than robust, or, more generally,
for occasional constraint violations to be allowed in a
well-defined, but not necessarily probabilistic, manner. An
MPC controller can then exploit these occasional violations
to achieve a lower objective cost, thereby reducing the
conservatism.

The main theoretical challenge when occasional constraint
violations are allowed is recursive feasibility. Previous
approaches [5, 6, 7, 8, 14, 15] considered constraints on the
marginal distribution of the state, typically point-wise in
time probabilistic constraints. In those works the constraints
were enforced by controlling the conditional probability of
constraint violations between two consecutive time instances
without taking into account the past behavior of the state
process. Although convenient for a receding horizon imple-
mentation, this necessarily limits the achievable benefits of the
probabilistic specification. Indeed, even the least-restrictive2

formulation of [14] is still conservative in certain situations.
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2Least-restrictive in terms of the size of the feasible domain with respect
to the one-step conditional constraint (Section II, Eq. (5)).

In contrast, the proposed method exploits the information
on the past behavior of the state process – namely the
number of past constraint violations – when deciding on
the current control input, and thereby is capable of enforcing
probabilistic properties on the closed-loop trajectory as a
whole. The quantity constrained in this paper is the number
of constraint violations averaged over time; we derive an
MPC control scheme such that bounds on this quantity are
satisfied either in a stochastic manner or robustly. These
constraints are equally expressive and practically relevant as
the traditional probabilistic constraints (considered in, e.g.,
[14, 15]), and readily facilitate exploiting the knowledge of the
number of past constraint violations. For instance, this type of
constraint is natural in building climate control, where comfort
specifications for the room temperature are of this form [18].

The presented methodology is based on the first-step
stochastic invariance introduced in [14] and originally devel-
oped for nominal MPC in [10]. The approach is completely
independent of the MPC problem cost function and policy
parametrization, and introduces only affine constraints.

This flexibility is facilitated by the use of controlled invari-
ant sets, which can be parametrized either explicitly or implic-
itly. In either case, the computational requirements are compa-
rable to their respective nominal and robust counterparts – in
the case of explicit parametrization to the first-step nominal
MPC of [9, 10]; in the case of implicit parametrization to any
of the traditional robust / stochastic MPC schemes such as
affine disturbance feedback [12, 14], prestabilization [15] or
tubes [17] (assuming the presented approach is used with the
same parametrization as the traditional one).

The paper is organized as follows. The problem to be
solved is formulated in Section II; a general set-based solution
is described in Section III for the stochastic constraint
specificaiton; Section III-B then presents a modification
for the robust one. Section IV shows how the presented
methodology can be incorporated into an MPC framework,
discusses the explicit and implicit policy parametrizations
(IV-A) and some computational aspects (IV-B). A numerical
example is presented in Section V.

A. Notation

Throughout the article R denotes the set of reals, N+ the
set of positive integers, N the set of nonnegative integers and
Nji denotes the set of consecutive integers {i, i+ 1, . . . , j}.
Similarly, let also xji := (xi, xi+1, . . . , xj). An infinite
sequence (xi, xi+1, . . .), xj ∈M for all j ≥ i, is denoted by
{xj ∈M}∞j=i. Random variables are defined on a common
probability space with an associated probability measure
P (·). The expected value operator is denoted by E{·}; the
conditional probability and expectation based on information
available up to time t are denoted by Pt(·) and Et{·},
respectively. For a set M and N ∈ N+, let MN be the
Cartesian product of the set N -times with itself. Finally, let
b·c denote the floor of a real number.



II. PROBLEM STATEMENT

We consider the linear time-invariant stochastic dynamic
system

xt+1 = Axt +But + wt, t ∈ N (1)

with the state xt ∈ Rn, the control ut ∈ Rm, and the i.i.d.
disturbance sequence wt ∈ Rn. We assume that the state xt
is known at time t for all t ∈ N, and that the pair (A,B) is
stabilizable. The control inputs are subject to hard bounds of
the form

ut ∈ U ⊆ Rm, t ∈ N, (2)

for some polyhedral input constraint set U . We let w denote
any random variable having the common distribution of wt,
t ∈ N. The support of w is assumed to be contained in a
compact polyhedron W , that is,

supp(w) = supp(wt) ⊆ W ⊂ Rn, t ∈ N. (3)

The essence of the paper is then the handling of proba-
bilistic constraints on the closed-loop state process. These
constraints can take various forms, but in loose terms one
wants the state to stay within a given polyhedron X “most
of the time”. The polyhedron X is referred to as the (state)
constraint set.

For the sake of brevity, we focus exclusively on so-called
joint chance constraints, where the probabilistic requirements
are imposed on the polyhedron X as a whole, although
an extension to individual chance constraints, where the
requirements are imposed on each hyperplane defining X
separately, is straightforward.

A. Probabilistic constraint formulations
In the remainder of this section we state the specific type

of constraints considered in this paper and relate them to
other types of probabilistic constraints considered in the past.
Our previous work [14] considered constraints of the form3

P (xt ∈ X ) ≥ 1− α, ∀ t ∈ N+, (4)

with α ∈ [0, 1), which were enforced through the sufficient
one-step (conditional) constraint

P (xt+1 ∈ X | xt) ≥ 1− α, ∀ t ∈ N. (5)

Being a function of xt (and hence of wt−10 ), the left-hand
side of this constraint is a random variable and the inequality
is required to hold for all realizations of xt under a given
control policy. The use of conditioning may, however, bring
about significant conservatism and, consequently, almost
negate the benefits of the probabilistic constraint specification.
Indeed, the relationship

E {P (xt+1 ∈ X | xt)} = P (xt+1 ∈ X ) (6)

clearly manifests the potential conservatism introduced by
the conditioning in (5).

In this paper we almost entirely eliminate this conservatism
by requiring that the closed-loop state process satisfies

Et

{
vt+1

t+ 1

}
≤ α if

vt
t
≤ α

vt+k
t+ k

↘ α as k → τt if
vt
t
> α,

(7)

3In [14] we actually considered individual chance constraints only, but
the extension to the joint chance constraints (4) and (5) is straightforward.

where vt denotes the number of constraint violations4 up to
time t, that is,

vt :=

{∑t
k=1 I[xk 6∈X ] t ∈ N+,

0 t = 0,
(8)

with I[xk 6∈X ] denoting the indicator function of the comple-
ment of X evaluated in xk. The integer random variable τt
is then the first return time after t of the average number of
violations below the required level α, i.e.,

τt := inf{i > t | vi/i ≤ α}, (9)

where, as usual, the infimum of an empty set is infinity. The
convergence in the second line of (7) is required to be with
probability one (or “almost surely”).

In other words, rather than controlling the probability
of constraint violation at each time separately, at each
time instant t we control the average number of constraint
violations, where the average is taken over the entire history
of the state trajectory up to time t. The average number of
violations is controlled in such a manner that whenever it is
below the prescribed level α (line one of (7)), then it remains
below α in expectation at next time instant; if the average
number of violations happens to be above the level of α (line
two of (7)), we require that it converges back towards α with
probability one.

Remark 1. The allowed level of constraint violation
α ∈ [0, 1) typically comes directly from application
requirements, but it can also be viewed as a tuning
parameter adjusting the conservativeness of the controller.

As a simple modification of our approach, we show how
to enforce the averaged constraint robustly, that is, how to
enforce

1

t

t∑
k=1

I[xk 6∈X ] ≤ α, ∀ t ∈ N+, ∀ {wt ∈ W}∞t=0. (10)

Performance under this constraint should be compared to the
classical robust MPC rather than to its stochastic counterparts,
because in (10) there is no randomness in the number
of violations allowed to occur up to a time t – the only
uncertainty is about when the violations occur.

III. MAIN RESULTS

In this section we present a recursively feasible receding
horizon control policy under which the closed-loop state
process satisfies the constraint (7). The main idea is simple:
keep track of the number of past constraint violations; if it is
“large”, enforce the constraint (5) as is; if it is “small”, loosen
the constraint (5) appropriately; and at all times enforce such
invariance constraints that the constraint (5) will be feasible
at the next time instant. One can then extend this idea and
build a family of nested sets in which the state is allowed
to climb up if the number of violations is “small” and is
forced to climb down if the number gets “large”; the (possibly
loosened) probabilistic constraint (5) is then enforced only
at the lowermost level.

Now we give a precise mathematical formulation of the
above discussion. We will repeatedly employ joint chance
constraints of the form

P (Ax+Bu+ w ∈ X ) ≥ 1− δ, (11)

4The violation at time zero (which cannot be prevented) is omitted just
for notational convenience. All our results



for some x ∈ Rn, u ∈ Rm and some δ ∈ [0, 1]. The left-
hand side of these constraints is, however, difficult to evaluate
precisely; hence we make use of a (1− δ)-confidence region
of w , which can be any set Rδ ⊆ W such that

P (w ∈ Rδ) ≥ 1− δ. (12)

A sufficient condition for (11) to hold is then

Ax+Bu+ w ∈ X ∀w ∈ Rδ. (13)

In the sequel we make use of the following assumption.

Assumption 1. A compact confidence region Rα for the
constraint violation level α has been determined.

For example, ellipsoidal or polytopic confidence regions are
typically straightforward to construct and suitable from a
computational point of view. Note that the assumption of
Rα being compact has been made only for computational
tractability. See Section IV-B for computational aspects.

We start the exposition with an instructional, single-layer,
approach which is then extended to a more powerful multi-
layer approach in Section III-A.

The first key ingredient in our approach is the stochastic
feasibility set Xs:
Definition 1 (Stochastic feasibility set [14]). The stochastic
feasibility set of the constraint (5) associated with the
confidence region Rα is

Xs := {x ∈ Rn | ∃u ∈ U s.t. Ax+Bu+w ∈ X ∀w ∈ Rα}.

The subscript s signifies “stochastic” in contrast to a robust
version Xr defined in Section III-B.

In plain words, Xs is a subset (because of the confidence
region possibly strict) of the set of states for which there exists
an admissible input such that the conditional constraint (5)
is satisfied. Because the state and the input constraint sets
X and U are polyhedra, Xs is also a polyhedron for any
compact confidence region Rα (see Section IV-B).

The second key ingredient is a stochastic robust controlled
invariant set (SRCI set) S:

Definition 2 (SRCI set [14]). A set S ⊆ Xs is a stochastic
robust controlled invariant set if it satisfies the following
condition:

∀x ∈ S ∃u ∈ U s.t. : Ax+Bu+ w ∈ S ∀w ∈ W,

Ax+Bu+ w ∈ X ∀w ∈ Rα.

We need the following assumption on S:

Assumption 2. A nonempty polyhedral SRCI set S exists
and has been characterized.

The requirement of S being polyhedral has been imposed
for the sake of computational tractability (see Section IV);
all theoretical results presented in this paper hold for any
nonempty SRCI set S.

Now we proceed to define a quantity called probability
leeway that will control the loosening of the one-step
conditional constraint. It will be the only parameter adjusting
constraint tightness in the single-layer approach, and it will
act at the lowermost level of the multi-layer layer approach.
The first line constraint (7) is then equivalent to

Et{vt+1} ≤ α(t+ 1), (14)

and therefore (7) will be satisfied at time t if we ensure that

(t+ 1)α−Et{vt+1} = α+ αt− vt − Pt(xt+1 6∈ X )

is nonnegative. Consequently, the quantity to be controlled
at time t is Pt(xt+1 6∈ X ), the conditional probability of
violating the state constraint at time t+1 given information at
time t. To that effect define the probability leeway βt ∈ [α, 1]
at time t ∈ N as

βt := max{min{α+ αt− vt, 1}, α}. (15)

In other words, βt is the highest probability level such that
whenever βt > α, enforcing

Pt(xt+1 6∈ X ) ≤ βt (16)

guarantees the satisfaction of the first line of (7) at time t.
If, on the other hand, βt = α (or more precisely αt < vt),
then enforcing (16) does not guarantee the satisfaction of
Et{vt+1/(t + 1)} ≤ α. However, the probability leeway
βt can be used to define a control law that guarantees the
satisfaction of (7) as a whole.

To this end define for all t ∈ N

Ũt(xt, vt) := {u ∈ U s.t.

Axt +But + w ∈ S ∀w ∈ W (17a)
βt < 1⇒ Axt +But + w ∈ X ∀w ∈ Rβt}, (17b)

where Rβt is a (1 − βt)-confidence region of w and βt is
defined through vt and t by (15). Note in particular that
the constraint (17b) is disabled for βt = 1. We require the
following (natural) assumption on the confidence regions:

Assumption 3. Rβt ⊆ Rα for all βt ∈ [α, 1).

A basic single-layer set-valued control policy under which
the satisfaction of (7) is guaranteed can now be defined by

κ̃t(xt, vt) ∈ Ũt(xt, vt), t ∈ N. (18)

In other words, at time t we enforce the invariance con-
straint (17a), which ensures that the one-step constraint (17b)
is feasible at all times whenever it is feasible at time zero
(since we assumeRβt ⊆ Rα); if the number of past violations
vt is at least 1−α less than the specified level αt (i.e., βt = 1),
we do not enforce any additional constraints; if, on the other
hand, the number of past violations exceeds the specified level
αt (i.e., βt = α), we also enforce the one-step conditional
constraint (5) through (17b) with βt = α; finally, if the
difference between the specified level and the current number
of violations is between zero and 1−α (i.e., βt ∈ (α, 1)), we
enforce the one-step constraint loosened as much as possible
such that (7) is still guaranteed to be (conditionally) satisfied
at the next time instant.

Remark 2. The control policy (18) is time-varying and non-
Markovian since βt depends on time t and on the number of
past constraint violations vt.

Remark 3. It is not necessary to construct a confidence
region for each value of βt ∈ [α, 1). First, in view of (15),
for any rational value of α, there are only finitely many
possible values of βt between α and one. Second, for
arbitrary value of α, one can always choose fixed values
α =: β̂1 < β̂2 < . . . < β̂nβ̂ < 1 for which confidence regions
Rβ̂i are precomputed and then round βt < 1 to the nearest
lower value of β̂i. In addition, the confidence regions can, and



typically are, chosen such that only the scaling varies while
the shape remains the same for each value of β̂i. The storage
of these regions then amounts to the storage of the shape of a
single region and nβ̂ real numbers representing the scalings.

A formal proof of the intuitively obvious fact that, given
Ũt(x0, 0) 6= ∅, the closed loop state process under the control
law ut = κ̃t(xt, vt) is defined at all times and satisfies the
constraint (7) is given in a more general, multi-layer, setting
in Theorem 1.

A. Multi-layer version
Under the control policy (18), the invariance con-

straint (17a) is independent of the number of past constraint
violations, no matter how small it is. As a consequence, the
invariance constraint (17a) can be a major, if not sole, source
of conservatism for small vt (i.e., for βt close or equal to
one).

The multi-layer approach presented in this section alleviates
this by loosening the invariance constraints with a decreasing
number of past violations. The idea is to construct a family
of nested one-step reachability sets around the SRCI set S.
To this end, define the robust reachability operator of a set
M⊆ Rn as

Reach(M) (19)
:= {x ∈ Rn | ∃u ∈ U s.t. Ax+Bu+ w ∈M ∀w ∈ W}.

The nested family of length ns is then given by

S1 := S, (20a)
Sk+1 := Reach(Sk), k = 1, . . . , ns − 1. (20b)

Remark 4. The nested property Sk ⊆ Sk+1 follows from
the fact that M⊆ Reach(M) whenever the set M is robust
controlled invariant and the fact that the Reach(·) operator
preserves the invariance.

Remark 5. When the sets M and U are polyhedral, the
evaluation of Reach(M) amounts to a single polyhedral
projection; consequently, Reach(M) is also polyhedral
(unless empty).

Now we proceed to the definition of an integer random
variable that will play the role of a layer index that controls
to which layer (i.e., to which set Sk) the state is permitted
to move. Observe that

βt = 1⇔ αt− vt ≥ 1− α,
and, for any k ∈ N,

βt+k = 1⇔ α(t+ k)− vt+k ≥ 1− α
⇐ αt− vt ≥ (k + 1)(1− α).

In other words, if we know at time t that

αt− vt ≥ (k + 1)(1− α),

then we are guaranteed that the first time the probabilistic
constraint (17b) needs to be enforced is t+ k + 1; therefore
we can permit the state xt+1 to move to the set Sk+1, from
which we are guaranteed to get back to S1 = S at the time
t+ k + 1 if necessary. This suggests that the sets Sk should
be indexed by the number of integer multiples of 1− α in
αt− vt. Thus, define the layer index rt ∈ Nns1 as

rt := max

{
min

{⌊
αt− vt
1− α

⌋
, ns

}
, 1

}
, t ∈ N. (21)

X

Xs

S1

S2

S3

xt
rt = 2

rt+1 = 1

rt+1 = 3

βt+2 = 0.7rt+2 = 1

βt+3= 0.3

Fig. 1: Structure of the sets involved and some of the possible evolutions
of the state over several time steps. Note the nested property S = S1 ⊆
S2 ⊆ S3 (the colored sets), the inclusion S = S1 ⊆ Xs, and that Xs 6⊆ X
nor X 6⊆ Xs. The dashed lines show some of the feasible evolutions for
the given values of βt and rt. We start with xt ∈ S1 and rt = 2; hence
the state is permitted to move to S2. From there we assume two scenarios:
if there is no violation at t + 1, then rt may increase to rt+1 = 3 in
which case the state is allowed to move to S3; if there is a violation at
t+ 1, then rt+1 = 1 (and βt+1 = 1) and the state has to move back to
S1. The latter scenario is further expanded: if there is no violation then
we have rt+2 = 1 (and βt+2 = 1) in which case only the inclusion to
S1 is enforced; if there is a violation at t + 2, then we need to enforce
the (loosened) probabilistic constraint, here with βt+2 = 0.7. The former
scenario is expanded still further assuming that a violation occurred at time
t+3, which requires enforcing a tighter probabilistic constraint than before,
here with βt+3 = 0.3. It is important to note that the evolution of rt and
βt depends on the specific values of αt− vt and α, which means that the
scenarios shown are not the only ones possible. Consistent values for these
scenarios are α = 0.3 and αt− vt = 1.8.

Now we can define a set-valued multi-layer control policy.
To this end define for all t ∈ N the sets

Ut(xt, vt) := {u ∈ U s.t.

Axt +But + w ∈ Srt ∀w ∈ W, (22a)
βt < 1⇒ Axt +But + w ∈ X ∀w ∈ Rβt}, (22b)

and
Πt := {(xt, vt) | Ut(xt, vt) 6= ∅}. (23)

The multi-layer control policy is then defined by

κt(xt, vt) ∈ Ut(xt, vt), t ∈ N. (24)

The Remarks 2 and 3 about the single-layer policy (18) apply
also to this control policy. Note also that, since S1 = S , we
recover the single-layer control policy for ns = 1.

A typical evolution of the state within the nested structure
is depicted in Figure 1. The sets are drawn as ellipses although
in fact they are polyhedra under Assumption 2.

Now we can state and prove our main result:



Theorem 1. Under the control law ut = κt(xt, vt) the
following holds:

I. If x0 ∈ S, then (x0, 0) ∈ Π0 (initial feasibility).
II. If (xt, vt) ∈ Πt, then (xt+1, vt+1) ∈ Πt+1 (recursive

feasibility).
III. If (x0, 0) ∈ Π0, then xt satisfies the constraint (7)

(closed-loop constraint satisfaction).

Proof. I. At time zero we have rt = 1, and feasibility of (22a)
and (22b) then follows from the definition of S = S1.

II. Consider first rt = 1. Given feasibility at time t, we
know that the state at time t+1 will be in S1 = S . Therefore,
by definition of S, the invariance constraint (22a) as well
as the probabilistic constraint (22b) will be feasible at time
t+ 1. Note further that, from (15), βt+1 < 1 implies rt = 1;
hence, rt = 1 is the only case when the constraint (22b) can
be active at time t+ 1.

Next, for rt > 1 we know that the state at time t + 1
will be in Srt = Reach(Srt−1). Feasibility of the invariance
constraint (22a) at time t+ 1 follows since rt can decrease
by at most one over one time step (rt+1 ≥ rt − 1).

III. Consider first t ∈ N+ such that vt/t ≤ α. In that case
we have, by definition of βt, that

Et{vt+1} = vt + Pt(xt+1 6∈ X ) ≤ vt + βt
= vt + α+ tα− vt = (t+ 1)α

as desired by the first line of (7).
Consider now a time instant t ∈ N+ such that vt/t > α

and let τt defined in (9) be the first return time of vt/t below
α. Clearly, for those events on which τt < ∞, the second
line of (7) is satisfied. Assume therefore τt = ∞. Define
further the process γk := vt+k − (t+ k)α for k ∈ N. Then

γk+1 = vt+k − (t+ k)α+ I[xt+k+1 6∈X ] − α
= γk + I[xt+k+1 6∈X ] − α.

Now, since vt+k/(t + k) > α, we have that that βt+k = α
for all k ∈ N and therefore

Et+k{γk+1} = γk + Et+k{I[xt+k+1 6∈X ]} − α
= γk + Pt+k(xt+k+1 6∈ X )− α ≤ γk.

As a result, the process γk, k ∈ N, is a nonnegative super-
martingale. Now by Doob’s martingale convergence theorem,
γk converges to some random variable l ≥ 0. Therefore,

lim
k→∞

vt+k
t+ k

− ξ =
γk
t+ k

= lim
k→∞

l

t+ k
= 0

with probability one as desired.

B. Robust average constraint
In this section we outline a modification of the presented

approach for the robust averaged constraint (10). Unlike the
stochastic requirement (7), satisfaction of (10) guarantees a
hard bound on the average number of constraint violations,
and hence may be preferable in situations where mere
satisfaction in expectation is not sufficient (i.e., it is “too
random”).

The modification consists of replacing the confidence
region Rα by the whole support of the disturbance W in the
construction of the stochastic feasibility set and the SRCI set.
Equivalently, the stochastic feasibility set is now replaced by
the one-step robust reachability set Xr of the constraint set
X , that is,

Xr := Reach(X ).

The SRCI set S is then replaced by a robust controlled
invariant (RCI) subset of Xr, that is, by a set Ŝ ⊆ Xr that
satisfies

∀x ∈ Ŝ ∃u ∈ U s.t. : Ax+Bu+ w ∈ Ŝ ∀w ∈ W,

Ax+Bu+ w ∈ X ∀w ∈ W.

The construction of the nested family is the same as before:

Ŝ1 := Ŝ, (25a)

Ŝk+1 := Reach(Ŝk), k = 1, . . . , ns − 1. (25b)

Similarly, as before, define now for all t ∈ N

Ût(xt, vt) := {u ∈ U s.t.

Axt +But + w ∈ Ŝrt ∀w ∈ W, (26a)
βt < 1⇒ Axt +But + w ∈ X ∀w ∈ W}, (26b)

and
Π̂t := {(xt, vt) | Ût(xt, vt) 6= ∅}, (27)

where βt and rt are defined in (15) and (21). The robust,
multi-layer control policy is then given by

κ̂t(xt, vt) ∈ Ût(xt, vt), t ∈ N. (28)

The structure of the control policy is the same as that
of (24) – only the sets to which a robust inclusion is enforced
differ. In particular the probabilistic constraint (22b), a robust
inclusion to a confidence region, is replaced by (26b), a
robust inclusion to the constraint set X . The activation of the
two constraints is, however, governed by the same random
variable βt defined in (15).

The following theorem is analogous to Theorem 1.

Theorem 2. Under the control law ut = κ̂t(xt, vt) the
following holds:

I. If x0 ∈ Ŝ, then (x0, 0) ∈ Π̂0.
II. If (xt, vt) ∈ Π̂t, then (xt+1, vt+1) ∈ Π̂t+1.

III. If (x0, 0) ∈ Π̂0, then xt satisfies the constraint (10).

Proof. I., II. The first two parts of the proof are almost
verbatim copies of the corresponding parts of Theorem 1 and
therefore omitted.

III. Let τ be the last time before t such that βτ = 1 and
zero if there is no such time. For τ = t, the result follows
trivially from the definition of βt (15). Next, for τ = 0 the
result follows since then there are no constraint violations up
to time t. Finally, for τ ∈ Nt−11 , we have from (15) that

vτ ≤ ατ + α− 1,

and, since there are no violations from τ + 2 to t, we get

vt = vτ+1 ≤ vτ + 1 ≤ ατ + α = α(τ + 1) ≤ αt,

which is equivalent to (10).

IV. IMPLEMENTATION

In this section we discuss how the general theory developed
in previous sections can be employed within an MPC
framework. For the most part, the procedure is identical for
both constraints considered, (7) and (10). Therefore, we focus
on stochastic constraint (7), which is our primary concern, and
outline modifications for the robust constraint (10) whenever
necessary.



The set valued control policy (24) (or (28)) gives rise to a
generic MPC problem

Problem 1.
minimize {J | ut ∈ Ut(xt, vt)},

where the cost function J is completely free to choose, as well
as is the prediction horizon and the policy parametrization
with respect to which the cost function J is minimized.

For each value of t, the constraint set of Problem 1 is a
polyhedron (by Assumption 2), and hence if J is convex in the
decision variables of the problem (i.e., the policy parametriza-
tion), then Problem 1 is convex. Computational aspects of
this problem are discussed in the remainder of this section.

A. Parametrization of SRCI sets
A crucial step for the application of Problem 1 is the

parametrization of a family of SRCI sets Sk (20). One way
of doing so is an explicit construction of an SRCI set S
(Definition 2) and a subsequent application of the Reach(·)
operator (Eq. (19) and Remark 5). It is desirable that the set
S (and hence all Sk) be large, preferably maximal. However,
the computation of maximum (stochastic) (robust) controlled
invariant sets is known to be difficult in larger dimensions,
as polyhedral projections are required, and the maximal set
may not be polyhedral [1, 2]. Nevertheless, there are effective
algorithms for the computation of low-complexity polyhedral
controlled invariant under-approximations of these sets; see,
e.g., [3, 4, 21].

The computation of maximum controlled invariant sets
(or large under-approximations thereof) can be avoided if
a family of SRCI sets Sk is parametrized implicitly. The
implicit inclusion to a family of SRCI sets can be achieved
via the traditional MPC with a terminal invariant set [16, 22];
the procedure is now briefly described.

For the traditional MPC scheme, at a time t and on a
prediction horizon N , the control input predictions ut+k
are given by an explicit policy parametrization (the decision
variable) for k ∈ NN−10 , and by a fixed terminal controller
for k ≥ N . Let the explicit policy (in general a causal
state-sequence feedback or, equivalently, causal disturbance
feedback) be π := (π0, . . . , πN−1), that is,

ut+k = πk(xt+kt ), k ∈ NN−10 ,

and let the terminal state-feedback controller be κf , that is,

ut+k = κf (xt+k), k ≥ N.

The constraint satisfaction is enforced explicitly along
the prediction horizon through constraints on the policy
parametrization π and implicitly beyond the prediction
horizon by constraining the terminal state xt+N to a
positively invariant set associated with the terminal controller
κf . Specifically, the terminal set Xκf employed is a subset
of the stochastic feasibility set Xs such that

Ax+Bκf (x) + w ∈ Xκf ∀w ∈ W, (29a)
Ax+Bκf (x) + w ∈ X ∀w ∈ Rα, (29b)
κf (x) ∈ U (29c)

is satisfied for all x ∈ Xκf .
At a time t, given xt and vt (and hence rt and βt),

we wish to ensure that ut ∈ Ut(xt, vt). The probabilistic
constraint (22b) remains unchanged. The invariance con-
straint (22a) is enforced implicitly as follows. First, by

definition of Sk and S, the inclusion xt+1 ∈ Srt for all
w ∈ W is ensured if

P (xt+rt+i ∈ X | xt+rt+i−1, xt, vt) ≥ 1− α (30)

is satisfied for a given (xt, vt), all i ∈ N+ and all possible
xt+rt+i−1 generated by all possible wt+rt+i−2t ∈ Wrt+i−1

under the given policy π and the terminal controller κf . The
constraint (30) is then enforced explicitly for i ∈ NN−rt1 by
constraints on π and implicitly for i > N − rt by requiring
that xt+N ∈ Xκf for all wt+N−1t under π.

In principle there are no restrictions on the policy
parametrization π and the terminal controller κf as long
as they are “compatible” in the sense that the shifted solution
is feasible at the next time instant. In fact, most of the widely
used robust and stochastic MPC parametrizations such as
affine disturbance feedback [12, 14], pre-stabilization [15] or
tubes [17] can be used.

For the robust constraint (10), the constraint (30) is replaced
by a robust inclusion of xt+rt+i to X , and Rα is replaced
by W in (29b) when constructing a terminal region.

B. Enforcing the constraints
In this section, we briefly outline how to enforce the

constraint ut ∈ Ut(xt, vt) of Problem 1. In the case of implicit
policy parametrization, the specific form of the constraint (30)
depends on the policy parametrization and is not discussed
here; see [14] for a detailed treatment with affine disturbance
feedback in a similar setting. Hence, in the remainder of this
section we assume that a family of SRCI sets Sk has been
characterized explicitly.

From a computational viewpoint we are faced with a single
type of constraint – the robust inclusion of the successor state
to a given polyhedron. Invariance constraints (e.g., (22a)) and
one-step probabilistic and robust constraints (e.g., (22b) and
(26b)) translate to this type of constraints.

The robust inclusions translate immediately to affine
constraints. Indeed, given a polyhedron P = {x | aTj x ≤ bj}
and a set M, we have
Ax+Bu+ w ∈P ∀w ∈M⇔

⇔ aTj (Ax+Bu) ≤ bj − max
w∈M

aTj w,

where maxw∈M aTj w are fixed finite numbers for any com-
pact set M. In particular, these numbers can be found by
solving a linear program for a polyhedralM or found analyt-
ically for an ellipsoidal M (details are omitted for brevity).

C. Computational complexity discussion
This section briefly compares the computational complexity

of the presented approaches with existing MPC formulations.
If the SRCI sets are parametrized explicitly, then the

offline complexity is governed by computation of maximum
controlled invariant sets (or under-approximations thereof)
and as such is comparable to the nominal first-step MPC
of [9, 10]. The online computational requirements are
then governed by the type of the cost function J , policy
parametrization and, to a smaller extent, by the complexity
of the SRCI sets employed.

If the SRCI sets are parametrized implicitly, then the
offline computational complexity is determined by the policy
parametrization π and the terminal controller κf , which are
also the main factors in online complexity along with the type
of the cost function J . Most importantly, online as well as
offline computational requirements are completely analogous



to those of the traditional robust and stochastic MPC schemes
with the same parametrization, be it affine disturbance
feedback [12, 14], prestabilization [15] or tubes [17].

It should be stressed that with explicitly parametrized SRCI
sets as well as with implicit parametrization using any of the
above-mentioned policies, the constraint set of Problem 1 is
polyhedral and hence the class of the problem (e.g., quadratic
/ linear program) is not altered by introducing either of the
constraints (7) and (10).

V. NUMERICAL EXAMPLE

We consider the system (1) given by the matrices
A =

[
1 0
1 1

]
, B =

[
1
0.7

]
. The i.i.d. disturbance sequence has a

componentwise-uncorrelated Gaussian distribution with each
component truncated at 3, i.e., W = {w ∈ Rn | ||w||∞ ≤ 3}.
The input constraints are |u| ≤ 12. The state is constrained
to lie (most of the time) in a rectangular region given by
|x1| ≤ 7, x2 ≥ 0 and x2 ≤ 12. The allowed violation level
α is 0.2. The cost function J is the standard expectation
of a quadratic function given by the weighting matrices
Q = diag(0, 1) and R = 0.1. The prediction horizon is
N = 8. As a policy parametrization we chose the affine
disturbance feedback (see, e.g., [14]), which allows for the
exact evaluation of J . A family of SRCI sets Sk with six
layers (ns = 6) was parametrized explicitly, starting with the
maximum SRCI set S1 = S . The confidence regions Rα and
Rβt were chosen as scaled symmetric boxes around the origin.

We compared the performance of the proposed approaches
using both the stochastic constraint (7) (Av-Exp) and the
robust constraint (10) (Av-Rob) against the first-step approach
to the one-step conditional constraint (5) (One-Step) proposed
in [14], and against the standard affine disturbance feedback
robust MPC (Robust) of, e.g., [12]. As a benchmark we used
the unconstrained infinite-horizon LQ optimal controller; this
controller outperforms any other controller and was included
only to get insight into the absolute performance of the
constrained approaches. Rather than performing a Monte
Carlo analysis, we compared the policies over one long
realization (T = 1000). The performance in terms of the
cost function and the number of constraint violations at the
final time is summarized in Table I. The stochastic version,
Av-Exp, of the presented approach outperforms the other
policies by a significant margin, and, as expected, the average
number of violations is almost on the 20 % boundary. Also
the robust version, Av-Rob, outperforms the standard robust
MPC by a large margin. Note in particular that the number
of violations with Av-Rob is also almost tight; however, the
benefit gained by violating the constraint is partly negated by
the need to return well into the interior of the constraint set
in order to satisfy the constraint robustly in the future. This
is why the one-step stochastic MPC performs better than Av-
Rob despite fewer constraint violations. These observations
are only confirmed by inspecting the trajectories of x2 shown
in Figure 2 along with the trajectories of βt, vt/t and rt.
Indeed, the trajectory of x2 for Av-Rob has significantly
higher variance than for the other policies.

VI. CONCLUSION

This paper presented a framework to handle the constraints
on the number of state-constraint violations averaged over
time, where the average number of violations can be bounded
either in a stochastic manner or robustly. The key ingredient of
our approach is the explicit incorporation of the information

on the past number of state-constraint violations into the
decision on the current control input. The approach signifi-
cantly reduces the conservatism of previous stochastic MPC
formulations, which is confirmed by a numerical example.
The computational requirements (both online and offline) are
comparable to those of the recursively feasible nominal MPC
with a first-step constraint of [9, 10] in the case of explicit
parametrization of controlled invariant sets, or comparable to
those of robust MPC in the case of implicit parametrization
(assuming the same parametrization for the presented and for
the robust appraoch).

Future work will focus on extending the presented method-
ology to output feedback, time-varying systems and to
different types of constraints, e.g., integrated chance con-
straints [19], spectrum constraints [11, 13], time-varying con-
straints and weighted-average constraints. Another direction is
optimization of closed-loop performance under the constraints
considered here; for instance, online optimization of the
confidence regions and prediction strategies that take into
account the nested structure are topics worth investigating.
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