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Abstract—We present a subspace system identification nuclear norm heuristic can be quite effective in identifmat
method based on weighted nuclear norm approximation. The as well. However it should be noted that the results of the
weight matrices used in the nuclear norm minimization are . clear norm heuristic can be very suboptimal (in partiula

the same weights as used in standard subspace identification h d f imati ih a fixed K f
methods. We show that the inclusion of the weights improves WNEN USEd for approximations with a Tixed rank; see, for

the performance in terms of fit on validation data. As a second €xample, [Mar11]), and at present no theoretical analysis o
benefit, the weights reduce the size of the optimization prdbms its effectiveness for identification is available.

that need to be solved. Experimental results from randomly The purpose of this paper is to improve the algorithm in
generated examples as well as from the Daisy benchmark [LV09a] by generalizing it to state-space models in Kalman

collection are reported. The key to an efficient implementabn .. . L .
is the use of the alternating direction method of multipliers to  Normal form and combining it with instrument variable

solve the optimization problem. techniques [Ver94], [OD94], [Vib95], [Lar90], [VWO97].
Experiments on randomly generated problems will show
I. INTRODUCTION that the instrument variable based nuclear norm approach

Subspace algorithms include some of the most popmgpproves the fit in_ subspace identification in more than 90%
methods for system identification [Lju99], [VV07]. One of of_ the cases conS|dere_d, Whe_reas the same figure for the_ case
the main reasons for their success is their reliance oneftici yv|th0ut mstrument variables is only 84 % Moreover, using
matrix algorithms (QR and singular value decomposition) strument vanab!es -reduce-s the dlmen5|on of thg optimiza
for making low-rank approximations of matrices constrdcte N Problem making it possible to obtain the solution faste
from the observed inputs and outputs. By incorporatin ence instrument vgnables increase efficiency with respec
weights in the approximation problems one can also accor- both Speeo_' and f't'_ ) _
modate colored noise characteristics in the state-spadelmo  The paper is organized as follows. In Section 2 we review
estimation. A well-known drawback of subspace methods §1€ basics of subspace identification, and in Section 3 we
that they offer no guarantee of efficiency in the estimates. Irécapitulate the nuclear norm heuristics for minimizing th
particular, it is not known whether the Cramer-Rao lowef@nk of a matrix subject to linear constraints. Then in
bound is achieved. From a practical point of view the>ection 4 asimple alternating direction methods of muéipl
selection of the model order by thresholding the singuldADMM) algorithm for solving nuclear norm optimization
values can also be difficult. problem with quadratic regularization is presented. In-Sec

Recently there has been some interest in nuclear noffgn S the proposed approach is evaluated on examples.
minimization as an alternative technique for finding lowska Finally, in Section 6 we make some concluding remarks.
matrix approximations. Minimizing the nuclear norm (sum of
singular values) is a popular convex heuristic for low rank Il. SUBSPACEIDENTIEICATION
matrix approximation, first proposed in [FHBO1], [Faz02].

It offers the important advantage that it preserves linear We consider identification of the following linear discrete
matrix structure, unlike the SVD commonly used in subspadéme state-space model on Kalman normal form:
methods. Nuclear norm optimization is also easily combined

with convex regularization terms and convex constraints on v(k+1) = Ax(k)+ Bu(k) + Ke(k) (1)
the parameters. Its use is furthe_r motn(ate_d by the spelqnacu y(k) = Caz(k)+ Du(k) + e(k) )
success of closely related techniques in signal processidg

machine learning, in particular, sparse optimization anm_ wherez(k) € R™, u(k) € R™, e(k) € R™ andy(k) €
method§) [CRTO6], [Don0E], [Tro06] and Iow-_rank matriX g, 1t js assumed that(k) is ergodic, zero mean, white
completion [CR09], [RFP10], [CT10]. Experiments Wlthnoise, see e.g. [Lju99]. The system matricksB, C, D, K

nuclear norm formulations of simple subspace methods iy (eal.valued. The obiective i ;
o - . jective is to estimate the system
[LV09a], [LVO9b], [MF10], [GvWvdVV11] indicate that the matrices from a sequence of observed input&) and

* This work was carried out when the author was a Visiting Bssbr at outputsy (k). . S )
UCLA. Subspace identification is based on the following block
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Hankel matrix of outputs in minimizing the nuclear norm of a matrix that depends
affinely on some vectox € R", i.e.

y(i) yli+1) ... y(i+ N —1)
v y(i+1)  yli+2) ... y(i+ N) minimize || A(x) — B« (8)
i,r,N — . . . . )
: : g : This is popular as a convex heuristic for
+r—1 |+ i+ N +7—2
ytr=1) yli+r) y(e " (% minimize rank(A(x) — B). 9

and a similarly defined input block Hankel matri%; . v.
When only output noise is considered (i.&, = 0), the
subspace identification scheme first forms the matrix

The convex nuclear norm heuristic for matrix rank min-
imization was first proposed by Fazel, Hindi, and Boyd
in [FHBO1], and is motivated by the observation that the
solution typically has low rank.

The idea was applied to subspace system identification
in [LV09a]. The method of [LV09a] is based on solving a
regularized approximation problem

1 1
G = 5 YornTlg, (4)

where

g =1-Us, yUorNUE, ) U0
Ty =07 B BonaCorad Cor minimize [|G(y) [« + Aly = ymessl3  (10)
is a projection matrix on the nullspace &%, . An SVD

of G is computed to estimate the state-order of the WhereAis a positive constant. Here

dynamical system and make a low _rank approximatio(j?mc vyl o= [Ymeas(07) - . Ymeas (N + 7 — 2)7]
Based on the truncated SVD straightforward computations
are performed to determing, B, C, D [Lju99]. is the measured output sequence anés an optimization

For the case of colored noise, instrument variables may t@riable of the same dimension g.c.s. We defineup,cas
used to avoid biased estimates; see e.g. [Lju99]. Thisteesusimilarly. The matrixG(y) is defined in[(#) with the output

in a simple modification of the matri& to Hankel matrix constructed from the optimization variaple
1 In this paper we extend this method to include instrument
G = —Ys,r,NHiTN‘I’T (5) Vvariables and matrix weights. Instead of minimizing the
N o nuclear norm ofG in (@) we minimize the nuclear norm
where of G in (). The variables are the outputs that define the
o — [Uovs,N} (6) Hankel matrixY; , x. However, we use the measured output
Yo,5,5 when defining the instrument variablfeand the weightings

is the so-called instrument variable. Several differen-va W1 andWs in G, in order to make- affine iny. One can
ations of this method exist, which can all be described d8terpret the optimization problem as trying to find a new

weighting modifications of as outputy which will minimize the nuclear norm of:(y) at
) the same time as not deviating too much frgme.s. To
G = W,GWs. (7)  summarize we solve

The weight matricedV; and W, for the different methods minimize ||é(y)||* + Y — Ymeas||3 (11)

are given in Tabl€ll. (Note that in [Lju99] the time indexes . ] . . .

are shifted and the rows i® are permuted as comparedWhereG is defined vial(b)£(7), wher®; , v is defined to

to the notation we are using, but this does not make aljﬂﬁ a function of the variablg and where all other matrices

difference, since the singular values are independentesith are defined via the measured outguf... and the measured

permutations.) We remark that the dimension of the matrifPUt Uncas.

G depends on the wgigh_ting_ as can be seen in.theAIast row IV. ADMM ALGORITHM

of the table. If no weighting is used, the dimension(éfs i L

r x 2s. If no instrument variables are used the dimension is 1 "€ regularized nuclear norm optimization probléml (10)

r x N. Typically s is much smaller thav. Hence the IVM can be expressed as

methogl, CVA method, and_ instrument variable m\_ethod _W'thminimize I A(x) = B« 4+ (1/2)(x — x0)TC(x — x0). (12)

no weighting involve matrices with the lowest dimension, _ . _

whereas the method with no instrument variables, MOESPhe variables arec € R". The problem dimensions are

and N4SID have the highest dimension. This affects th@efined by the linear mapping : R™ — RP*,

céomputatlonal time when minimizing the nuclear norm of A(X) = Aix1 + Aoxs + -+ Apxn.

The matrixC € R™*" is positive semidefinite. Algorithms

for solving [12) were investigated in [LV09a], where a
In this section we review the nuclear norm optimizatiorcustomized interior-point method was proposed. Since,then

problem and discuss how it can be used as a heuristic famumber of first order methods appeared in [MF10], [LV10],

low-rank approximations of structured matrices. [FPST12], including the accelerated gradient projectain,
The nuclear nornjj X||.. of a matrix X € RP*? is defined ternating direction methods of multipliers (ADMM), and

as the sum of the singular values®f We will be interested proximal point algorithms applied to the primal or dual

IIl. NUCLEAR NORM OPTIMIZATION



TABLE |
DEFINITIONS OF THE WEIGHT MATRICES IN DIFFERENT SUBSPACE IDETIFICATION METHODS AND THE DIMENSIONSp X g OF G.

Method | MOESP N4SID IVM CVA
—1/2 —1/2
Wi I I (%YS,T.,NHl%SWT’NYS?T’N) (%YS,T,NHi%NYSTT’N)
-1 -1 _ ~1/2
Wo (Fory,  oT) eng o (fenp  eT) o (feeT) 'V (omy o) /
(p,a) | (r,N) (r,N) (r,2s) (r,2s)
TABLE Il o ‘ ‘ ‘ ‘
TABLE SUMMARIZING THE ADMM ALGORITHM. —— Primal residual
— Dual residual
-=+=-Primal tolerance
Summary of the ADMM algorithm ~=+=Dual tolerance
““““ Penalty t
1
1. Initialize x, X, Z, t. For example, 10 ¢
x=0,X=-B,Z=0,t=1.
2. Compute factorization of + tM
10°F
3. Updatex using [I3) :
4. UpdateX using [14) B S
5. UpdateZ := Z + t(A(x) — X — B) ol ‘ ‘ ‘
6. Check StOpping Criteriﬁ"p”F < €p and Hrd||2 < eq. ° ° 10 Iteration 1 20 2

If not met, go to step 3. Fig. 1. Convergence of ADMM for a randomly generated probieith

p = q = 200 andn = 600.

problem. In this section, we briefly describe the ADMM al- ) o
gorithm. For more details on ADMM, including experiments For the stopping criteria, we need to compute four values
in system identification, we refer the reader to the survedt each iteration: the primal residug), the dual residuat,,

papers [BPC11], [FPST12] the primal tolerance,,, and the dual tolerancg [BPC*11]:
We first write [12) as ry = Ax)—X B
minimize || X ||, + (1/2)(x — x0)TC(x — x0) ra = tAagj(Xprev — X)
subjectto A(x) — X =B & = v/Pleans + e max{ A, | X . | Bllr}
and define the augmented Lagrangian €a = Vneabs + el Aadj(Z) |2,
Li(X,x, Z) = || X + (1/2)(x — x0)TC(x — x0) where €] and e, are the relative and absolute tolerance

(for examplee,.o; = 1072 ande,p,s = 1076).
A few improvements can be added to the basic ADMM al-
gorithm. Instead of using a fixed penalty parameéteve can
r]improve the convergence by updatihgs follows [HYWOO]

+Tr(Z7(A(x) = X = B) + (t/2)| A(x) - X - B[,

wheret > 0 is a penalty parameter. #f= 0, this is the stan-
dard Lagrangian. Each iteration of ADMM in each iteratio

involves a minimization ofL; overx, a minimization ofL, Tt if||7p]| 7 > pllrall2
over X, and a simple update of the dual variatife The t:=2{ t/T if||7all2 > pllrpllF
minimizerx can be obtained by simple differentiation: ¢ else

X = (C+tM) " (Aag;(tX +tB— Z) +Cxo), (13) with u > 1,7 > 1 (for exampley = 10 andr = 2). Another
improvement is to avoid the inverse in {13) by introducing
where A,q; is the adjoint of A and the matrix)/ is defined an additional proximal quadratic term to the augmented
by the identity Mx = A.qj(A(x)). The minimizerX can Lagrangian so it cancels out the complicated quadratic term

be obtained from singular value thresholding, involving C + tM [FPST12].
. T Figure[d shows a typical convergence plot of the ADMM
X = U diag(max(0,0 — 1/t))V*, (14) algorithm.
whereU, V, o are from the singular value decomposition V. EVALUATION
A(x) — B+ Z/t = Udiag(o)V7T. In this section we evaluate the nuclear norm heuristic

in combination with subspace identification algorithms. In
The ADMM algorithm is summarized in Tablg II. our method the nuclear norm approximation is used as a



pre-processing step, that computes a modified output se-
guence which is then passed to standard subspace system
identification algorithms. For the latter purpose we have
used the System Identification toolbox in MATLAB with

its coden4sid. This code implements both MOESP and
CVA. If the user does not specify a weighting to us@sid
makes an automatic choice. This is the setting we have
used. Also the order determination is done automatically in
the code by settinggprder = ’'best’. With this choice

the model order is equal the number of singular values of
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G that are above the average value of the smallest and
largest of the singular values in a logarithmic scale. We are

always using these settings for th@sid code whenever % 20 40 60 80 100

. . P . Fit of baseline

it is used. Specifically this is the case when we are just

performing standard subspace system identification withogig 2. scatter plot showing the fit for the CVA-based nucteamm method

any preprocessing. We will denote such a solution to aversus the fit for the baseline solution.

identification problem as the baseline solution, since ithis

the solution against which we will compare the nuclear norm

based solutions. tion [DDDF97], an online repository of input and output data

A nuclear norm based solution to a system identificacp|lected from real systems.
tion problem is a solution for which we have first pre-
processed the output datg,..s using a weighted nuclear A. Randomly generated models
norm optimization as in[(11), and then appliedsid with Validation data and identification data have been generated
the settings described above as a post-processing. Differérom randomly generated state-space models. The models
nuclear norm based solutions are obtained depending on th&/e been obtained with the Matlab functi@nss. This de-
weighting used in[(J1). We denote these different solutiortnes (A, B, C, D). We have then set the direct tefthequal
by referring to the corresponding weightings defined ino zero. Moreover the Kalman gaiR has been generated
Table[l. In addition to these weightings we also consider thgsing randn. Only single-input-single-output systems have
case whenlV; = I, W, = I, which we denote as NONE, been considered. The state dimensiohas been from 4 to
and the case when we uégin (4) instead ofG;, which we 20 with unit steps. There has been equally many examples
denote as NOINSTR. for each value ofs.

There are several implications from this. First of all it The data length for identification has been 300 and the
might be that we are using different weightings in the pretength of the validation data has been 1500. The neje
processing stage as compared to the post-processing stages been generated wittandn, which means that it is white
The baseline solution might be using a third weightingand has a standardized normal distribution with zero mean
Also the order of the baseline solution and the nucleaind unit covariance. The input(k) has been generated in
norm solution may be different. However, neither of thighe same way, except that it has been multiplied with a scalar
matters, since we are going to compare different solutions, which has been varying from 2 to 10 with unit steps. In
with respect to a fit measure on the validation data. the experiments there have been equally many examples for

The fit measure is the one implemented in the Systemach value of. In this way we have obtained examples with
Identification toolbox in the codeompare, i.e.: varying degree of possible fit in the data, since the signal to

[ypred — ¥l noise ratio has been very different in c_zlifferent examples.
- —> The total number of examples considered @@ — 3) x

lly — mean(y)| (10 — 1) = 156. We present in TableTll the percentage of
for a single output sequence, wheyés the validation data cases for which each of the weightings resulted in a better
output andyp..q is the predicted output from the model.fit than the baseline solution. We see that the results ate bes
For systems with multiple outputs, we report the averagier CVA. This is also one of the fastest methods because
of the fit. We always use different data for identificationof the dimension of the matrix. It takes about 5 seconds to
and validation. Since the solution of the pre-processingompute the solution with this method. This time includes 20
step depends on the regularization parametewe have runs of the optimization, 20 runs ef4sid and 20 runs of
computed the fit for 20 logarithmically spaced values of theompare. Figure[2 shows a scatter plot of fits for the CVA-
regularization parameter in the intengak 102 to 103, and  based nuclear norm method versus the baseline solutian. It i
the one giving the best fit has been chosen. The parameseen that they mostly give about the same fit, but that in more
valuesr ands have both been set to 15 in the pre-processingnan 10 % of the cases the nuclear norm approach results in a
step optimization, but when running thetsid code these significantly better fit. Also there are no cases for which the
values have been chosen automatically by the code. nuclear norm solution is significantly worse than the baseli

We now present evaluation results first for randomlgolution. The order of the solution for the nuclear norm case
generated models and then for the so-called DalSy colleand for the baseline approach are different, but one cannot

10t

fit =100 (1



TABLE Il
TABLE SHOWING PERCENTAGE OF FIT BETTER THAN BASELINE SOLUTI® FOR DIFFERENT WEIGHTED NUCLEAR NORM APPROACHES

Weight type | MOESP  N4SID  IVM CVA NONE NOINSTR
Percentage | 82.35 81.70 90.85 9150 76.32 83.66

histogram

frequency

-2 -1 0 1 2 3 4 5

difference in order

and in individual test cases. Generally, the results froen th
ten DalSy examples agree with the results obtained from the
extensive simulation of random models in Secfion V-A.

VI. CONCLUSIONS

In this paper a subspace identification method based on
weighted nuclear norm optimization was presented. Exper-
iments show that the use of weights in the nuclear norm
approximation improves the performance in terms of fit on
validation data. A second advantage is that it reduces the
size of the optimization problems. The use of ADMM is
also part of the speedup as compared to previous interior-
point implementations. Future work is going to be devoted

Fig. 3. Histogram for the difference in system order betwten CVA-
based nuclear norm solution and the baseline solution frctises when
the fit is better with the nuclear norm approach.

say that one is always greater than the other. In Figlire 3

one can see that it is more common that the order of tH&"C 4
system identified with the nuclear norm approach is higher

than lower. However, very often it is the same, and when

there is an increase in order it is most often only by on RO9]
state. Only the cases when the fit is better with the nuclear

norm approach are shown in the histogram.
[CRTO6]

B. Examples from the DalSy collection

We have also tested the nuclear-norm based subspace
system identification algorithm on ten benchmark exampléng]
from the DalSy collection. Table_IV provides a brief de-
scription of the data sets. Since there is only one inputPDDF97]
output sequence for each system, we break up the data
points into two sections. The firs¥; data points are used [Donog]
in the model identification, and the neXt,, data points are
used in the model validation. When calling the MATLAB [F3202]
function n4sid, we have provided additional settingk  [FHBoY]
= zeros(1l,m) and focus = stability, where the
former includes the estimation of the matiixand the latter
forces model stability. [FPST12]

Table[M summarizes the performance measure, fit. For
clarity, the highest fit is marked with a bold font for each

example in the table. The last row shows the average fit of thg\wvdvvi1]

10 examples for each method. We have ignored the negative

fit from NONE on example 4 in the average calculation.

The CVA weights gave the highest fit measure in 5 out of 1fywoo]
examples, as well as in the average. The IVM and NOINSTR
weighting have the next highest average fit. It is important t

note that NOINSTR on example 3 and CVA on example § 490
have significantly outperformed other solutions and aadev

an improvement of at least 6% when comparing to the second
highest fit. The MOESP weights and unweighted (NONEh_jugg]
formulation performed less well both in terms of average fit

to tailor the ADMM algorithm to the specific application
presented here.
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