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Abstract— We present a subspace system identification
method based on weighted nuclear norm approximation. The
weight matrices used in the nuclear norm minimization are
the same weights as used in standard subspace identification
methods. We show that the inclusion of the weights improves
the performance in terms of fit on validation data. As a second
benefit, the weights reduce the size of the optimization problems
that need to be solved. Experimental results from randomly
generated examples as well as from the Daisy benchmark
collection are reported. The key to an efficient implementation
is the use of the alternating direction method of multipliers to
solve the optimization problem.

I. I NTRODUCTION

Subspace algorithms include some of the most popular
methods for system identification [Lju99], [VV07]. One of
the main reasons for their success is their reliance on efficient
matrix algorithms (QR and singular value decomposition)
for making low-rank approximations of matrices constructed
from the observed inputs and outputs. By incorporating
weights in the approximation problems one can also accom-
modate colored noise characteristics in the state-space model
estimation. A well-known drawback of subspace methods is
that they offer no guarantee of efficiency in the estimates. In
particular, it is not known whether the Cramer-Rao lower
bound is achieved. From a practical point of view the
selection of the model order by thresholding the singular
values can also be difficult.

Recently there has been some interest in nuclear norm
minimization as an alternative technique for finding low-rank
matrix approximations. Minimizing the nuclear norm (sum of
singular values) is a popular convex heuristic for low rank
matrix approximation, first proposed in [FHB01], [Faz02].
It offers the important advantage that it preserves linear
matrix structure, unlike the SVD commonly used in subspace
methods. Nuclear norm optimization is also easily combined
with convex regularization terms and convex constraints on
the parameters. Its use is further motivated by the spectacular
success of closely related techniques in signal processingand
machine learning, in particular, sparse optimization (1-norm
methods) [CRT06], [Don06], [Tro06] and low-rank matrix
completion [CR09], [RFP10], [CT10]. Experiments with
nuclear norm formulations of simple subspace methods in
[LV09a], [LV09b], [MF10], [GvWvdVV11] indicate that the

* This work was carried out when the author was a Visiting Professor at
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nuclear norm heuristic can be quite effective in identification
as well. However it should be noted that the results of the
nuclear norm heuristic can be very suboptimal (in particular,
when used for approximations with a fixed rank; see, for
example, [Mar11]), and at present no theoretical analysis of
its effectiveness for identification is available.

The purpose of this paper is to improve the algorithm in
[LV09a] by generalizing it to state-space models in Kalman
normal form and combining it with instrument variable
techniques [Ver94], [OD94], [Vib95], [Lar90], [VWO97].
Experiments on randomly generated problems will show
that the instrument variable based nuclear norm approach
improves the fit in subspace identification in more than 90%
of the cases considered, whereas the same figure for the case
without instrument variables is only 84 %. Moreover, using
instrument variables reduces the dimension of the optimiza-
tion problem making it possible to obtain the solution faster.
Hence instrument variables increase efficiency with respect
to both speed and fit.

The paper is organized as follows. In Section 2 we review
the basics of subspace identification, and in Section 3 we
recapitulate the nuclear norm heuristics for minimizing the
rank of a matrix subject to linear constraints. Then in
Section 4 a simple alternating direction methods of multiplier
(ADMM) algorithm for solving nuclear norm optimization
problem with quadratic regularization is presented. In Sec-
tion 5 the proposed approach is evaluated on examples.
Finally, in Section 6 we make some concluding remarks.

II. SUBSPACE IDENTIFICATION

We consider identification of the following linear discrete-
time state-space model on Kalman normal form:

x(k + 1) = Ax(k) +Bu(k) +Ke(k) (1)

y(k) = Cx(k) +Du(k) + e(k) (2)

wherex(k) ∈ Rnx , u(k) ∈ Rnm , e(k) ∈ Rnp and y(k) ∈
Rnp . It is assumed thate(k) is ergodic, zero mean, white
noise, see e.g. [Lju99]. The system matricesA,B,C,D,K
are real-valued. The objective is to estimate the system
matrices from a sequence of observed inputsu(k) and
outputsy(k).

Subspace identification is based on the following block

http://arxiv.org/abs/1207.0023v1


Hankel matrix of outputs

Yi,r,N =











y(i) y(i+ 1) . . . y(i+N − 1)
y(i+ 1) y(i+ 2) . . . y(i+N)

...
...

. . .
...

y(i+ r − 1) y(i+ r) . . . y(i+N + r − 2)











,

(3)
and a similarly defined input block Hankel matrixUi,r,N .
When only output noise is considered (i.e.,K = 0), the
subspace identification scheme first forms the matrix

G =
1

N
Y0,r,NΠ⊥

U0,r,N
(4)

where

Π⊥

U0,r,N
= I − UT

0,r,N(U0,r,NUT
0,r,N)−1U0,r,N

is a projection matrix on the nullspace ofU0,r,N . An SVD
of G is computed to estimate the state-ordernx of the
dynamical system and make a low rank approximation ofG.
Based on the truncated SVD straightforward computations
are performed to determineA,B,C,D [Lju99].

For the case of colored noise, instrument variables may be
used to avoid biased estimates; see e.g. [Lju99]. This results
in a simple modification of the matrixG to

G =
1

N
Ys,r,NΠ⊥

Us,r,N
ΦT (5)

where

Φ =

[

U0,s,N

Y0,s,N

]

(6)

is the so-called instrument variable. Several different vari-
ations of this method exist, which can all be described as
weighting modifications ofG as

Ĝ = W1GW2. (7)

The weight matricesW1 andW2 for the different methods
are given in Table I. (Note that in [Lju99] the time indexes
are shifted and the rows inΦ are permuted as compared
to the notation we are using, but this does not make any
difference, since the singular values are independent of these
permutations.) We remark that the dimension of the matrix
Ĝ depends on the weighting as can be seen in the last row
of the table. If no weighting is used, the dimension ofĜ is
r × 2s. If no instrument variables are used the dimension is
r×N . Typically s is much smaller thanN . Hence the IVM
method, CVA method, and instrument variable method with
no weighting involve matrices with the lowest dimension,
whereas the method with no instrument variables, MOESP,
and N4SID have the highest dimension. This affects the
computational time when minimizing the nuclear norm of
Ĝ.

III. N UCLEAR NORM OPTIMIZATION

In this section we review the nuclear norm optimization
problem and discuss how it can be used as a heuristic for
low-rank approximations of structured matrices.

The nuclear norm‖X‖∗ of a matrixX ∈ Rp×q is defined
as the sum of the singular values ofX . We will be interested

in minimizing the nuclear norm of a matrix that depends
affinely on some vectorx ∈ Rn, i.e.

minimize ‖A(x)− B‖∗. (8)

This is popular as a convex heuristic for

minimize rank(A(x) − B). (9)

The convex nuclear norm heuristic for matrix rank min-
imization was first proposed by Fazel, Hindi, and Boyd
in [FHB01], and is motivated by the observation that the
solution typically has low rank.

The idea was applied to subspace system identification
in [LV09a]. The method of [LV09a] is based on solving a
regularized approximation problem

minimize ‖G(y)‖∗ + λ‖y − ymeas‖22 (10)

whereλ is a positive constant. Here

yT
meas =

[

ymeas(0
T ) . . . ymeas(N + r − 2)T

]

is the measured output sequence andy is an optimization
variable of the same dimension asymeas. We defineumeas

similarly. The matrixG(y) is defined in (4) with the output
Hankel matrix constructed from the optimization variabley.

In this paper we extend this method to include instrument
variables and matrix weights. Instead of minimizing the
nuclear norm ofG in (4) we minimize the nuclear norm
of Ĝ in (7). The variables are the outputs that define the
Hankel matrixYs,r,N . However, we use the measured output
when defining the instrument variableΦ and the weightings
W1 andW2 in Ĝ, in order to makeĜ affine in y. One can
interpret the optimization problem as trying to find a new
outputy which will minimize the nuclear norm of̂G(y) at
the same time as not deviating too much fromymeas. To
summarize we solve

minimize ‖Ĝ(y)‖∗ + λ‖y − ymeas‖22 (11)

whereĜ is defined via (5)–(7), whereYs,r,N is defined to
be a function of the variabley and where all other matrices
are defined via the measured outputymeas and the measured
input umeas.

IV. ADMM ALGORITHM

The regularized nuclear norm optimization problem (10)
can be expressed as

minimize ‖A(x)−B‖∗ + (1/2)(x−x0)
T C(x− x0). (12)

The variables arex ∈ Rn. The problem dimensions are
defined by the linear mappingA : Rn → Rp×q,

A(x) = A1x1 +A2x2 + · · ·+Anxn.

The matrixC ∈ Rn×n is positive semidefinite. Algorithms
for solving (12) were investigated in [LV09a], where a
customized interior-point method was proposed. Since then,
a number of first order methods appeared in [MF10], [LV10],
[FPST12], including the accelerated gradient projection,al-
ternating direction methods of multipliers (ADMM), and
proximal point algorithms applied to the primal or dual



TABLE I

DEFINITIONS OF THE WEIGHT MATRICES IN DIFFERENT SUBSPACE IDENTIFICATION METHODS AND THE DIMENSIONSp× q OF Ĝ.

Method MOESP N4SID IVM CVA

W1 I I
(

1
N
Ys,r,NΠ⊥

Us,r,N
Y T
s,r,N

)

−1/2 (

1
N
Ys,r,NΠ⊥

Us,r,N
Y T
s,r,N

)

−1/2

W2

(

1
N
ΦΠ⊥

Us,r,N
ΦT

)−1

ΦΠ⊥

Us,r,N

(

1
N
ΦΠ⊥

Us,r,N
ΦT

)−1

Φ
(

1
N
ΦΦT

)−1/2
(

1
N
ΦΠ⊥

Us,r,N
ΦT

)−1/2

(p, q) (r, N) (r, N) (r, 2s) (r, 2s)

TABLE II

TABLE SUMMARIZING THE ADMM ALGORITHM .

Summary of the ADMM algorithm

1. Initialize x, X, Z, t. For example,

x = 0, X = −B, Z = 0, t = 1.

2. Compute factorization ofC + tM

3. Updatex using (13)

4. UpdateX using (14)

5. UpdateZ := Z + t(A(x) −X −B)

6. Check stopping criteria‖rp‖F ≤ ǫp and‖rd‖2 ≤ ǫd.

If not met, go to step 3.

problem. In this section, we briefly describe the ADMM al-
gorithm. For more details on ADMM, including experiments
in system identification, we refer the reader to the survey
papers [BPC+11], [FPST12]

We first write (12) as

minimize ‖X‖∗ + (1/2)(x− x0)
TC(x− x0)

subject to A(x) −X = B

and define the augmented Lagrangian

Lt(X,x, Z) = ‖X‖∗ + (1/2)(x− x0)
TC(x− x0)

+Tr(ZT (A(x) −X − B) + (t/2)‖A(x)−X − B‖2F ,

wheret > 0 is a penalty parameter. Ift = 0, this is the stan-
dard Lagrangian. Each iteration of ADMM in each iteration
involves a minimization ofLt overx, a minimization ofLt

over X , and a simple update of the dual variableZ. The
minimizerx can be obtained by simple differentiation:

x = (C + tM)−1(Aadj(tX + tB − Z) + Cx0), (13)

whereAadj is the adjoint ofA and the matrixM is defined
by the identityMx = Aadj(A(x)). The minimizerX can
be obtained from singular value thresholding,

X = U diag(max(0, σ − 1/t))V T , (14)

whereU , V , σ are from the singular value decomposition

A(x) − B + Z/t = U diag(σ)V T .

The ADMM algorithm is summarized in Table II.
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Fig. 1. Convergence of ADMM for a randomly generated problemwith
p = q = 200 andn = 600.

For the stopping criteria, we need to compute four values
at each iteration: the primal residualrp, the dual residualrd,
the primal toleranceǫp, and the dual toleranceǫd [BPC+11]:

rp = A(x) −X − B
rd = tAadj(Xprev −X)

ǫp =
√
pqǫabs + ǫrelmax{‖A(x)‖F , ‖X‖F , ‖B‖F}

ǫd =
√
nǫabs + ǫrel‖Aadj(Z)‖2,

where ǫrel and ǫabs are the relative and absolute tolerance
(for example,ǫrel = 10−3 andǫabs = 10−6).

A few improvements can be added to the basic ADMM al-
gorithm. Instead of using a fixed penalty parametert, we can
improve the convergence by updatingt as follows [HYW00]

t :=







τt if‖rp‖F > µ‖rd‖2
t/τ if‖rd‖2 > µ‖rp‖F
t else

with µ > 1, τ > 1 (for example,µ = 10 andτ = 2). Another
improvement is to avoid the inverse in (13) by introducing
an additional proximal quadratic term to the augmented
Lagrangian so it cancels out the complicated quadratic term
involving C + tM [FPST12].

Figure 1 shows a typical convergence plot of the ADMM
algorithm.

V. EVALUATION

In this section we evaluate the nuclear norm heuristic
in combination with subspace identification algorithms. In
our method the nuclear norm approximation is used as a



pre-processing step, that computes a modified output se-
quence which is then passed to standard subspace system
identification algorithms. For the latter purpose we have
used the System Identification toolbox in MATLAB with
its coden4sid. This code implements both MOESP and
CVA. If the user does not specify a weighting to use,n4sid

makes an automatic choice. This is the setting we have
used. Also the order determination is done automatically in
the code by settingorder = ’best’. With this choice
the model order is equal the number of singular values of
Ĝ that are above the average value of the smallest and
largest of the singular values in a logarithmic scale. We are
always using these settings for then4sid code whenever
it is used. Specifically this is the case when we are just
performing standard subspace system identification without
any preprocessing. We will denote such a solution to an
identification problem as the baseline solution, since thisis
the solution against which we will compare the nuclear norm
based solutions.

A nuclear norm based solution to a system identifica-
tion problem is a solution for which we have first pre-
processed the output dataymeas using a weighted nuclear
norm optimization as in (11), and then appliedn4sid with
the settings described above as a post-processing. Different
nuclear norm based solutions are obtained depending on the
weighting used in (11). We denote these different solutions
by referring to the corresponding weightings defined in
Table I. In addition to these weightings we also consider the
case whenW1 = I, W2 = I, which we denote as NONE,
and the case when we useG in (4) instead ofĜ, which we
denote as NOINSTR.

There are several implications from this. First of all it
might be that we are using different weightings in the pre-
processing stage as compared to the post-processing stage.
The baseline solution might be using a third weighting.
Also the order of the baseline solution and the nuclear
norm solution may be different. However, neither of this
matters, since we are going to compare different solutions
with respect to a fit measure on the validation data.

The fit measure is the one implemented in the System
Identification toolbox in the codecompare, i.e.:

fit = 100

(

1− ‖ypred − y‖
‖y −mean(y)‖

)

for a single output sequence, wherey is the validation data
output andypred is the predicted output from the model.
For systems with multiple outputs, we report the average
of the fit. We always use different data for identification
and validation. Since the solution of the pre-processing
step depends on the regularization parameterλ we have
computed the fit for 20 logarithmically spaced values of the
regularization parameter in the interval2× 10−3 to 103, and
the one giving the best fit has been chosen. The parameter
valuesr ands have both been set to 15 in the pre-processing
step optimization, but when running then4sid code these
values have been chosen automatically by the code.

We now present evaluation results first for randomly
generated models and then for the so-called DaISy collec-
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Fig. 2. Scatter plot showing the fit for the CVA-based nuclearnorm method
versus the fit for the baseline solution.

tion [DDDF97], an online repository of input and output data
collected from real systems.

A. Randomly generated models

Validation data and identification data have been generated
from randomly generated state-space models. The models
have been obtained with the Matlab functiondrss. This de-
fines(A,B,C,D). We have then set the direct termD equal
to zero. Moreover the Kalman gainK has been generated
usingrandn. Only single-input-single-output systems have
been considered. The state dimensionn has been from 4 to
20 with unit steps. There has been equally many examples
for each value ofn.

The data length for identification has been 300 and the
length of the validation data has been 1500. The noisee(k)
has been generated withrandn, which means that it is white
and has a standardized normal distribution with zero mean
and unit covariance. The inputu(k) has been generated in
the same way, except that it has been multiplied with a scalar
σ, which has been varying from 2 to 10 with unit steps. In
the experiments there have been equally many examples for
each value ofσ. In this way we have obtained examples with
varying degree of possible fit in the data, since the signal to
noise ratio has been very different in different examples.

The total number of examples considered are(20− 3)×
(10 − 1) = 156. We present in Table III the percentage of
cases for which each of the weightings resulted in a better
fit than the baseline solution. We see that the results are best
for CVA. This is also one of the fastest methods because
of the dimension of the matrix. It takes about 5 seconds to
compute the solution with this method. This time includes 20
runs of the optimization, 20 runs ofn4sid and 20 runs of
compare. Figure 2 shows a scatter plot of fits for the CVA-
based nuclear norm method versus the baseline solution. It is
seen that they mostly give about the same fit, but that in more
than 10 % of the cases the nuclear norm approach results in a
significantly better fit. Also there are no cases for which the
nuclear norm solution is significantly worse than the baseline
solution. The order of the solution for the nuclear norm case
and for the baseline approach are different, but one cannot



TABLE III

TABLE SHOWING PERCENTAGE OF FIT BETTER THAN BASELINE SOLUTION FOR DIFFERENT WEIGHTED NUCLEAR NORM APPROACHES.

Weight type MOESP N4SID IVM CVA NONE NOINSTR

Percentage 82.35 81.70 90.85 91.50 76.32 83.66
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Fig. 3. Histogram for the difference in system order betweenthe CVA-
based nuclear norm solution and the baseline solution for the cases when
the fit is better with the nuclear norm approach.

say that one is always greater than the other. In Figure 3
one can see that it is more common that the order of the
system identified with the nuclear norm approach is higher
than lower. However, very often it is the same, and when
there is an increase in order it is most often only by one
state. Only the cases when the fit is better with the nuclear
norm approach are shown in the histogram.

B. Examples from the DaISy collection

We have also tested the nuclear-norm based subspace
system identification algorithm on ten benchmark examples
from the DaISy collection. Table IV provides a brief de-
scription of the data sets. Since there is only one input-
output sequence for each system, we break up the data
points into two sections. The firstNI data points are used
in the model identification, and the nextNV data points are
used in the model validation. When calling the MATLAB
function n4sid, we have provided additional settingnk
= zeros(1,m) and focus = stability, where the
former includes the estimation of the matrixD and the latter
forces model stability.

Table V summarizes the performance measure, fit. For
clarity, the highest fit is marked with a bold font for each
example in the table. The last row shows the average fit of the
10 examples for each method. We have ignored the negative
fit from NONE on example 4 in the average calculation.
The CVA weights gave the highest fit measure in 5 out of 10
examples, as well as in the average. The IVM and NOINSTR
weighting have the next highest average fit. It is important to
note that NOINSTR on example 3 and CVA on example 9
have significantly outperformed other solutions and achieved
an improvement of at least 6% when comparing to the second
highest fit. The MOESP weights and unweighted (NONE)
formulation performed less well both in terms of average fit

and in individual test cases. Generally, the results from the
ten DaISy examples agree with the results obtained from the
extensive simulation of random models in Section V-A.

VI. CONCLUSIONS

In this paper a subspace identification method based on
weighted nuclear norm optimization was presented. Exper-
iments show that the use of weights in the nuclear norm
approximation improves the performance in terms of fit on
validation data. A second advantage is that it reduces the
size of the optimization problems. The use of ADMM is
also part of the speedup as compared to previous interior-
point implementations. Future work is going to be devoted
to tailor the ADMM algorithm to the specific application
presented here.
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