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Abstract— We study the distributed detection problem in a
balanced binary relay tree, where the leaves of the tree are
sensors generating binary messages. The root of the tree is a
fusion center that makes the overall decision. Every other node
in the tree is a fusion node that fuses two binary messages
from its child nodes into a new binary message and sends it to
the parent node at the next level. We assume that the fusion
nodes at the same level use the same fusion rule. We call a
string of fusion rules used at different levels a fusion strategy.
We consider the problem of finding a fusion strategy that
maximizes the reduction in the total error probability between
the sensors and the fusion center. We formulate this problem as
a deterministic dynamic program and express the solution in
terms of Bellman’s equations. We introduce the notion of string-
submodularity and show that the reduction in the total error
probability is a string-submodular function. Consequentially,
we show that the greedy strategy, which only maximizes the
level-wise reduction in the total error probability, is within a
factor (1− e−1) of the optimal strategy in terms of reduction
in the total error probability.

I. INTRODUCTION

Consider a distributed detection network consisting of a set
of sensors and fusion nodes. The objective is to collectively
solve a binary hypothesis testing problem. The sensors make
observations from a common event, and then communicate
quantized messages to other fusion nodes, according to the
network architecture. Each fusion node fuses the received
messages from its child nodes into a new message and
then sends it to the fusion node at the next level for
further integration. A final decision is eventually made at
a central fusion node, usually called the fusion center. A
fundamental question is how to fuse messages at each fusion
node such that the fusion center makes the best decision,
in the sense of optimizing a global objective function. For
example, under the Neyman-Pearson criterion, the objective
is to minimize the probability of missed detection with an
upper bound constraint on the probability of false alarm;
under the Bayesian criterion, the objective is to minimize
the total error probability.

The distributed detection problem has been investigated
extensively in the context of different network architectures.
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In the well-studied parallel network [1]–[18] where sensors
communicate with the fusion center directly, with the as-
sumption of independent sensor observations conditioned on
either hypothesis, the optimal fusion rule under the Bayesian
criterion is simply a likelihood-rate test with a threshold
given by the ratio of the prior probabilities.

The tandem network has been considered in [19]–[24],
in which each fusion node combines the observation from
its own sensor with the message it receives from its child
node at one level down, and then transmits the combined
message to its parent node at the next level up. We call
a collection of fusion rules at all fusion nodes a fusion
strategy. Specifically, [20] considers the problem of finding
the optimal fusion strategy in such a tandem network under
both Neyman-Pearson and Bayesian criteria.

The bounded-height tree network has been considered in
[25]–[33], where the leaves are sensors, the root is the fusion
center, and every other node is a fusion node that fuses the
messages from its child nodes and sends a new message
to its parent node. In general, finding a fusion strategy that
minimizes the total error probability at the fusion center in
bounded-height trees is computationally intractable even for
a network with moderate number of nodes. Therefore, many
recent papers focus on the asymptotic decay rate of the total
error probability as the number of sensors goes to infinity. In
balanced bounded-height trees where all the leaf nodes are
at the same distance from the fusion center, a fusion strategy
that ε-achieves the optimal decay exponent is studied [26],
in which all the fusion nodes at the same level use the same
likelihood-ratio test as the fusion rule.

The unbounded-height tree network has been considered
in [34]–[38]. In particular, [34] considered balanced binary
relay trees with the structure shown in Fig. 1. In this
configuration, the leaf nodes, depicted as circles, are sensors
generating binary messages independently and forward these
binary messages to their parent nodes. Each node depicted
as a diamond is a fusion (relay) node, which fuses the two
binary messages received from its child nodes and forwards
the new message upward. Ultimately, the fusion center at the
root makes an overall decision. This tree is balanced in the
sense that all the leaf nodes are at the same distance from the
fusion center, and it is binary in the sense that each nonleaf
node has two child nodes. This architecture is of interest
because it represents the worst-case scenario in the sense that
the minimum distance from the sensors to the fusion center
is the largest. Assuming that all nonleaf nodes use the same
fusion rule, the unit-threshold likelihood-ratio test (ULRT).
[34] shows the convergence of detection error probabilities
using a Lyaponov method. Under the same assumptions, we
further show in [35] that the decay rate of the total error
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probability is
√
N , where N is the number of sensors. Under

the equally-likely prior probability assumption, ULRT is the
locally optimal fusion rule in the sense that the total error
probability of each node is minimized after each fusion.
However, we do not expect the strategy consisting of repeated
ULRT fusion rules (which we call the greedy strategy) to be
globally optimal in the sense that the total error probability
at the fusion center is minimized.

In this paper we are interested in the following questions:
1) What is the globally optimal strategy for balanced

binary relay trees?
2) How much difference in terms of the total error proba-

bility is there between the globally optimal strategy and
the greedy strategy?

We answer the first question by formulating the problem as
a dynamic program and characterizing the optimal strategy
using Bellman’s equations. We answer the second question
by introducing the notion of string-submodularity and show-
ing that the reduction in the total error probability is a
string-submodular function. Subsequently, we show that the
reduction in the total error probability achieved by the greedy
strategy is at least a factor (1− e−1) of that achieved by the
globally optimal strategy.
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Fig. 1. A balanced binary relay tree with height h. Circles represent sensors
making measurements. Diamonds represent relay nodes which fuse binary
messages. The rectangle at the root represents the fusion center making an
overall decision.

II. PROBLEM FORMULATION

We consider the problem of testing binary hypothesis
between H0 and H1 in a balanced binary relay tree, with
structure shown in Fig. 1. Let p be any fusion node (i.e., p
is a nonleaf node). We denote by C(p) the set of child nodes
of p. Suppose that p receives binary messages Yc ∈ {0, 1}
from every c ∈ C(p) (i.e., from its child nodes), and then
summarizes the two received binary messages into a new
binary message Yp ∈ {0, 1} using a fusion rule λp:

Yp = λp({Yc : c ∈ C(p)}).

The new message Yp is then communicated to the parent
node (if any) of p. Ultimately, the fusion center makes an
overall decision.

It turns out that the only meaningful rules to aggregate
two binary messages in this case are simply ‘AND’ and ‘OR’
rules defined as follows:
• AND rule (denoted by A): a parent node decides 1 if

and only if both its child nodes send 1;
• OR rule (denoted by O): a parent node decides 0 if and

only if both its child nodes send 0.
Henceforth, we only consider the case where each fusion
node in the tree choose a fusion rule from Y := {A,O}.

We assume that all sensors are independent with identical
Type I error probability α0 and identical Type II error
probability β0. Moreover, we assume that all the fusion nodes
at level k (k ≥ 1) use the same fusion rule λk; i.e., for each
node p that lies at the kth level of the tree, λp = λk. In this
case, all the output binary messages for nodes at level k have
the same Type I and Type II error probabilities, which we
denote by αk and βk respectively. Given a fusion rule λk,
we can show that the error probabilities evolve as follows:

(αk, βk) :=

{
(1− (1− αk−1)2, β2

k−1), if λk = A,
(α2
k−1, 1− (1− βk−1)2), if λk = O.

Remark: Note that the evolution of the error probability
pair (αk, βk) is symmetric with respect to the line α+β = 1.
Hence, it suffices to consider the case where the initial pair
satisfies α0 + β0 < 1. We can derive similar result for the
case where α0 + β0 > 1 (e.g., by only flipping the decision
at the fusion center). In the case where α0 + β0 = 1, the
Type I and II error probabilities add up to one regardless of
the fusion rule used. Hence, this case is not of interest.

Notice that the ULRT fusion rule is either the A rule or
the O rule, depending on the values of the Type I and Type
II error probabilities at a particular level of the tree. More
precisely, we have
• If βk > αk, then the ULRT fusion rule is A;
• If βk < αk, then the ULRT fusion rule is O;
• If βk = αk, then the total error probability remains

unchanged after using A or O. Moreover, the error
probability pairs at the next level (αk+1, βk+1) after
using A or O are symmetric about the line β = α.
Therefore, we call both A and O the ULRT fusion rule
in this case.

We define a fusion strategy as a string of fusion rules
λj ∈ Y used at levels j = 1, 2, . . . , h, denoted by π =
(λ1, λ2, . . . , λh). Let the collection of all possible fusion
strategies with length h be Yh:

Yh := {π = (λ1, λ2, . . . , λh)|λj ∈ Y ∀j}.

For a given initial error probability pair (α0, β0) at the
sensor level, the pair (αh, βh) at the fusion center (level
h) is a function of (α0, β0) and the specific fusion strategy
π used. We consider the Bayesian criterion in this paper,
under which the objective is to minimize the total error
probability P(H0)αh +P(H1)βh at the fusion center, where



P(H0) and P(H1) are the prior probabilities of the two
hypotheses, respectively. Equivalently, we can find a strategy
that maximizes the reduction of the total error probability
between the sensors and the fusion center. We call this
optimization problem an h-optimal problem. Without loss of
generality, we assume that the prior probabilities are equal;
i.e., P(H0) = P(H1) = 1/2, in which case the h-optimal
problem (ignoring a factor of 1/2) can be written as:

maximize α0 + β0 − (αh + βh)
subject to π ∈ Yh. (1)

A fusion strategy that maximizes (1) is called the h-optimal
strategy:

πo(α0, β0) = arg max
π∈Yh

(α0 + β0 − (αh + βh))

= arg max
π∈Yh

h−1∑
j=0

(αj + βj − (αj+1 + βj+1)).

In contrast, the ULRT fusion rule minimizes the step-wise
reduction in the total error probability:

ULRT = arg max
λi∈Y

(αi + βi − (αi+1 + βi+1)) ∀i.

Because of the equal prior probability assumption, a max-
imum a posteriori (MAP) fusion rule is the same as the
ULRT fusion rule. In this context, we call a fusion strategy
consisting of repeated ULRT fusion rules a ULRT (greedy)
strategy.

In the next section, we derive the h-optimal fusion strategy
for balanced binary relay trees with height h using Bellman’s
equations. We then show that the 2-optimal strategy is
equivalent to the ULRT strategy. Moreover, we show that the
reduction of the total error probability is a string-submodular
function (as defined in Section III-C), which implies that the
greedy strategy is close to the optimal fusion strategy in
terms of the reduction in the total error probability.

III. MAIN RESULTS

A. Dynamic Programming Formulation

In this section, we formulate the problem of finding
the optimal fusion strategy using a deterministic dynamic
programming model. First we define the necessary elements
of this dynamic model.

I. Dynamic System: We define the error probability pair at
the kth level (αk, βk) as the system state, denoted by
sk. Notice that αk and βk can only take values in the
interval [0, 1]. Therefore, the set of all possible states
is {(α, β) > 0|α+ β < 1}. Moreover, given the fusion
rule, the state transition function is deterministic. If we
choose λk = A, then

(αk, βk) = (1− (1− αk−1)2, β2
k−1).

On the other hand, if we choose λk = O, then

(βk, αk) = (1− (1− βk−1)2, α2
k−1).

II. Rewards: At each level k, we define the instantaneous
reward to be the reduction of the total error probability
after fusing with λk:

r(sk−1, λk) = (αk−1 + βk−1)− (αk + βk),

where αk and βk are functions of the previous state
sk−1 and the fusion rule λk.

Let vh−k(sk) be the cumulative reduction of the total error
probability if we start the system at state sk at level k and
the strategy (λk+1, λk+2 . . . , λh) ∈ Yh−k is used. Following
the above definitions, we have

vh−k(sk) =

h∑
j=k+1

r(sj−1, λj).

If we let k = 0, that is, we start calculating the reduction
from the sensor level, then the above cumulative reward
function is the same as the global objective function defined
in Section II. Therefore, for given initial state s0, we have to
solve the following optimization problem to find the global
optimal strategy over horizon h:

voh(s0) = max
π∈Yh

h∑
j=1

r(sj−1, λj).

The globally optimal strategy πo is

πo(s0) = arg max
π∈Yh

h∑
j=1

r(sj−1, λj).

Notice that sk depends on the previous state sk−1 and the
fusion rule λk. Hence we write the state at level k to be
sk|sk−1,λk

. The solution of the above optimization problem
can be characterized using Bellmam’s equations, which state
that

voh(s0) = max
λ1∈Y

[
r(s0, λ1) + voh−1(s1|s0,λ1

)
]

λo1(s0) = arg max
λ1∈Y

[
r(s0, λ1) + voh−1(s1|s0,λ1

)
]
,

where λo1(s0) is the first element of the optimal strategy πo.
Recursively, the solution of the optimization problem is

voh−(k−1)(sk−1) = max
λk∈Y

[
r(sk−1, λk) + voh−k(sk|sk−1,λk

)
]
.

Moreover, the kth element of the optimal strategy πo is

λok(sk−1) = arg max
λk∈Y

[
r(sk−1, λk) + voh−k(sk|sk−1,λk

)
]
.

Remark: The above formulation can easily be generalized
to the node and link failure case [36] and even more
complicated architectures (e.g., bounded-height trees [26]
and M -ary relay trees [38]) simply by changing the state
transition functions and the set of all possible fusion rules.
Also, we can generalize the formulation to non-equal prior
probability scenarios.

The complexity of the explicit solution to Bellman’s
equations grows exponentially with respect to the horizon h.
Therefore, it is usually intractable to compute the h-optimal



strategy if h is sufficiently large. An alternative strategy is
the ULRT strategy, which consists of repeating ULRT fusion
rule at all levels. We have shown in [35] that the decay rate
of the total error probability with this strategy is

√
N . Next

we study whether the ULRT strategy is the same as the h-
optimal strategy. If not, does the ULRT strategy provide a
reasonable approximation of the h-optimal strategy?

B. 2-optimal Strategy

In this section, we show that the 2-optimal strategy is
the same as the ULRT strategy. Moreover, we give an
counterexample which shows that the ULRT strategy is not
3-optimal.

Consider the 2-optimal problem in the balanced binary
relay tree with height 2:

vo2(s0) = max
π∈Y2

2∑
j=1

r(sj−1, λj),

where Y2 = {(A,A), (A,O), (O,O), (O,A)}. The 2-
optimal strategy in this case is

πo(s0) = arg max
π∈Y2

2∑
j=1

r(sj−1, λj).

We have the following theorem. (Because of lack of space,
many of the proofs here are omitted.)

Theorem 1: A strategy π is 2-optimal if and only if π is
the ULRT strategy.

This result also applies to any sub-tree with height 2 within
a balanced binary relay tree with arbitrary height h > 2.
However, the ULRT strategy is not in general optimal for
multiple levels; i.e., h > 2, as the following counter-example
for h = 3 shows.

Let the initial state be (α0, β0) = (0.2, 0.3), in which
case the ULRT strategy is (A,O,A). As shown in Fig. 2,
the solid (red) line denotes the total error probabilities at
each level up to 3. However, the 3-optimal strategy in this
case is (O,A,A). The total error probability curve of this
strategy is shown as a dashed (green) line in Fig. 2. Similar
counterexamples can be found for cases where h > 3. Hence,
the ULRT strategy is not in general h-optimal for h ≥ 3. In
the next section, we will introduce and employ the notion
of string-submodularity to quantify the gap in performance
between optimal and ULRT strategies for h ≥ 3.

C. String-submodularity

Submodularity of functions over finite sets plays an
important role in combinatorial optimization. It has been
shown that the greedy strategy provides at least a constant-
factor approximation to the optimal strategy. For example,
the celebrated result of Nemhauser et al. [39] states that
for maximizing a monotone submodular function F over a
uniform matroid such that F (∅) = 0 (here ∅ denotes the
empty set), the value of the greedy strategy is no less than
a factor (1− e−1) of that of the optimal strategy.

Note that the submodular functions studied in most previ-
ous papers are defined on the power set of a given finite set.
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Fig. 2. Comparison of the ULRT strategy and the 3-optimal strategy.
The solid (red) line represents the error probability curve using the ULRT
strategy. The dashed (green) line represents the error probability curve using
the 3-optimal strategy.

However, many stochastic optimization problems concern
optimizing objective functions over a finite horizon, where
we have to choose an action from a given finite set at
each iteration. In these cases, the objective function usually
depends on the order of actions, and repeating the same
action is allowed. Hence, we cannot directly apply the result
of Nemhauser et al. [39].

For objective functions defined on strings (finite-length
sequences), [40] and [41] provide some sufficient conditions
such that the greedy strategy achieves a good approximation
for maximizing the string function. In this paper, we improve
these results by providing sufficient conditions that are
weaker than those in [40] and [41].

Next we formulate the maximization problem using sub-
modular functions defined on strings.

I. String: Consider a finite set A of possible actions. For
each step, we choose an action from A. Let A =
(a1, a2, . . . , ak) be a string of actions taken over k steps,
where ai ∈ A for all i. Let the set of all strings of
actions be

A∗ = {(a1, a2, . . . , ak)|k = 0, 1, . . . and ai ∈ A ∀i}.

Note that k = 0 corresponds to the empty string (no
action taken), denoted by ∅.

II. String length: For a given string A = (a1, a2, . . . , ak),
we define its string length as k, denoted |A| = k.

III. String concatenation: Let M = (am1 , a
m
2 , . . . , a

m
k1

) and
N = (an1 , a

n
2 , . . . , a

n
k2

) be two strings in A∗. We define
concatenation as follows:

M ⊕N = (am1 , a
m
2 , . . . , a

m
k1 , a

n
1 , a

n
2 , . . . , a

n
k2).

IV. String dominance: Let M and N be two strings in A∗.
We write M � N if we have

N = M ⊕ (a1, a2, . . . , aj),



where j ∈ {0, 1, . . .} and ai ∈ A for all i. In other
words, M is a prefix of N .

V. String-submodularity: A function from strings to real
numbers, f : A∗ → R, is string-submodular if

i. f has the monotone property; i.e.,

f(M) ≤ f(N), ∀M � N ∈ A∗.

ii. f has diminishing-return property; i.e.,

f(M ⊕ (a))− f(M) ≥ f(N ⊕ (a))− f(N),

∀M � N ∈ A∗,∀a ∈ A.

Note that the diminishing-return property here only
requires concatenating one more action.

VI. Globally optimal solution: Consider the problem of
finding a string that maximizes f under the constraint
that the string length is not larger than K. Because
the function f is monotone, it suffices to consider the
stronger constraint with fixed length K:

maximize f(M)
subject to M ∈ A∗, |M | = K.

(2)

VII. Greedy solution: A string G = (a∗1, a
∗
2, . . . , a

∗
|G|) is

called greedy if

a∗i = arg max
ai∈A

f((a∗1, a
∗
2, . . . , a

∗
i−1, ai))

− f((a∗1, a
∗
2, . . . , a

∗
i−1)) ∀i = 1, 2, . . . , |G|.

For a deterministic dynamic system, the diminishing return
property can be simplified as follows.

Lemma 1: For any M, N ∈ A∗ and a ∈ A, we have

f(M ⊕ (a))− f(M) ≥ f(N ⊕ (a))− f(N)

if and only if

f((a0)⊕ (a))− f((a0)) ≥ f((a))− f(∅) ∀a0.

Theorem 2: Consider a submodular function f : A∗ → R
such that

i. f(∅) = 0;
ii. For any greedy strings G with a length less than K and

optimal strings O (optimal with respect to (2)), f(G⊕
O) ≥ f(O).

Then any greedy string GK of length K satisfies

f(GK) > (1− e−1)f(O).

D. Application to Distributed Detection

We consider balanced binary relay trees with even heights.
Again we assume that the nodes at the same level use the
same fusion rule. Moreover, we assume that two fusion
rules Λ of consecutive levels are chosen from the following
set Z = {(A,O), (O,A)}. Let Π = (Λ1,Λ2, . . . ,Λh)
be a fusion strategy, where Λi ∈ Z for all i. Let Z∗
be the set of all possible strategies (strings); i.e., Z∗ =
{(Λ1,Λ2, . . . ,Λh)|h = 0, 1, . . . and Λi ∈ Z ∀i}. Here we
only prove the case where the prior probabilities are equally
likely. The following analysis easily generalizes to non-equal

prior probabilities. Given the two types of error probability
(α0, β0) at level 0, the reduction of the total error probability
after applying a strategy Π is

u(Π) = α0 + β0 − (α2h(Π) + β2h(Π)),

where α2h and β2h represent the Type I and II error
probabilities after fusion using Π.

Next we show that u is a string-submodular function.
Proposition 2: The function u: Z∗ → R is string-

submodular.
For a balanced binary relay trees with height 2K, the

global optimization problem is to find a strategy Π ∈ Z∗
with length K such that the above reduction is maximized;
that is

maximize u(Π)
subject to Π ∈ Z∗, |Π| = K.

(3)

We have shown that the reduction of the total error
probability u is a string-submodular function. Moreover, we
know that the total error probability does not change if there
is no fusion; i.e.,

u(∅) = 0.

Therefore, we can employ Theorem 2 to the above maxi-
mization problem (3).

Consider a balanced binary relay tree with height 2K. We
denote by u(GK) the reduction of the total error probability
after using the greedy strategy. We have shown that the
ULRT strategy is 2-optimal. We have also shown in [35]
that the ULRT strategy only allows at most two identical
consecutive fusion rules. Hence, we can conclude that a
strategy is the ULRT strategy if and only if it is the greedy
strategy. We denote by u(O) the reduction of the total error
probability using the optimal strategy. We have the following
theorem.

Theorem 3: Consider a balanced binary relay tree with
height 2K. We have

(1− e−1)u(O) < u(GK) ≤ u(O).
Remark: Recall that the fusion strategy is a string of

fusion rules chosen from Z = {(A,O), (O,A)}. Thus, the
strategies we considered in this section have at most two
consecutive repeated fusion rules. For example, the strategy
(A,A,A, . . .) is not considered. It is easy to show that with
repeating identical fusion rule, the total error probability goes
to 1/2. Therefore, it is reasonable to rule out this situation.

IV. CONCLUDING REMARKS

We study the problem of finding a fusion strategy that
maximizes the reduction of the total error probability in
balanced binary relay trees. We formulate this optimization
problem using deterministic dynamic programming and char-
acterize its solution using Bellman’s equations. Moreover,
we show that the reduction of the total error probability is
a string-submodular function. Therefore, the ULRT strategy,
which is a string of repeated ULRT fusion rules, is close to
the globally optimal strategy in terms of the reduction in the
total error probability.



Future work includes studying the overall optimal strategy
for other architectures (e.g., bounded-height trees [26] and
M -ary relay trees). We would like to derive the optimal
strategy in balanced binary relay trees with node and link
failures. In this paper, we assume that all the nodes at
the same level use identical fusion rule. What about the
case where the nodes at each level are allowed to use
different fusion rules? Moreover, what can we say about trees
with correlated sensor measurements? These questions are
currently been investigated.
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