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Abstract

In this paper we consider switched nonlinear systems under av-
erage dwell time switching signals, with an otherwise arbitrary com-
pact index set and with additional constraints in the switchings. We
present invariance principles for these systems and derive by using
observability-like notions some convergence and asymptotic stability
criteria. These results enable us to analyze the stability of solutions
of switched systems with both state-dependent constrained switching
and switching whose logic has memory, i.e., the active subsystem only
can switch to a prescribed subset of subsystems.

1 Introduction

A switched system is a family of continuous-time dynamical subsystems and
a rule, usually time or state-dependent, that orchestrates the switching be-
tween them. At first glance switched systems may look simple; nevertheless
their behavior may be very complicated, being a classical example of this
fact, divergent trajectories obtained by switching among asymptotically sta-
ble subsystems (see [11]). Consequently, the stability analysis of such systems
turned out to be an important and challenging problem which has received
considerable attention in the recent literature (see [4], [11], [12] and references
therein). Although the stability of switched systems under arbitrary switch-
ing laws can be assured by the existence of a common Lyapunov function
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(CLF) for all the switching modes ([11], [15]), this type of stability condition
is deemed to be too conservative when a particular type of switching logic is
considered. In fact, switched systems that do not share a CLF may be sta-
ble under restricted switching signals. Restrictions on the set of admissible
switching signals of a certain switched system arise naturally from physical
constraints of the system, from design strategies (e.g. discontinuous control
feedback laws), or from the knowledge about possible switching logic of the
switched system, e.g., partitions of the state space and their induced switch-
ing rules. Multiple Lyapunov functions (MLF) have been shown to be very
useful tools for the stability analysis of switched systems with constrained
switchings. In this context each switching mode may have its own Lyapunov
function (see [4] and references therein). However, some additional condi-
tions are necessary to assure that the value of each Lyapunov function on its
corresponding mode will decrease. Sufficient conditions for asymptotic sta-
bility of switched systems with MLF can be found in [4], [11] and references
therein. When the derivative of a candidate Lyapunov function with respect
to (w.r.t) each mode is only non-positive, the convergence of the solutions of
the switching system to an equilibrium point, and consequently the asymp-
totic stability, can be derived from one of the various extensions to switched
systems of LaSalle’s invariance principle for differential equations (see [8]9]).
Hespanha in [6] introduced an invariance principle for switched linear sys-
tems under persistently dwell-time switching signals and in [7] Hespanha et
al. extended some of those results to a family of nonlinear systems. Bacciotti
and Mazzi presented in [1] an invariance principle for switched systems with
dwell-time signals. An invariance principle for switched nonlinear systems
with average dwell-time signals that satisfy state-dependent constraints was
derived by Mancilla-Aguilar and Garcia in [16] from the sequential compact-
ness of particular classes of trajectories of switched systems. Based on invari-
ance results for hybrid systems ([17]), Goebel et al. in [5] obtained recently
invariance results for switched systems under various types of switching sig-
nals. Lee and Jiang in [I0] gave a generalized version of Krasovskii-LaSalle
Theorem for time-varying switched systems. Under certain ergodicity con-
ditions on the switching signal, some stability results were also obtained in
[3, 18, [19].

Most of the invariance results for switched systems already published only
consider restrictions originated by the timing of the switchings or by the state
dependence of it. Nevertheless there is also an important restriction to take
into account: the fact that not all the subsystems may be accessible from a
particular one, i.e. the case in which the switching logic has memory. This
restriction is clearly exhibited, for example, in switched systems which are the
continuous portion of a hybrid automaton (see [4], [14]). In this regard, the

2



invariance principles developed for hybrid systems in [14] and in [I7] could
be useful in the analysis of switched systems with this class of restriction in
the switchings.

In this paper we present invariance results that hold for trajectories of
switched systems with a non necessarily finite number of subsystems and
whose switching signals verify an average dwell time condition and belong to
a family for which a certain property P holds. As various of the restricted
switching classes mentioned above satisfy P, these results enable us to obtain
in an unified way invariance theorems for all of them. Based on these invari-
ance results, we derive new convergence and stability criteria that recover,
generalize and strengthen some results previously obtained. In particular:

e Theorem 3.2l extends LaSalle’s invariance principle to switched systems
with different restrictions on the switching signals by involving both
backward and forward invariance as in, for example, [9, Theorem 6.4].

e Theorems 1 and 2 in [I], Corollary 5.6 of [5] and Proposition 4.1 of [16]
follow from Theorem

e The first conclusion of Corollary 4.10 in [5] is a particular case of The-

orem (4.1l

e Theorem 7] is an improvement of Theorem 15 in [I8]. In fact the
hypotheses of Theorem [L.7] are weaker since the existence of a Common
Joint Lyapunov Function is not assumed.

e Corollary [4.1] whose hypotheses are weaker than those of Theorem 3
in 3], improves it.

The paper presents two groups of statements. First we present statements
about invariance of sets to which bounded trajectories of the switched sys-
tems converge (Theorems [B.2] and B.4). These statements involve either
continuous functions which are nonincreasing along forward complete tra-
jectories of the switched system or appropriately fast vanishing “outputs”.
Finally we present results about convergence and asymptotic stability (The-
orems ] to 7)) that rely on observability-like conditions on the functions
which bound the derivatives of nonincreasing functions as those mentioned
above.

The article unfolds as follows. Section 2. contains the basic definitions.
In Section 3. we present invariance principles for switched systems with
constrained switching. Convergence and stability results are given in Section
4. Finally Section 5. contains some conclusions.



2 Basic definitions

In this work we consider switched systems described by

i= f(z,0) (1)

where x takes values in R”, ¢ : R — I', with I' a compact metric space,
is a switching signal, i.e., o is piecewise constant (it has at most a finite
number of jumps in each compact interval) and is continuous from the right
and f : dom(f) — R", with dom(f) a closed subset of R" x I, is continuous.

For each y € I', let x, ={{ € R": (£,7) € dom(f)} and f, : x, = R
be defined by f,(§) = f(&,7); then x, is closed and f, is continuous for
any v € I'. We note that when I' is finite, these last two conditions imply
that dom(f) is closed and that f is continuous on dom(f). In the sequel we
denote with S the set of all the switching signals.

Given o € S, a solution of ([I) corresponding to o is a locally absolutely
continuous function z : I, — R", with I, C R a nonempty interval, such
that (x(t),o(t)) € dom(f) for all t € I, and @(t) = f(x(t),o(t)) for almost
all t € I,. The solution x is complete if [, = R and forward complete if
R>g C I,. A pair (z,0) is a trajectory of () if o € S and z is a solution
of (Il) corresponding to o. The trajectory is complete or forward complete
if x is complete or forward complete, respectively. Given a subset O of R",
we say that the trajectory (z, o) is precompact relative to O if there exists
a compact set B C O such that x(t) € B for all t € I,. When O = R" we
simply say that (z,0) is precompact.

Remark 2.1 Note that we do not suppose that dom(f) = R" x I'. In this
way we can take into account, in the analysis of the asymptotic behavior of a
given tragectory (x,0) of (1), some kind of state-dependent constraints which
the trajectory under study must satisfy. In fact, in some situations we are not
interested in the behavior of an arbitrary forward complete trajectory (x, o)
of a switched system () (with dom(f) = R™ x ') but only of one of those
that verify the constraint

z(t) € Xowy for allt € I, (2)

where {x~ : v € '} is a collection of subsets of R™. If we consider the map

[, which is the restriction of f to the set dom(f) = {(£,7): & € x4}, and

if dom(f) is closed in R™ x I, then the set of trajectories (x,o) of (1) which
verify (2) coincides with the set of trajectories of

&= [(z,0). (3)



It must be pointed out that in this way we can consider the system as if
its switching 1s state-independent, and focus on the restrictions imposed to
it by the timing of the discontinuities of the switching signal and/or by the
accessibility to certain subsystems from another ones.

In this paper we consider forward complete solutions of ([II) corresponding
to switching signals o which belong to particular subclasses of S. Let A(o)
be the set of times where ¢ has a jump (switching time). Following [6] we say
that 0 € S has a dwell-time 7p > 0 if [t — ¢/| > 7p for any pair ¢,t’ € A(0)
such that ¢t #£ .

A switching signal o has an average dwell-time 7p > 0 and a chatter
bound Ny € N if the number of switching times of ¢ in any open finite interval
(11,72) C R is bounded by Ny + (72 — 71)/7p, i.e. card(A(o) N (71, 72)) <
No + (72 — 11)/7D.

We denote by S,[7p, No] the set of all the switching signals which have
an average dwell-time 7p > 0 and a chatter bound Ny € N and by T, [7p, No]
the set of all the complete trajectories (z, o) of ([Il) with o € S,[rp, No| and
let Su = U, 08,50 Sal™0; No| and 7o = U, <o x>0 Talm0, No].  We note
that the set of switching signals ¢ which have a dwell-time 7p > 0 coincides
with S,[1p, 1] := Sy[tp]. We denote by Ty[rp] the set of all the complete
trajectories (v,0) of () with o € Sylrp] and let Sy = U, ., Sa[Tp] and
Ta= UTD>0 Talmp].

For I" a finite set and 7" > 0, we denote by S.[T] the family of all the
switching signals ¢ which verify the following “ergodicity” condition: for
every to > 0 and every v € T, o= () N [to, to + T| # 0.

T.[T] will denote the set of complete trajectories (z,0) with o € S.[T]
and S, = UT>0 Se[T] and Te = UT>0 Te[T).

The families of switching signals already introduced have no restrictions
on the accessibility from any subsystem to another. The family of switching
signals —and their corresponding trajectories— that we introduce next, takes
into account the case in which the switching logic has memory, i.e. when a
subsystem corresponding to an index v € I' can only switch to subsystems
corresponding to modes v’ that belong to a certain subset Iy, C I

Given a set-valued map H : I' ~ I, S¥ is the set of all the switching
signals o which verify the condition o(t) € H(o(t™)) for every time ¢t € A(o).
Here o(t7) = lim,_,~ o(s). T denotes the set of all the complete trajectories
(x,0) with ¢ € 8. This class of switching signals enable us, for example,
to model the restrictions imposed by the discrete process of a hybrid system
whose continuous portion is as in ({l) (see [4]).



3 Invariance results for trajectories which sat-
isfy a dwell-time condition

In this section we present some invariance results that enable us to charac-
terize the asymptotic behavior of a precompact forward complete trajectory
(x,0) of ([Il) with o belonging to a certain subclass of S,. The consideration
of such subclass allows us to obtain in an unified way invariance results for
systems whose switching signals undergo different restrictions.

We recall that a point & € R™ belongs to Q(x), the w-limit set of z :
I, — R", with Rsy C I, if there exists a strictly increasing sequence of
times {sg} C I, with limy_ o s = 400 and limy_,o, z(s;) = €. The w-limit
set Q(x) is always closed and, when x evolves in a compact set of R", it is
nonempty, compact, connected if x is continuous, and z — Q(x) (for a set
M CR" o — M if limy oo d(z(t), M) = 0, being d(&, M) = inf,cpr v —£]).

As was done in [16], we will associate to each forward complete trajectory
(z,0) of () with ¢ € S,, the nonempty set Q(z,0) C R x T' that we
introduce in the following

Definition 3.1 Given a forward complete trajectory (z,o) of () with o €
S., a point (£,7) € R* x T belongs to Qf(x, ) if there exists a strictly in-
creasing and unbounded sequence {si} C Rsq such that

1 limy oo T2 (sk) — sk =71, 0 < 7 < 00,
2. limy o0 x(sK) = € and limy_,o 0(Sg) = 7.

Here, for anyt € R, 7}(t) = inf{s € A(o):t < s} if{s€ ANo):t <s}#D
and TX(t) = 400 in other case (i.e. T(t) is the first switching time greater

than t).

Let m : R" x I' — R™ be the projection onto the first component. Then
the following relation between Q(z) and QFf(x, o) holds.

Lemma 3.1 Let (x,0) be a forward complete trajectory of (1) with o € S,
that is precompact relative to O C R™. Then Q*(z,0) C dom(f) N (O x T)
and Q(r) = 7 (Q(x,0)).

Proof. That Q*(z,0) C dom(f) N (O x T') follows from the fact that for all
t € I, (x(t),o(t)) belongs to a compact subset of dom(f)N (O xI') and from
the definition of Q(z,0). The proof of the other assertion follows mutatis
mutandis from the proof of Lemma 4.1 in [16]. |

In order to see that the set QFf(x, o) enjoys certain kind of invariance
property, let us introduce the following
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Definition 3.2 Given a family T of complete trajectories of (1), we say
that a nonempty subset M C R" x I' is weakly-invariant w.r.t 7 if for each
(&,v) € M there is a trajectory (x,0) € T* such that x(0) =&, 0(0) =~ and
(z(t),o(t)) € M for allt € R.

This notion of weak invariance differs from the one introduced in [16], in
that the last one involves only forward invariance while the introduced here
also involves backward invariance.

Let us introduce now the following class of switching signals.

Definition 3.3 We say that a family of switching signals S* has the prop-
erty P if

1. 8 C S,[tp, No| for some Tp > 0 and some Ny € N;
2. for any s >0 and any 0 € S*, o(- + s5) € §*;

3. for every sequence {0} C S*, there exist c* € S* and a subsequence
{ok, } such that lim;_, o, (t) = o*(t) for almost all t € R.

Lemma 3.2 The following classes of switching signals have the property P :
1. S,[tp, No| for every Tp > 0 and every No € N;

2. Sgltp) N ST for all Tp > 0 and every H : T' ~» T such that the set
Graph(H) ={(7,7) e I' xI': 1" € H(y)} is closed;

3. Sa[tp) NS [T for every Tp > 0 and every T > 0.

Proof. See Appendix. |
The next result will be instrumental in what follows.

Theorem 3.1 Let S* be a family of switching signals which verifies property
P and let T* be the set of all the complete trajectories (T,@) of () with
o € §*. Then, if (x,0) is a precompact forward complete trajectory of (1)
such that o € 8*, ¥ (z,0) is weakly-invariant w.r.t T*.

Proof. See Appendix. |

Remark 3.1 Since the weak invariance of Q*(x,0) is a cornerstone of the
results that we present below (Theorems 3.2 to [37]), Theorem [31 enables
us to obtain in a unified way invariance results not only for the different
switching signals explicitly mentioned in Lemma but also for any other
that verifies property P.



Remark 3.2 At first glance, it would seem more natural to consider for
a given precompact forward complete trajectory (z,o) of () its w-limit set
Q(z,0) instead of W (x,0) C Q(x,0). Nevertheless, there exist forward com-
plete trajectories (x,0) of (1) with o € S, such that Q(x, o) is not weakly-
invariant for any family of trajectories of that switched system.

Next, we present two invariance results that involve the existence of a
function V' which is nonincreasing along a trajectory of (). In order to do
so, we introduce the following class of functions.

Definition 3.4 We say that a function V : dom(V) — R belongs to class
V, if it verifies

1. dom(V) C R* x I.

2. For everyy €', D, :={{ € R": (£,v) € dom(V)} is an open set.
3. Let O :=m(dom(V)). Then O, :=0Nx, CD,Vyel

4. ForallyeT, V,(-) :==V(,7) is differentiable on O,.

We note that dom(f) N (O x I') = U,er(O, x {7}) C dom(f) Ndom(V).
We also note that when I' is finite, the restriction of any function V €V
to dom(f) N (O x I') is continuous.
In what follows, for a function V' € V, let Zy = {(&,v) € dom(f) N (O x

L) : VVV(&)f'y(f) = 0}.

Assumption 1 The forward complete trajectory (x,o) of () verifies the
following: there exists a function V€ V whose restriction to dom(f)N(OxT")
is continuous, (z,0) is precompact relative to O and v(t) = V(x(t),o(t)) is
nonincreasing on [0, +00).

Theorem 3.2 Let 8* be a family of switching signals which has property
P and let T* be the set of all the complete trajectories (x,o) of () with
o € §8*. Suppose that (r,0), with o € §*, is a forward complete trajectory
of @) for which Assumption [l holds. Then there exists ¢ € R such that
x — m(M(c)), where M(c) is the mazimal weakly-invariant set w.r.t. T*
contained in V='(c) N Zy.

Proof. Since (¥(z,0) is weakly-invariant w.r.t. 7* and, from Lemma
B1 = — 7 (Q(x,0)), we only have to prove that QF(z,0) C V~(c)N Zy for
some c € R.

As (x,0) is precompact relative to O, there exists a compact set B C O
such that z(t) € B for all ¢ € I,. Therefore (z(t),o(t)) belongs to the
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compact set dom(f) N (B x I') for all ¢ € I,. Thus v(¢) is bounded, since
V' is continuous on dom(f) N (B x I'), and nonincreasing by hypothesis; in
consequence there exists lim;_, ., v(t) = c.

Let (£,7) € QF(x,0). Then there exists a strictly increasing and un-
bounded sequence {s;} which verifies 1. and 2. of Definition Bl Since
(x(sk),0(sk)) = (&,7) ask — 00, ¢ = limg_y00 v(Sg) = limy 00 V(2(Sk), 0(5k))
= V(&) and (§,7) € V7(c). Let us show that (£,7) also belongs to Zy .

As QF(z,0) is weakly-invariant w.r.t. 7* there exists (z*,0*) € T* such
that (2*(0),0%(0)) = (£,7) and (2*(t),0*(t)) € Q¥(x,0) for all t € R. Then,
taking into account that Q*(z,0) C V=1(c), V(2*(t),0*(t)) = c for all t € R.
In particular, since o*(¢) = v on [0, 7) for 7 small enough, then V' (z*(t),7) =

con [0,7). Therefore VV,(§)f,(€) =0, and (£,7) € Zy. |

Remark 3.3 We note that Theorem[3.2 is an extension to switched systems
of the well known LaSalle’s invariance principle for differential equations
(see, for example, [9, Theorem 6.4]).

In the sequel, for any o € § and any v € T', let Z,,, = o~ '(7) N [0, +00).
When T' is a finite set, we can relax the nonincreasing condition in As-
sumption [I as follows.

Assumption 2 The forward complete trajectory (x,o) of () verifies the
following: there exists a function V€ V such that (x, o) is precompact relative
to O and v(t) = V(x(t),o(t)) is nonincreasing on L, , for all v € T

Remark 3.4 Assumptions of this kind are standard when the stability anal-
ysis of the zero solution of a switched system is performed by means of mul-
tiple Lyapunov functions (see [4)], [11)]).

In what follows, when I' is a finite set, we identify it with theset {1,..., N}
C N, where N = card(I").

Theorem 3.3 Suppose that T is finite and let S* and T* be as in Theorem
[Z2. Suppose that (x,0), with o € 8*, is a forward complete trajectory of (1)
for which Assumption[d holds. Then there exists ¢ = (cy,...,cn) € RY such
that © — m (M(C)), where M(¢) is the mazimal weakly-invariant set w.r.t.
T* contained in Uyer{(&,~) € dom(f)N (O xT): V,(§) =¢,} N Zy.

Proof. For v € I" we define ¢, as follows:

L. ¢y = limy— 4o, tez, , v(t) if Z, is unbounded. (This limit exists since v
is non-increasing and bounded on Z,, ).

2. ¢, = a for every 7 such that Z, , is bounded. Here a € R is arbitrary.
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Reasoning as in the proof of Theorem B.2, in order to prove the thesis it
suffices to show that Qf(z,0) C U,er{(£,v) € dom(f) N (O x ) : V(&) =
C’Y} N Zv.

Let (£,v) € QF(x,0). Then there exists a strictly increasing and un-
bounded sequence {s;} which verifies 1. and 2. of Definition Bl Since
o(si) — v and I' is a finite set, o(s;) = v for k large enough and for those
k, sy € I,.. It follows that V(x(sg),v) = ¢y as k — oo and in consequence,
V(§,7) = ¢y and (§,7) € Uyer{(§',7') € dom(f)N(OxTL): V(£ ) = ¢y}
That (£,v) € Zy can be proved in the same way as in the proof of Theorem
n

Remark 3.5 Some invariance results for switched systems reported in the
literature can be derived from Theorem[3.3. In particular [1, Theorems 1 and
2], [1d, Proposition 4.1] and [3, Corollary 5.6].

The following invariance result involves weakly meagre functions. We
recall that a function y : Rsg — R is weakly meagre if limy_,(inf{|y(?)] :
t € Ix}) = 0 for every family {I; : %k € N} of nonempty and pairwise
disjoint intervals in R>q with inf{u(l;) : k& € N} > 0, where p stands for
the Lebesgue measure (see [13]). We note that, for example, any function
y € LP(]0,00)) with p > 0 is weakly meagre. More generally, if there exist
positive numbers 7 and p such that ftHT ly(s)|Pds converges to 0 as t — +o00,
then y is weakly meagre.

Theorem 3.4 Let 8* and T* be as in Theorem [32. Suppose that (z,0),
with o € 8*, is a forward complete trajectory of {dl). Suppose in addition that
there exists a continuous function h : dom(h) — R, with dom(h) C R™ x T,
such that (z(t),o(t)) evolves in a compact subset K of dom(h) for allt >0
and that y(-) = h(z(-),0(-)) is weakly meagre. Then x — m (M™*), where M*
is the maximal weakly invariant set w.r.t. T* contained in h=(0) N dom(f).

Proof. Since (z(t),o(t)) evolves in the compact subset K of dom(h) for
all t > 0, we have that (z,0) is precompact and that Q(z,0) C dom(h) N
dom(f). By similar considerations as those in the proofs of the previous
invariance results, it suffices to show that Q¥(z, o) C h~1(0).

Let (£%,7*) € Q%(x,0). Then there exists a strictly increasing and un-
bounded sequence {s;} which verifies 1. and 2. of Definition BT with (£*,v*)
instead of (£,7). We can assume that 71(sx) — s > 3r/4 for all k.

We will construct by recursion a sequence of times {s* } and a subse-
quence {sg,, } of {sg} such that s, < sf < s +27"r and |y(sh)| < 1/m
for all m.
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For any m € N, let r,, = 27™r and I]® = [sk, Sx + ) for all & € N.
Since h is weakly meagre, limy,_,.(inf{|y(¢)| : t € Il}) = 0. Thus, there exist
k* € N an a time ¢t € I]. such that |y(t)| < 1. Let s; =t and k; = k*.

Suppose that we have already defined {s* }! _, and {sy,} _,. As h is
weakly meagre then limy o (inf{|y(¢)| : t € I;"'}) = 0, and hence there exist
k' € N, with ¥ > k;, and ¢ € I;7! such that |y(#')] < 1/(I +1). We define
s;q =t and ki = K.

Consider now the sequence {(z(s,),o(sk))}; since s¥, € [sk,., Sk, + T'mls
T < 1/2 and T(sy,,) — Sk, > 3r/4, then for all m, o(s*,) = o(sg, ) and
hence o(sf,) — v*.

Given that for every t > 0, (z(t), o(t)) belongs to the compact set dom(f)N
K and since f is continuous on that set, there exists M > 0 such that
|z(t)] < M a.e. on I, and in consequence, |z(t) — x(s)| < M|t — s| for all
t,s € I,. Therefore |x(s},)—x(sg,, )| < rM2~™ for all m. Taking into account
that z(sg,, ) — &, we have that z(s?,) — £*.

Finally, since by construction h(z(s},),o(sk)) = y(s:,) — 0 and h is

m m

continuous, then h(£*,v*) = 0. |

4 Convergence and stability results

In this section we derive, from the invariance principles presented in §3|
some convergence and stability results for switched systems with constrained
switchings.

4.1 Convergence results

Let us first introduce some observability-like definitions.

Given a subset X C R", a continuous map g : X — R” and a function
h : X — R, we say that for a given 7 (7 > 0 or 7 = c0) a point £ € X
belongs to the set X7/(g,h,7) (resp. X°(g,h,7)) if there exists a solution
@ [0,7] = X (resp. ¢ : [-7,0] = X) of & = g(x) such that ¢(0) = ¢ and
h(p(t)) =0 for all t € [0, 7] (resp. t € [—T,0]).

Let also the sets X7 (g, h) =, -, X/ (g, h,7), X*(g,h) = U, X*(g, ., T)
and X(g,h) = X' (g, h) U Xb(g,h).

Remark 4.1

1. The set X¥(g,h,00) (X°(g,h,00)) coincides with the mazimal weakly
forward(backward) invariant set w.r.t. g contained in the set {{ € X :

h(€) = 0}
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We recall that a subset K C R™ is weakly forward(backward) invariant
w.r.t g if for each & € K there exists a solution ¢ : [0,00) — R"
(¢ : (—00,0] = R™) of & = g(x) such that p(0) = & and ¢(t) € K for
all t >0 (t<0).

2. If we consider the system with outputs & = g(z), y = h(x) and state
space X, with 0 € X, g(0) = 0 and h(0) = 0, then the set X7(g,h)
coincides with the set of states & that cannot be instantaneously distin-
quished from the zero state through the output y. In the particular case
in which g is a linear function, i.c., g(¢) = A& and h(§) = ¢1CTCE,
and C' is a matriz, then X(g,h) C X NU, being U the unobservable
subspace of (C, A).

3. When g and h are smooth functions we have that
X(g,h) C{&€X: LEn(E) = 0Vk € Ny},
with Lgh the k-th. Lie derivative of h along g.

Let us introduce the following assumptions, in order to obtain some con-
vergence criteria based on the invariance results given in §3] and on the
observability-like notions already introduced.

Assumption 3 For the forward complete trajectory (z, o) of (1) there exist
a function V€V and a family of functions {W, : O, — R,y € I'} such that
(x,0) and V satisfy Assumption[d and in addition

- V(L) =2 W,(§) 20 vE€O,, Vyel. (4)

Assumption 4 For the forward complete trajectory (x, o) of ({dl) there exist a
function V'€ V which is bounded on compact subsets of dom(f)N(OxTI') and
a family of functions {W, : O, — R,y € '} such that (z,0) is precompact
relative to O, v(t) = V(x(t),o(t)) is nonincreasing on [0, +00), ({4) holds and
in addition W (€, ) := W, (€) is continuous on dom(W) = dom(f)N(O xT).

Assumption 5 For the forward complete trajectory (x,o) of (1) there exist
a function V€V and a family of functions {W,, : O, — R,~v € I'} such that
(x,0) and V satisfy Assumption[2 and in addition ({J]) holds.

Theorem 4.1 Let(x,0) be a forward complete trajectory of ({1) with o € S,.
Then the following holds:
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1. if (z,0) verifies Assumption[d, then there exists ¢ € R such that

= | (0L, W) N O%(for, W) NV o) NV (e))

vy er

2. if (z,0) verifies Assumption[]), then

T — U f’y> O:’(fw’an’)) ;

vy el

3. if I is finite and (x, o) verifies Assumption[d, then there exists ¢ € RY
such that

v | (040 W) N 0L (f, W) AV e) NV ) s

v.y'er

Proof. Since ¢ € §,, there exist 7p > 0 and Ny € N such that ¢ €
Sa [TD, No] .

In order to prove 1, let (z,0) verify Assumption As S,[tp, No| has
property P and (z, o) verifies the hypotheses of Theorem B.2] there exists a
real number ¢ such that @ — m(M(c)), where M(c) is the maximal weakly-
invariant set w.r.t. 7;[rp, No| contained in V=1(c) N Zy.

Let £ € m(M(c)) and v € I such that (£,7) € M(c). From the weak
invariance of M(c) w.r.t. T,[rp, No|, there exists a trajectory (x* o*) €
Talmp, No] such that (z*(0),0%(0)) = (£,7) and such that for every ¢ €
R, VVeewy(@*(t)) for@y(2*(t)) = 0 and Vieq(2*(t)) = c. Since for every
v €I, V,(-) is continuous on O, we also have that V,.-y(z*(t)) = ¢ and
VVor ey (*(t)) for ) (2*(L)) = 0 for all t € R. In view of (@) Wy (2*(t)) =
W -y (2*(t)) = 0 for all £ € R. Let us consider two cases.

Case 1. 0 ¢ A(c*). Then, there exist 7 < 0 < 7 such that o*(t) = v
for every ¢ € [, 7). Hence, & = *(0) € OL(f,, W,,72) N OY(f,, Wy, —11) N
V().

o

Case 2. 0 € A(o*). Let v/ = 0*(07); then, there exist 1 < 0 < 7
such that o*(t) = +/ for all t € [r,0) and o*(t) = ~ for all t € [0, 7).
In consequence, § = 2*(0) € O(f,, Wy, ) N O (fy, Wy, =) NV, M (c) N
V771(c).

The proof of 3. is similar to that of 1. and we omit it.

We now demonstrate 2. Suppose that (x, o) verifies Assumption [} since
(x,0) is precompact relative to O, there is a compact set B C O such that
x(t) € B for all t > 0 and therefore (z(t),0(t)) belongs to the compact set

dom(f) N (B xI') € dom(W) for all t > 0. That y(t) = W(x(t),o(t)) is
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weakly meagre follows from the fact that fooo y(t)dt is finite. Let us prove
this last fact.

As v(t) = V(z(t),o(t)) in nonincreasing and differentiable on each finite
interval [a,b) in which o is constant, (say o(t) = « for all t € [a,])), from
[20, Theorem 7.21] we have that

v(a) — vo(b) > / (—6)(s)ds = — / YV, (2(s)) fo ((s)) ds.

Taking into account () and that v is nonincreasing on [0, 00), we then have
that

0< /Oty(s)ds < V(2(0), 0(0)) — V(x(t),o(t)) Vt > 0.

As (z(t),0(t)) evolves in the compact set dom(f) N (B x I') for all ¢t > 0
and V' is bounded on compact subsets of dom(f) N (O x I') then, for some
M >0, |V(x(t),o(t)| < M for all t > 0. Thus [ y(s)ds < 2M for all t > 0
and the integrability of y follows.

Since (z,0) verifies the hypotheses of Theorem [B.4] with W instead of h,
x — m (M*) where M* is the maximal weakly-invariant set w.r.t. 7,[7p, No|
contained in dom(f) N W~1(0).

In order to prove that mi(M*) C U, cr (OL(f1, W) N O (frr, Wiy)),
we can proceed as in the proof of 1., but using now the fact that for all
(§,7) € M* there exists (z*,0%) € T,[7p, No| such that 0 = W) (z*(t)) =
Wy (z*(t)) for all t € R (being the last equality due to the continuity of
W on its domain). |

Remark 4.2 Theorem[[.1] gives a more accurate result than Theorem 8 in
[6] in the case when the switching signal o € S, (instead of o € Sp—aqwen as is
considered there). In fact, it can be shown that the hypotheses of that theorem
imply that the forward complete trajectory (z, o) of the linear switched system
& = Ay is precompact and verifies Assumption[fl with V (€,~) = ' P,§ and
W, ~y) = STCE/FC!@. So, by applying Theorem [{.1], and taking into account
2. of Remark[{.1], it results that x — U,erl,, where U, is the unobservable
subspace of the pair (C,, Ay). On the other hand, Theorem 8 in [0] asserts
that x — M, where M is the smallest subspace which contains U,crld, and
is A, -invariant for all v € T

Remark 4.3 If in addition to the hypotheses of Theorem [{.1], we have that
for some x. € UyerO,, either for all v € T, OL(f,,W,) C {z.} or for all
veTl, O0f,W,) C {x.}, then x — z.. The first conclusion of Corollary
4.10 in [J] is a particular case of this result.
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We note that, according to the particular geometry of each x~, it could
happen that Og(fv, W.,) # O{(fv, W.,) and even that one of those sets be void
and the other one not.

In what follows let for each v € I', E, = {{ € x : [1(§) = 0} the set of
equilibrium points of f,.

The following convergence result involves an “ergodicity” condition on
the switching signals considered.

Theorem 4.2 Suppose that T' is a finite set. Let (x,0), with o € S, N S,
be a forward complete trajectory of (d). Then the following holds:

1. if (x,0) verifies Assumption[3 and if for every v € T, either (’)ﬂ’{(f,y, W)
= E,NO, or OL(f,,W,) = E,NO,, then there exists ¢ € R such that
= Nyer(Ey NV (e)). If, in addition, for each ¢ € R, Nyer(E, N

V.71 (c)) is a discrete set, then © — x, for some x. € Nyer(E, N O,).

2. If (x,0) verifies Assumption[d and if for every~y € T, either OY(f,, W)
= E,NO, or OI(f,,W,) = E,NO,, then © — Nyer(E, N O,). If,
in addition, Nyer(Ey, N O,) is a discrete set, then © — x. for some
Te € ﬂfyep(E,Y N O“f)

Proof. As 0 € S, NS, then there exist T > 0 and 7p > 0 such that
o € S[T|NSymp].

Let us prove 1. first. Since S.[T] N Sy[7p] has property P and (z,0)
verifies the hypotheses of Theorem [B.2], there exists ¢ € R such that x —
m(M(c)), where M(c) is the maximal weakly-invariant set w.r.t. T.[T] N
Talrp] contained in V~1(c) N Zy. So, it suffices to show that m (M (c)) C
Aer(E, NV (o))

Let (§,7) € M(c); then there exists a trajectory (z*,0*) € T[T| N Tq[7p]
such that (z*(0),0*(0)) = (&, ) and (x*(¢),0*(t)) € M(c) for all t € R. Then,
reasoning as in the proof of Theorem AT], Vi« (2*(t)) = Vo= r)(z*(t)) =
and, from ), Wy« (2*(t)) = Wy (2*(t)) = 0.

Taking into account that z* is continuous and that either O%(f,, W,) =
E,N 0O, or O(f,,W,) = E, N O,, it follows that z*(t) = £ and that £ €
Egety N Ogery N Vai%t) () = Eg=@y N Vo:%t)(c) for all t € R.

As 0* € S[T], then o*(R) =T and, in consequence, & € E, NV, !(c) for
all v eI

In the case that for every ¢ € R, Nyer (EA, N Vv_l(c)) is a discrete set,
that + — z, with z. € N,ep(£,NO,), follows from the facts that = — Q(z),
that Q(z) is a nonempty connected set and that Q(z) C Nyer (B, NV, 1(c))
for some c € R.
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The proof of 2. is similar to that of 1., so we omit it. |

In the sequel we give sufficient conditions for the convergence to a given
equilibrium point z. of (), i.e. a point z, that verifies f,(z.) = 0 for all
v € I' such that z. € x,. We assume, without loss of generality, that z. is
the origin.

Assumption 6 0 is an equilibrium point of ().

Assumption 7 For every v € I' such that 0 € x.,, the initial value problem
= fy(z), z(0) = 0 has a unique solution.

Theorem 4.3 Suppose that assumptions [@ and [7 hold and let (x,0) be a
forward complete trajectory of () with o € S,.

1. If Assumption[{] is verified, 0 € O and the following holds
(a) Of(fy, Wy, 00) N OL(f,, W, 00) C {0} for every v €T,
(b) O5(F2, Wy) N O (fr, Wy) {0}, W7 £,
then x — 0.

If T is finite, the same holds if we suppose that (x, o) verifies Assump-
tion [4 instead of Assumption [{].

2. If Assumption[d is verified, 0 € O, 1.(i) holds and

(a) Ob(fy, Wo) N OL(fr, W) NV He) NV M (e) € {0}, Wy #7 €
I', VeeR,

then x — 0.

Proof. Since o0 € §,, there exist 7p > 0 and Ny € N such that ¢ €
Sa [TD, No] .

We first prove 2. By using the same arguments as in the proof of the
first part of Theorem [Tl it follows that there exists ¢ € R such that
r — m(M(c)), with M (c) the maximal weakly-invariant set w.r.t. 7,[7p, No|
contained in V~!(c) N Zy. So, it suffices to show that M(c) C {0} x T.

Let (§,7) € M(c); then there exists a trajectory (z*,0*) € T,[p, No|
such that (2*(0),0*(0)) = (&,7) and (2*(t),0*(t)) € M(c) for all t € R.
Once again, as in Theorem BTl we have that V.« (2*(t)) = Vo) (2*(t)) = ¢
and W -y (2*(t)) = Wy (2*(t)) = 0. We will consider two cases.

Case 1. o* has no switching times, i.e. 0*(t) = 7 for all ¢ € R. Then for
every t € R, z*(t) € O, and W, (¢(t)) = 0 and, since 2*(t) € OJ(f,, W, 00)N
O° (fy, Wy, 00) C {0}, 2*(t) = 0 for all ¢.

Case 2. o* has a switching time t*. Then, there exists 7 > 0 such that, if
p(t) =27 (t +17), 7 = 0" (") and 5" = " ("), 7 # 7" and
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1. ¢ : [—7,0] = O; is solution of Z = f;(z) on [—7,0] and ¢ : [0,7] — O
is solution of Z = f.,/(z) on [0, 7] ;

2. Vi(p(t)) = con [—7,0] and V,(p(t)) = con [0, 7];
3. Wi(¢(t)) =0 on [—7,0] and W, (¢(t)) =0 on [0, 7].

Thus @*(t*) = (0) € OL(fy, Ws) N O (for, W) N Vo () NV M (e) C {0}

That z*(0) = 0 follows from the fact that, due to assumptions [@ and [7]
any initial value problem 2 = f5(2), 2(0) = 0 has the unique solution z(¢) = 0
when 0 € O5.

In order to prove 1. we note that in the case in which I is finite and (z, o)
verifies Assumption [ then, due to Theorem B3] (with §* = S,[7p, Ny]), it
suffices to show that for any ¢ € RY, the set M(¢) of that theorem is a subset
of {0} x I". Since the proof of this fact is similar to that of M(c) C {0} x T’
given above, we omit it.

Suppose now that (z, o) verifies Assumption [ It follows from the proof
of Theorem ATl that y(t) = W(xz(t),o(t)) is weakly meagre. Since W is
continuous on dom(f)N(O xT"), (x, o) verifies the hypotheses of Theorem [3.4]
and in consequence x — m(M™*), being M* the maximal weakly-invariant set
w.r.t. To[Tp, No| contained in dom(f) "W ~1(0). The proof of M* C {0} x T
in similar to that of M(c) C {0} xI', so we only delineate it. Let (£,7) € M*;
then there exists (z*,0%) € T,[Tp, No| such that (z*(0),0*(0)) = (&,v) and,
as in Theorem BT, W i—)(2*(t)) = Woep(2*(t)) = 0 for all t € R. If o* has
no switching times, then z*(0) = 0 due to 1.(i).

If o* has a switching time t* we considerer 7, ¢, 4 and ' as in the proof of
Case 2. above. Then ¢ verifies 1. of that case, W5(¢(t)) = 0 on [—7, 0] and
W (¢(t)) = 0 on [0,7]. Thus, from 1.(ii) we deduce that z*(t*) = ¢(0) =0
and a posteriori that x*(0) = 0. |

When T is finite and o belongs to S; NS, hypothesis 2. of Theorem
can be weakened as follows.

Given a set-valued map H : I' ~» T, a finite sequence {v;}*, C I', m > 3,
is a simple cycle of H if v1 = Y, vie1 € H(y) foralli =1,...,m—1 and if
vi = and ¢ < j then i =1 and j = m.

Theorem 4.4 Suppose that I is finite, that H : T' ~> I' and that (x,0) is
a forward complete trajectory of (1) with o € SqNSH. Suppose in addition
that assumptions[@ and[7 hold.

1. If Assumption[d holds, 0 € O and

(a) (’)i(f,y,WA,ijoo) C {0} for everyy € T or O (f,, W,,00) C {0} for
every v € 1,
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(b) for each simple cycle {~v;}, of H there exists j € {1,...,m — 1}
such that

O'I;j (f’Yjv W’Yj) m O'J:j_H (f'Yj+17 W’Yj+1) C {0}7 (5)
then x — 0.

2. The same conclusion as in 1. holds if we replace Assumption [4 by
Assumption[3 and condition 1. (ii) by the weaker one:

(a) for everyc € R and for each simple cycle {~v;}, of H there exists
je{l,...,m—1} such that

O (fry: Way) MO (Fryrs Way) NV (@) NV (€) € {03 (6)

Proof. As o € §;N S, there exists 7p > 0 such that o € Sy[rp].

Suppose that (z, o) verifies AssumptionBl Since S;[7p] NS has property
P and (z, o) verifies the hypotheses of Theorem B.3] there exists ¢ € RY such
that o — m(M(C)), with M(C) as in that theorem (with T* = Ty[rp] N TH).
So, it suffices to show that M(¢) C {0} x T.

Let (¢,7) € M(C); then there exists a trajectory (z*,0%) € Tg[rp] N T

such that (z*(0),0*(0)) = (§,7) and (x*(¢t),0*(t)) € M(C) for all t € R. So,
reasoning as in Theorem LI Vi« (2(t)) = Cor—y, Vo) (@*(1)) = corp
and Woe ) (2*(t)) = Woey(2*(t)) = 0 for all t € R. We distinguish two
cases:
Case 1. ¢* has a finite number of switching times, tg < t; < --- < t;. Suppose
first that for every v € T', O(f,,W,,00) C {0} and let @(t) = z*(t + ;) for
t > 0 and v, = 0*(t;). Then ¢ is a solution of 2 = f,,(2), ¢(t) € O,, and
W.,(¢(t)) =0 for all t > 0. In consequence z*(¢;) = 0, since x*(t;) = p(0) €
OL(f,.1,.00) € {0},

That £ = 2*(0) = 0, follows from the fact that for every v € I" such that
0 € O,, the unique solution of the initial value problem 2 = f,(z), 2(0) =0
is z(t) =0 .

In the case when for every v € T', O%(f,,W,,00) C {0}, we proceed in a
similar way, but considering instead ¢(t) = x*(t + t¢) for t < 0.

Case 2. o* has an infinite number of switching times. Since o* € S¥, there
exists a finite sequence of consecutive switching times {tx }7*, such that the
sequence {7vx}p,, with v, = o*(x), is a simple cycle of H. By hypothesis
there exists an index j € {1,...,m — 1} for which (Bl holds. For such j
we consider the function ¢ : [—7p,7p] — R" defined by ¢(t) = x*(t + t;41).
Since (x*,0*) € Ty[tp] we have, for any 0 < 7 < 7p, that
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L. ¢ : [-7,0] = O, is solution of 2 = f, (2) on [~7,0] and ¢ : [0,7] —

O,,,, is solution of 2 = f,.. (2) on [0,7] ;

2. W, (o(t)) = 0 on [-7,0] and W, (¢(t)) = 0 on [0, 7].

Therefore
©(0) € O:j<fw W0 Of/j+1<f71+17 W)

and, by (@), z*(tj41) = ¢(0) = 0. By using arguments similar to those of the
proof of case 1, we conclude that £ = 2*(0) = 0.
Since the proof of 2. is similar to that of 1., we omit it. |

Remark 4.4 It can be seen that Theorem[].4 and Theorem[{.3 (supposing in
Part 1. that T is finite and that Assumption 5 holds) remain valid if, instead
of Assumption [, we suppose that the function V in assumptions[3 a