
ar
X

iv
:0

91
2.

47
13

v1
  [

m
at

h.
O

C
] 

 2
3 

D
ec

 2
00

9

Invariance Principles for Switched

Systems with Restrictions

J. L. Mancilla-Aguilar ∗ and R.A. Garćıa †
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Abstract

In this paper we consider switched nonlinear systems under av-
erage dwell time switching signals, with an otherwise arbitrary com-
pact index set and with additional constraints in the switchings. We
present invariance principles for these systems and derive by using
observability-like notions some convergence and asymptotic stability
criteria. These results enable us to analyze the stability of solutions
of switched systems with both state-dependent constrained switching
and switching whose logic has memory, i.e., the active subsystem only
can switch to a prescribed subset of subsystems.

1 Introduction

A switched system is a family of continuous-time dynamical subsystems and
a rule, usually time or state-dependent, that orchestrates the switching be-
tween them. At first glance switched systems may look simple; nevertheless
their behavior may be very complicated, being a classical example of this
fact, divergent trajectories obtained by switching among asymptotically sta-
ble subsystems (see [11]). Consequently, the stability analysis of such systems
turned out to be an important and challenging problem which has received
considerable attention in the recent literature (see [4], [11], [12] and references
therein). Although the stability of switched systems under arbitrary switch-
ing laws can be assured by the existence of a common Lyapunov function
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(CLF) for all the switching modes ([11], [15]), this type of stability condition
is deemed to be too conservative when a particular type of switching logic is
considered. In fact, switched systems that do not share a CLF may be sta-
ble under restricted switching signals. Restrictions on the set of admissible
switching signals of a certain switched system arise naturally from physical
constraints of the system, from design strategies (e.g. discontinuous control
feedback laws), or from the knowledge about possible switching logic of the
switched system, e.g., partitions of the state space and their induced switch-
ing rules. Multiple Lyapunov functions (MLF) have been shown to be very
useful tools for the stability analysis of switched systems with constrained
switchings. In this context each switching mode may have its own Lyapunov
function (see [4] and references therein). However, some additional condi-
tions are necessary to assure that the value of each Lyapunov function on its
corresponding mode will decrease. Sufficient conditions for asymptotic sta-
bility of switched systems with MLF can be found in [4], [11] and references
therein. When the derivative of a candidate Lyapunov function with respect
to (w.r.t) each mode is only non-positive, the convergence of the solutions of
the switching system to an equilibrium point, and consequently the asymp-
totic stability, can be derived from one of the various extensions to switched
systems of LaSalle’s invariance principle for differential equations (see [8, 9]).
Hespanha in [6] introduced an invariance principle for switched linear sys-
tems under persistently dwell-time switching signals and in [7] Hespanha et
al. extended some of those results to a family of nonlinear systems. Bacciotti
and Mazzi presented in [1] an invariance principle for switched systems with
dwell-time signals. An invariance principle for switched nonlinear systems
with average dwell-time signals that satisfy state-dependent constraints was
derived by Mancilla-Aguilar and Garćıa in [16] from the sequential compact-
ness of particular classes of trajectories of switched systems. Based on invari-
ance results for hybrid systems ([17]), Goebel et al. in [5] obtained recently
invariance results for switched systems under various types of switching sig-
nals. Lee and Jiang in [10] gave a generalized version of Krasovskii-LaSalle
Theorem for time-varying switched systems. Under certain ergodicity con-
ditions on the switching signal, some stability results were also obtained in
[3, 18, 19].

Most of the invariance results for switched systems already published only
consider restrictions originated by the timing of the switchings or by the state
dependence of it. Nevertheless there is also an important restriction to take
into account: the fact that not all the subsystems may be accessible from a
particular one, i.e. the case in which the switching logic has memory. This
restriction is clearly exhibited, for example, in switched systems which are the
continuous portion of a hybrid automaton (see [4], [14]). In this regard, the
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invariance principles developed for hybrid systems in [14] and in [17] could
be useful in the analysis of switched systems with this class of restriction in
the switchings.

In this paper we present invariance results that hold for trajectories of
switched systems with a non necessarily finite number of subsystems and
whose switching signals verify an average dwell time condition and belong to
a family for which a certain property P holds. As various of the restricted
switching classes mentioned above satisfy P, these results enable us to obtain
in an unified way invariance theorems for all of them. Based on these invari-
ance results, we derive new convergence and stability criteria that recover,
generalize and strengthen some results previously obtained. In particular:

• Theorem 3.2 extends LaSalle’s invariance principle to switched systems
with different restrictions on the switching signals by involving both
backward and forward invariance as in, for example, [9, Theorem 6.4].

• Theorems 1 and 2 in [1], Corollary 5.6 of [5] and Proposition 4.1 of [16]
follow from Theorem 3.3.

• The first conclusion of Corollary 4.10 in [5] is a particular case of The-
orem 4.1.

• Theorem 4.7 is an improvement of Theorem 15 in [18]. In fact the
hypotheses of Theorem 4.7 are weaker since the existence of a Common
Joint Lyapunov Function is not assumed.

• Corollary 4.1, whose hypotheses are weaker than those of Theorem 3
in [3], improves it.

The paper presents two groups of statements. First we present statements
about invariance of sets to which bounded trajectories of the switched sys-
tems converge (Theorems 3.2, 3.3 and 3.4). These statements involve either
continuous functions which are nonincreasing along forward complete tra-
jectories of the switched system or appropriately fast vanishing “outputs”.
Finally we present results about convergence and asymptotic stability (The-
orems 4.1 to 4.7) that rely on observability-like conditions on the functions
which bound the derivatives of nonincreasing functions as those mentioned
above.

The article unfolds as follows. Section 2. contains the basic definitions.
In Section 3. we present invariance principles for switched systems with
constrained switching. Convergence and stability results are given in Section
4. Finally Section 5. contains some conclusions.
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2 Basic definitions

In this work we consider switched systems described by

ẋ = f(x, σ) (1)

where x takes values in R
n, σ : R → Γ, with Γ a compact metric space,

is a switching signal, i.e., σ is piecewise constant (it has at most a finite
number of jumps in each compact interval) and is continuous from the right
and f : dom(f) → R

n, with dom(f) a closed subset of Rn×Γ, is continuous.
For each γ ∈ Γ, let χγ = {ξ ∈ R

n : (ξ, γ) ∈ dom(f)} and fγ : χγ → R
n

be defined by fγ(ξ) = f(ξ, γ); then χγ is closed and fγ is continuous for
any γ ∈ Γ. We note that when Γ is finite, these last two conditions imply
that dom(f) is closed and that f is continuous on dom(f). In the sequel we
denote with S the set of all the switching signals.

Given σ ∈ S, a solution of (1) corresponding to σ is a locally absolutely
continuous function x : Ix → R

n, with Ix ⊂ R a nonempty interval, such
that (x(t), σ(t)) ∈ dom(f) for all t ∈ Ix and ẋ(t) = f(x(t), σ(t)) for almost
all t ∈ Ix. The solution x is complete if Ix = R and forward complete if
R≥0 ⊂ Ix. A pair (x, σ) is a trajectory of (1) if σ ∈ S and x is a solution
of (1) corresponding to σ. The trajectory is complete or forward complete
if x is complete or forward complete, respectively. Given a subset O of Rn,
we say that the trajectory (x, σ) is precompact relative to O if there exists
a compact set B ⊂ O such that x(t) ∈ B for all t ∈ Ix. When O = R

n we
simply say that (x, σ) is precompact.

Remark 2.1 Note that we do not suppose that dom(f) = R
n × Γ. In this

way we can take into account, in the analysis of the asymptotic behavior of a
given trajectory (x, σ) of (1), some kind of state-dependent constraints which
the trajectory under study must satisfy. In fact, in some situations we are not
interested in the behavior of an arbitrary forward complete trajectory (x, σ)
of a switched system (1) (with dom(f) = R

n × Γ) but only of one of those
that verify the constraint

x(t) ∈ χσ(t) for all t ∈ Ix, (2)

where {χγ : γ ∈ Γ} is a collection of subsets of Rn. If we consider the map
f̃ , which is the restriction of f to the set dom(f̃) = {(ξ, γ) : ξ ∈ χγ}, and
if dom(f̃) is closed in R

n × Γ, then the set of trajectories (x, σ) of (1) which
verify (2) coincides with the set of trajectories of

ẋ = f̃(x, σ). (3)
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It must be pointed out that in this way we can consider the system as if
its switching is state-independent, and focus on the restrictions imposed to
it by the timing of the discontinuities of the switching signal and/or by the
accessibility to certain subsystems from another ones.

In this paper we consider forward complete solutions of (1) corresponding
to switching signals σ which belong to particular subclasses of S. Let Λ(σ)
be the set of times where σ has a jump (switching time). Following [6] we say
that σ ∈ S has a dwell-time τD > 0 if |t − t′| ≥ τD for any pair t, t′ ∈ Λ(σ)
such that t 6= t′.

A switching signal σ has an average dwell-time τD > 0 and a chatter
bound N0 ∈ N if the number of switching times of σ in any open finite interval
(τ1, τ2) ⊂ R is bounded by N0 + (τ2 − τ1)/τD, i.e. card(Λ(σ) ∩ (τ1, τ2)) ≤
N0 + (τ2 − τ1)/τD.

We denote by Sa[τD, N0] the set of all the switching signals which have
an average dwell-time τD > 0 and a chatter bound N0 ∈ N and by Ta[τD, N0]
the set of all the complete trajectories (x, σ) of (1) with σ ∈ Sa[τD, N0] and
let Sa =

⋃

τD>0,N0>0 Sa[τD, N0] and Ta =
⋃

τD>0,N0>0 Ta[τD, N0]. We note
that the set of switching signals σ which have a dwell-time τD > 0 coincides
with Sa[τD, 1] := Sd[τD]. We denote by Td[τD] the set of all the complete
trajectories (x, σ) of (1) with σ ∈ Sd[τD] and let Sd =

⋃

τD>0 Sd[τD] and
Td =

⋃

τD>0 Td[τD].
For Γ a finite set and T > 0, we denote by Se[T ] the family of all the

switching signals σ which verify the following “ergodicity” condition: for
every t0 ≥ 0 and every γ ∈ Γ, σ−1(γ) ∩ [t0, t0 + T ] 6= ∅.

Te[T ] will denote the set of complete trajectories (x, σ) with σ ∈ Se[T ]
and Se =

⋃

T>0 Se[T ] and Te =
⋃

T>0 Te[T ].
The families of switching signals already introduced have no restrictions

on the accessibility from any subsystem to another. The family of switching
signals —and their corresponding trajectories— that we introduce next, takes
into account the case in which the switching logic has memory, i.e. when a
subsystem corresponding to an index γ ∈ Γ can only switch to subsystems
corresponding to modes γ′ that belong to a certain subset Γγ ⊂ Γ.

Given a set-valued map H : Γ  Γ, SH is the set of all the switching
signals σ which verify the condition σ(t) ∈ H(σ(t−)) for every time t ∈ Λ(σ).
Here σ(t−) = lims→t− σ(s). T H denotes the set of all the complete trajectories
(x, σ) with σ ∈ SH . This class of switching signals enable us, for example,
to model the restrictions imposed by the discrete process of a hybrid system
whose continuous portion is as in (1) (see [4]).
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3 Invariance results for trajectories which sat-

isfy a dwell-time condition

In this section we present some invariance results that enable us to charac-
terize the asymptotic behavior of a precompact forward complete trajectory
(x, σ) of (1) with σ belonging to a certain subclass of Sa. The consideration
of such subclass allows us to obtain in an unified way invariance results for
systems whose switching signals undergo different restrictions.

We recall that a point ξ ∈ R
n belongs to Ω(x), the ω-limit set of x :

Ix → R
n, with R≥0 ⊂ Ix, if there exists a strictly increasing sequence of

times {sk} ⊂ Ix with limk→∞ sk = +∞ and limk→∞ x(sk) = ξ. The ω-limit
set Ω(x) is always closed and, when x evolves in a compact set of Rn, it is
nonempty, compact, connected if x is continuous, and x → Ω(x) (for a set
M ⊂ R

n, x → M if limt→+∞ d(x(t),M) = 0, being d(ξ,M) = infν∈M |ν− ξ|).
As was done in [16], we will associate to each forward complete trajectory

(x, σ) of (1) with σ ∈ Sa, the nonempty set Ω♯(x, σ) ⊂ R
n × Γ that we

introduce in the following

Definition 3.1 Given a forward complete trajectory (x, σ) of (1) with σ ∈
Sa, a point (ξ, γ) ∈ R

n × Γ belongs to Ω♯(x, σ) if there exists a strictly in-
creasing and unbounded sequence {sk} ⊂ R≥0 such that

1. limk→∞ τ 1σ(sk)− sk = r, 0 < r ≤ ∞,

2. limk→∞ x(sk) = ξ and limk→∞ σ(sk) = γ.

Here, for any t ∈ R, τ 1σ(t) = inf{s ∈ Λ(σ) : t < s} if {s ∈ Λ(σ) : t < s} 6= ∅
and τ 1σ(t) = +∞ in other case (i.e. τ 1σ(t) is the first switching time greater
than t).

Let π1 : R
n × Γ → R

n be the projection onto the first component. Then
the following relation between Ω(x) and Ω♯(x, σ) holds.

Lemma 3.1 Let (x, σ) be a forward complete trajectory of (1) with σ ∈ Sa

that is precompact relative to O ⊂ R
n. Then Ω♯(x, σ) ⊂ dom(f) ∩ (O × Γ)

and Ω(x) = π1(Ω
♯(x, σ)).

Proof. That Ω♯(x, σ) ⊂ dom(f) ∩ (O × Γ) follows from the fact that for all
t ∈ Ix (x(t), σ(t)) belongs to a compact subset of dom(f)∩ (O×Γ) and from
the definition of Ω♯(x, σ). The proof of the other assertion follows mutatis
mutandis from the proof of Lemma 4.1 in [16].

In order to see that the set Ω♯(x, σ) enjoys certain kind of invariance
property, let us introduce the following
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Definition 3.2 Given a family T ∗ of complete trajectories of (1), we say
that a nonempty subset M ⊂ R

n × Γ is weakly-invariant w.r.t T ∗ if for each
(ξ, γ) ∈ M there is a trajectory (x, σ) ∈ T ∗ such that x(0) = ξ, σ(0) = γ and
(x(t), σ(t)) ∈ M for all t ∈ R.

This notion of weak invariance differs from the one introduced in [16], in
that the last one involves only forward invariance while the introduced here
also involves backward invariance.

Let us introduce now the following class of switching signals.

Definition 3.3 We say that a family of switching signals S∗ has the prop-
erty P if

1. S∗ ⊂ Sa[τD, N0] for some τD > 0 and some N0 ∈ N;

2. for any s > 0 and any σ ∈ S∗, σ(·+ s) ∈ S∗;

3. for every sequence {σk} ⊂ S∗, there exist σ∗ ∈ S∗ and a subsequence
{σkl} such that liml→∞ σkl(t) = σ∗(t) for almost all t ∈ R.

Lemma 3.2 The following classes of switching signals have the property P:

1. Sa[τD, N0] for every τD > 0 and every N0 ∈ N;

2. Sd[τD] ∩ SH for all τD > 0 and every H : Γ  Γ such that the set
Graph(H) = {(γ, γ′) ∈ Γ× Γ : γ′ ∈ H(γ)} is closed;

3. Sd[τD] ∩ Se[T ] for every τD > 0 and every T > 0.

Proof. See Appendix.
The next result will be instrumental in what follows.

Theorem 3.1 Let S∗ be a family of switching signals which verifies property
P and let T ∗ be the set of all the complete trajectories (x, σ) of (1) with
σ ∈ S∗. Then, if (x, σ) is a precompact forward complete trajectory of (1)
such that σ ∈ S∗, Ω♯(x, σ) is weakly-invariant w.r.t T ∗.

Proof. See Appendix.

Remark 3.1 Since the weak invariance of Ω♯(x, σ) is a cornerstone of the
results that we present below (Theorems 3.2 to 3.4), Theorem 3.1 enables
us to obtain in a unified way invariance results not only for the different
switching signals explicitly mentioned in Lemma 3.2 but also for any other
that verifies property P.
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Remark 3.2 At first glance, it would seem more natural to consider for
a given precompact forward complete trajectory (x, σ) of (1) its ω-limit set
Ω(x, σ) instead of Ω♯(x, σ) ⊂ Ω(x, σ). Nevertheless, there exist forward com-
plete trajectories (x, σ) of (1) with σ ∈ Sa such that Ω(x, σ) is not weakly-
invariant for any family of trajectories of that switched system.

Next, we present two invariance results that involve the existence of a
function V which is nonincreasing along a trajectory of (1). In order to do
so, we introduce the following class of functions.

Definition 3.4 We say that a function V : dom(V ) → R belongs to class
V, if it verifies

1. dom(V ) ⊂ R
n × Γ.

2. For every γ ∈ Γ, Dγ := {ξ ∈ R
n : (ξ, γ) ∈ dom(V )} is an open set.

3. Let O := π1(dom(V )). Then Oγ := O ∩ χγ ⊂ Dγ ∀γ ∈ Γ

4. For all γ ∈ Γ, Vγ(·) := V (·, γ) is differentiable on Oγ.

We note that dom(f) ∩ (O × Γ) = ∪γ∈Γ(Oγ × {γ}) ⊂ dom(f) ∩ dom(V ).
We also note that when Γ is finite, the restriction of any function V ∈ V

to dom(f) ∩ (O × Γ) is continuous.
In what follows, for a function V ∈ V, let ZV = {(ξ, γ) ∈ dom(f) ∩ (O ×

Γ) : ∇Vγ(ξ)fγ(ξ) = 0}.

Assumption 1 The forward complete trajectory (x, σ) of (1) verifies the
following: there exists a function V ∈ V whose restriction to dom(f)∩(O×Γ)
is continuous, (x, σ) is precompact relative to O and v(t) = V (x(t), σ(t)) is
nonincreasing on [0,+∞).

Theorem 3.2 Let S∗ be a family of switching signals which has property
P and let T ∗ be the set of all the complete trajectories (x, σ) of (1) with
σ ∈ S∗. Suppose that (x, σ), with σ ∈ S∗, is a forward complete trajectory
of (1) for which Assumption 1 holds. Then there exists c ∈ R such that
x → π1(M(c)), where M(c) is the maximal weakly-invariant set w.r.t. T ∗

contained in V −1(c) ∩ ZV .

Proof. Since Ω♯(x, σ) is weakly-invariant w.r.t. T ∗ and, from Lemma
3.1, x → π1(Ω

♯(x, σ)), we only have to prove that Ω♯(x, σ) ⊂ V −1(c)∩ZV for
some c ∈ R.

As (x, σ) is precompact relative to O, there exists a compact set B ⊂ O
such that x(t) ∈ B for all t ∈ Ix. Therefore (x(t), σ(t)) belongs to the
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compact set dom(f) ∩ (B × Γ) for all t ∈ Ix. Thus v(t) is bounded, since
V is continuous on dom(f) ∩ (B × Γ), and nonincreasing by hypothesis; in
consequence there exists limt→+∞ v(t) = c.

Let (ξ, γ) ∈ Ω♯(x, σ). Then there exists a strictly increasing and un-
bounded sequence {sk} which verifies 1. and 2. of Definition 3.1. Since
(x(sk), σ(sk)) → (ξ, γ) as k → ∞, c = limk→∞ v(sk) = limk→∞ V (x(sk), σ(sk))
= V (ξ, γ) and (ξ, γ) ∈ V −1(c). Let us show that (ξ, γ) also belongs to ZV .

As Ω♯(x, σ) is weakly-invariant w.r.t. T ∗ there exists (x∗, σ∗) ∈ T ∗ such
that (x∗(0), σ∗(0)) = (ξ, γ) and (x∗(t), σ∗(t)) ∈ Ω♯(x, σ) for all t ∈ R. Then,
taking into account that Ω♯(x, σ) ⊂ V −1(c), V (x∗(t), σ∗(t)) = c for all t ∈ R.
In particular, since σ∗(t) = γ on [0, τ) for τ small enough, then V (x∗(t), γ) =
c on [0, τ). Therefore ∇Vγ(ξ)fγ(ξ) = 0, and (ξ, γ) ∈ ZV .

Remark 3.3 We note that Theorem 3.2 is an extension to switched systems
of the well known LaSalle’s invariance principle for differential equations
(see, for example, [9, Theorem 6.4]).

In the sequel, for any σ ∈ S and any γ ∈ Γ, let Iσ,γ = σ−1(γ) ∩ [0,+∞).
When Γ is a finite set, we can relax the nonincreasing condition in As-

sumption 1 as follows.

Assumption 2 The forward complete trajectory (x, σ) of (1) verifies the
following: there exists a function V ∈ V such that (x, σ) is precompact relative
to O and v(t) = V (x(t), σ(t)) is nonincreasing on Iσ,γ, for all γ ∈ Γ.

Remark 3.4 Assumptions of this kind are standard when the stability anal-
ysis of the zero solution of a switched system is performed by means of mul-
tiple Lyapunov functions (see [4], [11]).

In what follows, when Γ is a finite set, we identify it with the set {1, . . . , N}
⊂ N, where N = card(Γ).

Theorem 3.3 Suppose that Γ is finite and let S∗ and T ∗ be as in Theorem
3.2. Suppose that (x, σ), with σ ∈ S∗, is a forward complete trajectory of (1)
for which Assumption 2 holds. Then there exists ~c = (c1, . . . , cN) ∈ R

N such
that x → π1(M(~c)), where M(~c) is the maximal weakly-invariant set w.r.t.
T ∗ contained in ∪γ∈Γ{(ξ, γ) ∈ dom(f) ∩ (O × Γ) : Vγ(ξ) = cγ} ∩ ZV .

Proof. For γ ∈ Γ we define cγ as follows:

1. cγ = limt→+∞, t∈Iσ,γ v(t) if Iσ,γ is unbounded. (This limit exists since v
is non-increasing and bounded on Iσ,γ).

2. cγ = a for every γ such that Iσ,γ is bounded. Here a ∈ R is arbitrary.

9



Reasoning as in the proof of Theorem 3.2, in order to prove the thesis it
suffices to show that Ω♯(x, σ) ⊂ ∪γ∈Γ{(ξ, γ) ∈ dom(f) ∩ (O × Γ) : Vγ(ξ) =
cγ} ∩ ZV .

Let (ξ, γ) ∈ Ω♯(x, σ). Then there exists a strictly increasing and un-
bounded sequence {sk} which verifies 1. and 2. of Definition 3.1. Since
σ(sk) → γ and Γ is a finite set, σ(sk) = γ for k large enough and for those
k, sk ∈ Iσ,γ . It follows that V (x(sk), γ) → cγ as k → ∞ and in consequence,
V (ξ, γ) = cγ and (ξ, γ) ∈ ∪γ′∈Γ{(ξ

′, γ′) ∈ dom(f)∩(O×Γ) : V (ξ′, γ′) = cγ′}.
That (ξ, γ) ∈ ZV can be proved in the same way as in the proof of Theorem
3.2.

Remark 3.5 Some invariance results for switched systems reported in the
literature can be derived from Theorem 3.3. In particular [1, Theorems 1 and
2], [16, Proposition 4.1] and [5, Corollary 5.6].

The following invariance result involves weakly meagre functions. We
recall that a function y : R≥0 → R is weakly meagre if limk→∞(inf{|y(t)| :
t ∈ Ik}) = 0 for every family {Ik : k ∈ N} of nonempty and pairwise
disjoint intervals in R≥0 with inf{µ(Ik) : k ∈ N} > 0, where µ stands for
the Lebesgue measure (see [13]). We note that, for example, any function
y ∈ Lp([0,∞)) with p > 0 is weakly meagre. More generally, if there exist
positive numbers τ and p such that

∫ t+τ

t
|y(s)|pds converges to 0 as t → +∞,

then y is weakly meagre.

Theorem 3.4 Let S∗ and T ∗ be as in Theorem 3.2. Suppose that (x, σ),
with σ ∈ S∗, is a forward complete trajectory of (1). Suppose in addition that
there exists a continuous function h : dom(h) → R, with dom(h) ⊂ R

n × Γ,
such that (x(t), σ(t)) evolves in a compact subset K of dom(h) for all t ≥ 0
and that y(·) = h(x(·), σ(·)) is weakly meagre. Then x → π1(M

∗), where M∗

is the maximal weakly invariant set w.r.t. T ∗ contained in h−1(0)∩ dom(f).

Proof. Since (x(t), σ(t)) evolves in the compact subset K of dom(h) for
all t ≥ 0, we have that (x, σ) is precompact and that Ω♯(x, σ) ⊂ dom(h) ∩
dom(f). By similar considerations as those in the proofs of the previous
invariance results, it suffices to show that Ω♯(x, σ) ⊂ h−1(0).

Let (ξ∗, γ∗) ∈ Ω♯(x, σ). Then there exists a strictly increasing and un-
bounded sequence {sk} which verifies 1. and 2. of Definition 3.1 with (ξ∗, γ∗)
instead of (ξ, γ). We can assume that τ 1σ(sk)− sk ≥ 3r/4 for all k.

We will construct by recursion a sequence of times {s∗m} and a subse-
quence {skm} of {sk} such that skm ≤ s∗m ≤ skm + 2−mr and |y(s∗m)| ≤ 1/m
for all m.
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For any m ∈ N, let rm = 2−mr and Imk = [sk, sk + rm] for all k ∈ N.
Since h is weakly meagre, limk→∞(inf{|y(t)| : t ∈ I1k}) = 0. Thus, there exist
k∗ ∈ N an a time t ∈ I1k∗ such that |y(t)| ≤ 1. Let s∗1 = t and k1 = k∗.

Suppose that we have already defined {s∗m}
l
m=1 and {skm}

l
m=1. As h is

weakly meagre then limk→∞(inf{|y(t)| : t ∈ I l+1
k }) = 0, and hence there exist

k′ ∈ N, with k′ > kl, and t′ ∈ I l+1
k′ such that |y(t′)| ≤ 1/(l + 1). We define

s∗l+1 = t′ and kl+1 = k′.
Consider now the sequence {(x(s∗m), σ(s

∗
m))}; since s∗m ∈ [skm , skm + rm],

rm ≤ r/2 and τ 1σ(skm) − skm ≥ 3r/4, then for all m, σ(s∗m) = σ(skm) and
hence σ(s∗m) → γ∗.

Given that for every t ≥ 0, (x(t), σ(t)) belongs to the compact set dom(f)∩
K and since f is continuous on that set, there exists M ≥ 0 such that
|ẋ(t)| ≤ M a.e. on Ix and in consequence, |x(t) − x(s)| ≤ M |t − s| for all
t, s ∈ Ix. Therefore |x(s

∗
m)−x(skm)| ≤ rM2−m for all m. Taking into account

that x(skm) → ξ∗, we have that x(s∗m) → ξ∗.
Finally, since by construction h(x(s∗m), σ(s

∗
m)) = y(s∗m) → 0 and h is

continuous, then h(ξ∗, γ∗) = 0.

4 Convergence and stability results

In this section we derive, from the invariance principles presented in §3,
some convergence and stability results for switched systems with constrained
switchings.

4.1 Convergence results

Let us first introduce some observability-like definitions.
Given a subset X ⊂ R

n, a continuous map g : X → R
n and a function

h : X → R, we say that for a given τ (τ > 0 or τ = ∞) a point ξ ∈ X
belongs to the set X f(g, h, τ) (resp. X b(g, h, τ)) if there exists a solution
ϕ : [0, τ ] → X (resp. ϕ : [−τ, 0] → X ) of ẋ = g(x) such that ϕ(0) = ξ and
h(ϕ(t)) = 0 for all t ∈ [0, τ ] (resp. t ∈ [−τ, 0]).

Let also the sets X f(g, h) =
⋃

τ>0X
f(g, h, τ), X b(g, h) =

⋃

τ>0X
b(g, h, τ)

and X (g, h) = X f(g, h) ∪ X b(g, h).

Remark 4.1

1. The set X f(g, h,∞) (X b(g, h,∞)) coincides with the maximal weakly
forward(backward) invariant set w.r.t. g contained in the set {ξ ∈ X :
h(ξ) = 0}.
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We recall that a subset K ⊂ R
n is weakly forward(backward) invariant

w.r.t g if for each ξ ∈ K there exists a solution ϕ : [0,∞) → R
n

(ϕ : (−∞, 0] → R
n) of ẋ = g(x) such that ϕ(0) = ξ and ϕ(t) ∈ K for

all t ≥ 0 (t ≤ 0).

2. If we consider the system with outputs ẋ = g(x), y = h(x) and state
space X , with 0 ∈ X , g(0) = 0 and h(0) = 0, then the set X f(g, h)
coincides with the set of states ξ that cannot be instantaneously distin-
guished from the zero state through the output y. In the particular case
in which g is a linear function, i.e., g(ξ) = Aξ and h(ξ) = ξTCTCξ,
and C is a matrix, then X (g, h) ⊂ X ∩ U , being U the unobservable
subspace of (C,A).

3. When g and h are smooth functions we have that

X (g, h) ⊂ {ξ ∈ X : Lk
gh(ξ) = 0 ∀k ∈ N0},

with Lk
gh the k-th. Lie derivative of h along g.

Let us introduce the following assumptions, in order to obtain some con-
vergence criteria based on the invariance results given in §3 and on the
observability-like notions already introduced.

Assumption 3 For the forward complete trajectory (x, σ) of (1) there exist
a function V ∈ V and a family of functions {Wγ : Oγ → R, γ ∈ Γ} such that
(x, σ) and V satisfy Assumption 1 and in addition

−∇Vγ(ξ)fγ(ξ) ≥ Wγ(ξ) ≥ 0 ∀ξ ∈ Oγ , ∀γ ∈ Γ. (4)

Assumption 4 For the forward complete trajectory (x, σ) of (1) there exist a
function V ∈ V which is bounded on compact subsets of dom(f)∩(O×Γ) and
a family of functions {Wγ : Oγ → R, γ ∈ Γ} such that (x, σ) is precompact
relative to O, v(t) = V (x(t), σ(t)) is nonincreasing on [0,+∞), (4) holds and
in addition W (ξ, γ) := Wγ(ξ) is continuous on dom(W ) = dom(f)∩(O×Γ).

Assumption 5 For the forward complete trajectory (x, σ) of (1) there exist
a function V ∈ V and a family of functions {Wγ : Oγ → R, γ ∈ Γ} such that
(x, σ) and V satisfy Assumption 2 and in addition (4) holds.

Theorem 4.1 Let (x, σ) be a forward complete trajectory of (1) with σ ∈ Sa.
Then the following holds:

12



1. if (x, σ) verifies Assumption 3, then there exists c ∈ R such that

x →
⋃

γ,γ′∈Γ

(

Of
γ (fγ,Wγ) ∩ Ob

γ′(fγ′ ,Wγ′) ∩ V −1
γ (c) ∩ V −1

γ′ (c)
)

;

2. if (x, σ) verifies Assumption 4, then

x →
⋃

γ,γ′∈Γ

(

Of
γ (fγ ,Wγ) ∩Ob

γ′(fγ′ ,Wγ′)
)

;

3. if Γ is finite and (x, σ) verifies Assumption 5, then there exists ~c ∈ R
N

such that

x →
⋃

γ,γ′∈Γ

(

Of
γ (fγ,Wγ) ∩Ob

γ′(fγ′ ,Wγ′) ∩ V −1
γ (cγ) ∩ V −1

γ′ (cγ′)
)

;

Proof. Since σ ∈ Sa, there exist τD > 0 and N0 ∈ N such that σ ∈
Sa[τD, N0].

In order to prove 1, let (x, σ) verify Assumption 3. As Sa[τD, N0] has
property P and (x, σ) verifies the hypotheses of Theorem 3.2, there exists a
real number c such that x → π1(M(c)), where M(c) is the maximal weakly-
invariant set w.r.t. Ta[τD, N0] contained in V −1(c) ∩ ZV .

Let ξ ∈ π1(M(c)) and γ ∈ Γ such that (ξ, γ) ∈ M(c). From the weak
invariance of M(c) w.r.t. Ta[τD, N0], there exists a trajectory (x∗, σ∗) ∈
Ta[τD, N0] such that (x∗(0), σ∗(0)) = (ξ, γ) and such that for every t ∈
R, ∇Vσ∗(t)(x

∗(t))fσ∗(t)(x
∗(t)) = 0 and Vσ∗(t)(x

∗(t)) = c. Since for every
γ ∈ Γ, Vγ(·) is continuous on Oγ , we also have that Vσ∗(t−)(x

∗(t)) = c and
∇Vσ∗(t−)(x

∗(t))fσ∗(t−)(x
∗(t)) = 0 for all t ∈ R. In view of (4), Wσ∗(t)(x

∗(t)) =
Wσ∗(t−)(x

∗(t)) = 0 for all t ∈ R. Let us consider two cases.
Case 1. 0 /∈ Λ(σ∗). Then, there exist τ1 < 0 < τ2 such that σ∗(t) = γ

for every t ∈ [τ1, τ2]. Hence, ξ = x∗(0) ∈ Of
γ (fγ ,Wγ, τ2) ∩ Ob

γ(fγ,Wγ ,−τ1) ∩
V −1
γ (c).
Case 2. 0 ∈ Λ(σ∗). Let γ′ = σ∗(0−); then, there exist τ1 < 0 < τ2

such that σ∗(t) = γ′ for all t ∈ [τ1, 0) and σ∗(t) = γ for all t ∈ [0, τ2].
In consequence, ξ = x∗(0) ∈ Of

γ (fγ,Wγ , τ2) ∩ Ob
γ′(fγ′ ,Wγ′,−τ1) ∩ V −1

γ (c) ∩

V −1
γ′ (c).
The proof of 3. is similar to that of 1. and we omit it.
We now demonstrate 2. Suppose that (x, σ) verifies Assumption 4; since

(x, σ) is precompact relative to O, there is a compact set B ⊂ O such that
x(t) ∈ B for all t ≥ 0 and therefore (x(t), σ(t)) belongs to the compact set
dom(f) ∩ (B × Γ) ⊂ dom(W ) for all t ≥ 0. That y(t) = W (x(t), σ(t)) is

13



weakly meagre follows from the fact that
∫∞

0
y(t)dt is finite. Let us prove

this last fact.
As v(t) = V (x(t), σ(t)) in nonincreasing and differentiable on each finite

interval [a, b) in which σ is constant, (say σ(t) = γ for all t ∈ [a, b)), from
[20, Theorem 7.21] we have that

v(a)− v(b−) ≥

∫ b

a

(−v̇)(s)ds = −

∫ b

a

∇Vγ(x(s))fγ(x(s)) ds.

Taking into account (4) and that v is nonincreasing on [0,∞), we then have
that

0 ≤

∫ t

0

y(s)ds ≤ V (x(0), σ(0))− V (x(t), σ(t)) ∀t ≥ 0.

As (x(t), σ(t)) evolves in the compact set dom(f) ∩ (B × Γ) for all t ≥ 0
and V is bounded on compact subsets of dom(f) ∩ (O × Γ) then, for some
M ≥ 0, |V (x(t), σ(t))| ≤ M for all t ≥ 0. Thus

∫ t

0
y(s)ds ≤ 2M for all t ≥ 0

and the integrability of y follows.
Since (x, σ) verifies the hypotheses of Theorem 3.4 with W instead of h,

x → π1(M
∗) where M∗ is the maximal weakly-invariant set w.r.t. Ta[τD, N0]

contained in dom(f) ∩W−1(0).
In order to prove that π1(M

∗) ⊂
⋃

γ,γ′∈Γ

(

Of
γ (fγ,Wγ) ∩ Ob

γ′(fγ′ ,Wγ′)
)

,
we can proceed as in the proof of 1., but using now the fact that for all
(ξ, γ) ∈ M∗ there exists (x∗, σ∗) ∈ Ta[τD, N0] such that 0 = Wσ∗(t)(x

∗(t)) =
Wσ∗(t−)(x

∗(t)) for all t ∈ R (being the last equality due to the continuity of
W on its domain).

Remark 4.2 Theorem 4.1 gives a more accurate result than Theorem 8 in
[6] in the case when the switching signal σ ∈ Sa (instead of σ ∈ Sp−dwell as is
considered there). In fact, it can be shown that the hypotheses of that theorem
imply that the forward complete trajectory (x, σ) of the linear switched system
ẋ = Aσ(t)x is precompact and verifies Assumption 4 with V (ξ, γ) = ξTPγξ and
W (ξ, γ) = ξTCT

γ Cγξ. So, by applying Theorem 4.1, and taking into account
2. of Remark 4.1, it results that x → ∪γ∈ΓUγ, where Uγ is the unobservable
subspace of the pair (Cγ, Aγ). On the other hand, Theorem 8 in [6] asserts
that x → M, where M is the smallest subspace which contains ∪γ∈ΓUγ and
is Aγ-invariant for all γ ∈ Γ.

Remark 4.3 If in addition to the hypotheses of Theorem 4.1, we have that
for some xe ∈ ∪γ∈ΓOγ, either for all γ ∈ Γ, Of

γ (fγ ,Wγ) ⊂ {xe} or for all
γ ∈ Γ, Ob

γ(fγ,Wγ) ⊂ {xe}, then x → xe. The first conclusion of Corollary
4.10 in [5] is a particular case of this result.
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We note that, according to the particular geometry of each χγ, it could
happen that Ob

γ(fγ ,Wγ) 6= Of
γ (fγ,Wγ) and even that one of those sets be void

and the other one not.

In what follows let for each γ ∈ Γ, Eγ = {ξ ∈ χγ : fγ(ξ) = 0} the set of
equilibrium points of fγ .

The following convergence result involves an “ergodicity” condition on
the switching signals considered.

Theorem 4.2 Suppose that Γ is a finite set. Let (x, σ), with σ ∈ Se ∩ Sd,
be a forward complete trajectory of (1). Then the following holds:

1. if (x, σ) verifies Assumption 3 and if for every γ ∈ Γ, either Ob
γ(fγ,Wγ)

= Eγ ∩Oγ or Of
γ (fγ,Wγ) = Eγ ∩Oγ, then there exists c ∈ R such that

x → ∩γ∈Γ(Eγ ∩ V −1
γ (c)). If, in addition, for each c ∈ R, ∩γ∈Γ(Eγ ∩

V −1
γ (c)) is a discrete set, then x → xe for some xe ∈ ∩γ∈Γ(Eγ ∩ Oγ).

2. If (x, σ) verifies Assumption 5 and if for every γ ∈ Γ, either Ob
γ(fγ,Wγ)

= Eγ ∩ Oγ or Of
γ (fγ ,Wγ) = Eγ ∩ Oγ, then x → ∩γ∈Γ(Eγ ∩ Oγ). If,

in addition, ∩γ∈Γ(Eγ ∩ Oγ) is a discrete set, then x → xe for some
xe ∈ ∩γ∈Γ(Eγ ∩ Oγ)

Proof. As σ ∈ Se ∩ Sd, then there exist T > 0 and τD > 0 such that
σ ∈ Se[T ] ∩ Sd[τD].

Let us prove 1. first. Since Se[T ] ∩ Sd[τD] has property P and (x, σ)
verifies the hypotheses of Theorem 3.2, there exists c ∈ R such that x →
π1(M(c)), where M(c) is the maximal weakly-invariant set w.r.t. Te[T ] ∩
Td[τD] contained in V −1(c) ∩ ZV . So, it suffices to show that π1(M(c)) ⊂
∩γ∈Γ(Eγ ∩ V −1

γ (c)).
Let (ξ, γ) ∈ M(c); then there exists a trajectory (x∗, σ∗) ∈ Te[T ] ∩ Td[τD]

such that (x∗(0), σ∗(0)) = (ξ, γ) and (x∗(t), σ∗(t)) ∈ M(c) for all t ∈ R. Then,
reasoning as in the proof of Theorem 4.1, Vσ∗(t−)(x

∗(t)) ≡ Vσ∗(t)(x
∗(t)) ≡ c

and, from (4), Wσ∗(t−)(x
∗(t)) ≡ Wσ∗(t)(x

∗(t)) ≡ 0.
Taking into account that x∗ is continuous and that either Ob

γ(fγ,Wγ) =
Eγ ∩ Oγ or Of

γ (fγ ,Wγ) = Eγ ∩ Oγ , it follows that x∗(t) ≡ ξ and that ξ ∈

Eσ∗(t) ∩Oσ∗(t) ∩ V −1
σ∗(t)(c) = Eσ∗(t) ∩ V −1

σ∗(t)(c) for all t ∈ R.

As σ∗ ∈ Se[T ], then σ∗(R) = Γ and, in consequence, ξ ∈ Eγ ∩ V −1
γ (c) for

all γ ∈ Γ.
In the case that for every c ∈ R, ∩γ∈Γ

(

Eγ ∩ V −1
γ (c)

)

is a discrete set,
that x → xe with xe ∈ ∩γ∈Γ(Eγ ∩Oγ), follows from the facts that x → Ω(x),
that Ω(x) is a nonempty connected set and that Ω(x) ⊂ ∩γ∈Γ

(

Eγ ∩ V −1
γ (c)

)

for some c ∈ R.
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The proof of 2. is similar to that of 1., so we omit it.
In the sequel we give sufficient conditions for the convergence to a given

equilibrium point xe of (1), i.e. a point xe that verifies fγ(xe) = 0 for all
γ ∈ Γ such that xe ∈ χγ . We assume, without loss of generality, that xe is
the origin.

Assumption 6 0 is an equilibrium point of (1).

Assumption 7 For every γ ∈ Γ such that 0 ∈ χγ, the initial value problem
ẋ = fγ(x), x(0) = 0 has a unique solution.

Theorem 4.3 Suppose that assumptions 6 and 7 hold and let (x, σ) be a
forward complete trajectory of (1) with σ ∈ Sa.

1. If Assumption 4 is verified, 0 ∈ O and the following holds

(a) Of
γ (fγ ,Wγ,∞) ∩ Ob

γ(fγ,Wγ,∞) ⊂ {0} for every γ ∈ Γ,

(b) Ob
γ(fγ,Wγ) ∩ Of

γ′(fγ′ ,Wγ′) ⊂ {0}, ∀γ 6= γ′,

then x → 0.

If Γ is finite, the same holds if we suppose that (x, σ) verifies Assump-
tion 5 instead of Assumption 4.

2. If Assumption 3 is verified, 0 ∈ O, 1.(i) holds and

(a) Ob
γ(fγ,Wγ) ∩ Of

γ′(fγ′ ,Wγ′) ∩ V −1
γ (c) ∩ V −1

γ′ (c) ⊂ {0}, ∀γ 6= γ′ ∈
Γ, ∀c ∈ R,

then x → 0.

Proof. Since σ ∈ Sa, there exist τD > 0 and N0 ∈ N such that σ ∈
Sa[τD, N0].

We first prove 2. By using the same arguments as in the proof of the
first part of Theorem 4.1, it follows that there exists c ∈ R such that
x → π1(M(c)), with M(c) the maximal weakly-invariant set w.r.t. Ta[τD, N0]
contained in V −1(c) ∩ ZV . So, it suffices to show that M(c) ⊂ {0} × Γ.

Let (ξ, γ) ∈ M(c); then there exists a trajectory (x∗, σ∗) ∈ Ta[τD, N0]
such that (x∗(0), σ∗(0)) = (ξ, γ) and (x∗(t), σ∗(t)) ∈ M(c) for all t ∈ R.
Once again, as in Theorem 4.1 we have that Vσ∗(t−)(x

∗(t)) ≡ Vσ∗(t)(x
∗(t)) ≡ c

and Wσ∗(t−)(x
∗(t)) ≡ Wσ∗(t)(x

∗(t)) ≡ 0. We will consider two cases.
Case 1. σ∗ has no switching times, i.e. σ∗(t) = γ for all t ∈ R. Then for
every t ∈ R, x∗(t) ∈ Oγ andWγ(ϕ(t)) = 0 and, since x∗(t) ∈ Of

γ (fγ,Wγ ,∞)∩
Ob

γ(fγ ,Wγ,∞) ⊂ {0}, x∗(t) = 0 for all t.
Case 2. σ∗ has a switching time t∗. Then, there exists τ > 0 such that, if
ϕ(t) = x∗(t + t∗), γ̂ = σ∗(t∗−) and γ′ = σ∗(t∗), γ̂ 6= γ′ and
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1. ϕ : [−τ, 0] → Oγ̂ is solution of ż = fγ̂(z) on [−τ, 0] and ϕ : [0, τ ] → Oγ′

is solution of ż = fγ′(z) on [0, τ ] ;

2. Vγ̂(ϕ(t)) = c on [−τ, 0] and Vγ′(ϕ(t)) = c on [0, τ ];

3. Wγ̂(ϕ(t)) = 0 on [−τ, 0] and Wγ′(ϕ(t)) = 0 on [0, τ ].

Thus x∗(t∗) = ϕ(0) ∈ Ob
γ̂(fγ̂ ,Wγ̂) ∩Of

γ′(fγ′,Wγ′) ∩ V −1
γ̂ (c) ∩ V −1

γ′ (c) ⊂ {0}.
That x∗(0) = 0 follows from the fact that, due to assumptions 6 and 7,

any initial value problem ż = fγ̂(z), z(0) = 0 has the unique solution z(t) ≡ 0
when 0 ∈ Oγ̂.

In order to prove 1. we note that in the case in which Γ is finite and (x, σ)
verifies Assumption 5 then, due to Theorem 3.3 (with S∗ = Sa[τD, N0]), it
suffices to show that for any ~c ∈ R

N , the set M(~c) of that theorem is a subset
of {0} × Γ. Since the proof of this fact is similar to that of M(c) ⊂ {0} × Γ
given above, we omit it.

Suppose now that (x, σ) verifies Assumption 4. It follows from the proof
of Theorem 4.1 that y(t) = W (x(t), σ(t)) is weakly meagre. Since W is
continuous on dom(f)∩(O×Γ), (x, σ) verifies the hypotheses of Theorem 3.4
and in consequence x → π1(M

∗), being M∗ the maximal weakly-invariant set
w.r.t. Ta[τD, N0] contained in dom(f)∩W−1(0). The proof of M∗ ⊂ {0}×Γ
in similar to that of M(c) ⊂ {0}×Γ, so we only delineate it. Let (ξ, γ) ∈ M∗;
then there exists (x∗, σ∗) ∈ Ta[τD, N0] such that (x∗(0), σ∗(0)) = (ξ, γ) and,
as in Theorem 4.1, Wσ∗(t−)(x

∗(t)) = Wσ∗(t)(x
∗(t)) = 0 for all t ∈ R. If σ∗ has

no switching times, then x∗(0) = 0 due to 1.(i).
If σ∗ has a switching time t∗ we considerer τ , ϕ, γ̂ and γ′ as in the proof of

Case 2. above. Then ϕ verifies 1. of that case, Wγ̂(ϕ(t)) = 0 on [−τ, 0] and
Wγ′(ϕ(t)) = 0 on [0, τ ]. Thus, from 1.(ii) we deduce that x∗(t∗) = ϕ(0) = 0
and a posteriori that x∗(0) = 0.

When Γ is finite and σ belongs to Sd ∩SH , hypothesis 2. of Theorem 4.3
can be weakened as follows.

Given a set-valued map H : Γ Γ, a finite sequence {γi}
m
i=1 ⊂ Γ, m ≥ 3,

is a simple cycle of H if γ1 = γm, γi+1 ∈ H(γi) for all i = 1, . . . , m− 1 and if
γi = γj and i < j then i = 1 and j = m.

Theorem 4.4 Suppose that Γ is finite, that H : Γ  Γ and that (x, σ) is
a forward complete trajectory of (1) with σ ∈ Sd ∩ SH . Suppose in addition
that assumptions 6 and 7 hold.

1. If Assumption 5 holds, 0 ∈ O and

(a) Of
γ (fγ ,Wγ,∞) ⊂ {0} for every γ ∈ Γ or Ob

γ(fγ,Wγ ,∞) ⊂ {0} for
every γ ∈ Γ,
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(b) for each simple cycle {γi}
m
i=1 of H there exists j ∈ {1, . . . , m− 1}

such that

Ob
γj
(fγj ,Wγj ) ∩Of

γj+1
(fγj+1

,Wγj+1
) ⊂ {0}, (5)

then x → 0.

2. The same conclusion as in 1. holds if we replace Assumption 5 by
Assumption 3 and condition 1. (ii) by the weaker one:

(a) for every c ∈ R and for each simple cycle {γi}
m
i=1 of H there exists

j ∈ {1, . . . , m− 1} such that

Ob
γj
(fγj ,Wγj ) ∩ Of

γj+1
(fγj+1

,Wγj+1
) ∩ V −1

γj
(c) ∩ V −1

γj+1
(c) ⊂ {0}. (6)

Proof. As σ ∈ Sd ∩ SH , there exists τD > 0 such that σ ∈ Sd[τD].
Suppose that (x, σ) verifies Assumption 5. Since Sd[τD]∩S

H has property
P and (x, σ) verifies the hypotheses of Theorem 3.3, there exists ~c ∈ R

N such
that x → π1(M(~c)), with M(~c) as in that theorem (with T ∗ = Td[τD]∩T H).
So, it suffices to show that M(~c) ⊂ {0} × Γ.

Let (ξ, γ) ∈ M(~c); then there exists a trajectory (x∗, σ∗) ∈ Td[τD] ∩ T H

such that (x∗(0), σ∗(0)) = (ξ, γ) and (x∗(t), σ∗(t)) ∈ M(~c) for all t ∈ R. So,
reasoning as in Theorem 4.1, Vσ∗(t−)(x

∗(t)) = cσ∗(t−), Vσ∗(t)(x
∗(t)) = cσ∗(t)

and Wσ∗(t−)(x
∗(t)) = Wσ∗(t)(x

∗(t)) = 0 for all t ∈ R. We distinguish two
cases:
Case 1. σ∗ has a finite number of switching times, t0 < t1 < · · · < tl. Suppose
first that for every γ ∈ Γ, Of

γ (fγ,Wγ ,∞) ⊂ {0} and let ϕ(t) = x∗(t + tl) for
t ≥ 0 and γl = σ∗(tl). Then ϕ is a solution of ż = fγl(z), ϕ(t) ∈ Oγl and
Wγl(ϕ(t)) = 0 for all t ≥ 0. In consequence x∗(tl) = 0, since x∗(tl) = ϕ(0) ∈
Of

γl
(fγ ,Wγ,∞) ⊂ {0}.
That ξ = x∗(0) = 0, follows from the fact that for every γ ∈ Γ such that

0 ∈ Oγ , the unique solution of the initial value problem ż = fγ(z), z(0) = 0
is z(t) ≡ 0 .
In the case when for every γ ∈ Γ, Ob

γ(fγ ,Wγ,∞) ⊂ {0}, we proceed in a
similar way, but considering instead ϕ(t) = x∗(t+ t0) for t ≤ 0.
Case 2. σ∗ has an infinite number of switching times. Since σ∗ ∈ SH , there
exists a finite sequence of consecutive switching times {tk}

m
k=1, such that the

sequence {γk}
m
k=1, with γk = σ∗(tk), is a simple cycle of H . By hypothesis

there exists an index j ∈ {1, . . . , m − 1} for which (5) holds. For such j
we consider the function ϕ : [−τD, τD] → R

n defined by ϕ(t) = x∗(t + tj+1).
Since (x∗, σ∗) ∈ Td[τD] we have, for any 0 < τ < τD, that
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1. ϕ : [−τ, 0] → Oγj is solution of ż = fγj (z) on [−τ, 0] and ϕ : [0, τ ] →
Oγj+1

is solution of ż = fγj+1
(z) on [0, τ ] ;

2. Wγj (ϕ(t)) = 0 on [−τ, 0] and Wγj+1
(ϕ(t)) = 0 on [0, τ ].

Therefore
ϕ(0) ∈ Ob

γj
(fγj ,Wγj ) ∩Of

γj+1
(fγj+1

,Wγj+1
)

and, by (5), x∗(tj+1) = ϕ(0) = 0. By using arguments similar to those of the
proof of case 1, we conclude that ξ = x∗(0) = 0.

Since the proof of 2. is similar to that of 1., we omit it.

Remark 4.4 It can be seen that Theorem 4.4 and Theorem 4.3 (supposing in
Part 1. that Γ is finite and that Assumption 5 holds) remain valid if, instead
of Assumption 7, we suppose that the function V in assumptions 3 and 5
verifies the following: for each γ ∈ Γ such that 0 ∈ χγ, V

−1
γ (0) ∩ χγ = {0}.

This condition is fulfilled when, for example, Vγ(·) is positive definite on χγ

for every γ such that 0 ∈ χγ.

4.2 Stability criteria

Combining the convergence results already presented with well known suf-
ficient Lyapunov conditions for the local (global) stability of a family T of
forward complete trajectories of (1), we can derive some new local (global)
asymptotic stability criteria.

We recall that a family T of forward complete trajectories of (1) is

1. locally uniformly stable (LUS) if there exist a positive number r > 0
and a function α : [0, r] → R of class K1 such that for all (x, σ) ∈ T

|x(t0)| ≤ r ⇒ |x(t)| ≤ α(|x(t0)|) ∀t ≥ t0, ∀t0 ≥ 0;

2. globally uniformly stable (GUS) if there exists a function α : [0,∞) → R

of class K∞ such that for all (x, σ) ∈ T

|x(t)| ≤ α(|x(t0)|) ∀t ≥ t0, ∀t0 ≥ 0;

3. locally asyptotically stable (LAS) if it is LUS and there exists η > 0
such that for all (x, σ) ∈ T with |x(0)| < η, x → 0;

1 As usual, by a K-function we mean a function α : [0, r] → R≥0 that is strictly
increasing and continuous, and satisfies α(0) = 0. A K∞-function is one of class K for
which r = +∞ and that is in addition unbounded.
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4. globally asyptotically stable (GAS) is it is GUS and for all (x, σ) ∈
T , x → 0.

The different stability results that we present next, require the introduc-
tion of the following pair of functions.

Definition 4.1 We say that a pair (V,W ) is a weak Lyapunov pair for the
family T of forward complete trajectories of (1) if

1. V ∈ V, 0 ∈ O and there exist functions α1 and α2 of class K such that

α1(|ξ|) ≤ V (ξ, γ) ≤ α2(|ξ|) ∀ξ ∈ Oγ, ∀γ ∈ Γ. (7)

2. W : dom(f)∩(O×Γ) → R is such that (4) holds with Wγ(·) = W (·, γ).

3. For every (x, σ) ∈ T , the following is verified:
x(t) ∈ O ∀t ∈ [a, b] ⊂ [0,+∞) ⇒ v(t) = V (x(t), σ(t)) is nonincreas-
ing on [a, b].

We say that a pair (V,W ) is a F-weak Lyapunov pair for the family T of
forward complete trajectories of (1) if V and W satisfy 1. and 2. and the
following condition, which is weaker than 3.

4. For every (x, σ) ∈ T , the following holds:
x(t) ∈ O for all t ∈ [a, b] ⊂ [0,+∞) ⇒ for every γ ∈ Γ v(t) =
V (x(t), γ) is nonincreasing on [a, b] ∩ σ−1(γ).

By using standard techniques (like those in [2] or in [11]) it is not hard to
prove that the existence of a weak Lyapunov pair (or a F-weak Lyapunov
pair when Γ is finite) for a family of trajectories T of (1), implies that T is
LUS and that it is GUS if, in addition, O = R

n and V is radially unbounded,
i.e. there exist functions α1 and α2 of class K∞ such that (7) holds.

Theorem 4.5 Suppose that Assumption 6 holds and let T be a family of
forward complete trajectories of (1) such that for every (x, σ) ∈ T , σ ∈ Sa.
Then T is LAS if one of the following conditions holds:

1. there exists a weak Lyapunov pair (V,W ) for T such that the restriction
of V to dom(f)∩ (O×Γ) is continuous and 1.(i) and 2.(ii) of Theorem
4.3 hold.

2. Assumption 7 holds and there exists a weak Lyapunov pair (V,W ) for
T such that W is continuous and 1.(i) and 1.(ii) of Theorem 4.3 hold.
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3. Γ is finite and there exists a F-weak Lyapunov pair (V,W ) for T such
that 1.(i) and 1.(ii) of Theorem 4.3 hold.

If, in addition, O = R
n and V is radially unbounded, then T is GAS.

Theorem 4.6 Suppose that Γ is finite and that Assumption 6 holds. Let
T be a family of forward complete trajectories of (1) such that for every
(x, σ) ∈ T , σ ∈ Sd ∩ SH , with H : Γ  Γ. Then T is LAS if one of the
following holds.

1. There exists a weak Lyapunov pair (V,W ) such that 1.(i) and 2.(iii) of
Theorem 4.4 hold.

2. There exists a F-weak Lyapunov pair (V,W ) such that 1.(i) and 1.(ii)
of Theorem 4.4 hold.

If, in addition, O = R
n and V is radially unbounded, then T is GAS.

Theorem 4.7 Suppose that Γ is finite and let T be a family of forward
complete trajectories of (1) such that for every (x, σ) ∈ T , σ ∈ Se ∩ Sd.
Suppose that there exists a F-weak Lyapunov pair (V,W ) for T such that for
all γ ∈ Γ, either Ob

γ(fγ,Wγ) = Eγ ∩ Oγ or Of
γ (fγ ,Wγ) = Eγ ∩ Oγ and that

∩γ∈Γ (Eγ ∩Oγ) = {0}. Then T is LAS.
If, in addition, O = R

n and V is radially unbounded, then T is GAS.

Proof of Theorems 4.5, 4.6 and 4.7. Since the hypotheses of the three
theorems imply that T is locally uniformly stable (LUS), we only need to
prove that there exists η > 0 such that for every (x, σ) ∈ T , |x(0)| < η
implies that x → 0.

Since T is LUS, there exist η > 0 and ρ > 0 such that, for every (x, σ) ∈ T
with |x(0)| < η, x(t) ∈ B = {ξ ∈ R

n : |ξ| ≤ ρ} ⊂ O for all t ≥ 0. Therefore
(x, σ) ∈ T is precompact relative to O whenever |x(0)| < η. Then, due to 1.
of Remark 4.4, to Theorem 4.3 in the case of Theorem 4.5 and to Theorem
4.4 in the case of Theorem 4.6, we have that x → 0 for any (x, σ) ∈ T such
that |x(0)| < η.

In the case of Theorem 4.7, due to Theorem 4.2 we have that for every
(x, σ) ∈ T such that |x(0)| < η, x → ∩γ∈Γ (Eγ ∩Oγ) = {0}. In consequence
the local asymptotic stability of T follows.

When O = R
n and V is radially unbounded, we have that T is GUS.

That x → 0 for every (x, σ) ∈ T follows by using the fact that any trajectory
of T is precompact and the same arguments as above.
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Remark 4.5 Theorem 4.7 strengthens Theorem 15 in [18] (which is the
extension of the main result of [3] to nonlinear switched systems ). In fact,
the hypotheses of Theorem 4.7 are weaker than those of that theorem since,
on one hand, even when restricted to the case V (ξ, γ) = V (ξ) and O = R

n

(as that theorem considers) the condition ∩γ∈ΓEγ = {0} is weaker than the
hypothesis that V is a common joint Lyapunov function as is assumed in that
work and, on the other hand, the condition Of

γ (fγ,Wγ) = Eγ is weaker than
the condition M ∩ Zγ = Eγ (with Zγ = {ξ : Wγ(ξ) = 0}) considered in [18],
since it always holds that Oγ(fγ,Wγ) ⊂ M ∩Zγ and sometimes the inclusion
is strict.

From Theorem 4.7 and Remark 4.1.2. we can easily derive the following
result, that contains as a particular case Theorem 1 of [3].

Corollary 4.1 Assume that Γ is finite and that fγ(ξ) = Aγξ with Aγ ∈
R

n×n for all ξ ∈ R
n. Let T be a family of forward complete trajectories

of (1) such that for all (x, σ) ∈ T , σ ∈ Sd ∩ Se. Suppose that there exists
a family of positive definite matrixes {Pγ, γ ∈ Γ} ⊂ R

n×n and a family of
matrixes {Cγ, γ ∈ Γ} such that

1. PγAγ + AT
γPγ ≤ −CT

γ Cγ for all γ ∈ Γ;

2. v(t) = xT (t)Pσ(t)x(t) is nonincreasing on [0,∞) for all (x, σ) ∈ T ;

3. for every γ ∈ Γ, Uγ, the unobservable subspace of the pair (Cγ, Aγ),
coincides with ker(Aγ);

4. ∩γ∈Γ ker(Aγ) = {0}.

The, T is GAS.

5 Conclusions

In this paper we have obtained some invariance results for switched systems
which satisfy a dwell-time condition. These results enable us to study, in
an unified way, properties of bounded trajectories of switched systems whose
switchings are subjected not only to state-dependent constraints, but also to
restrictions on the accessibility from each subsystem to other ones.

We also derived from these results some convergence and stability criteria.
These criteria involve observability-like conditions on functions which bound
the derivatives of some continuous functions that are nonincreasing along
complete trajectories of the switched systems.
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for nonlinear switched systems. Systems Control Lett., 41:67–71, 2000.

[16] J.L. Mancilla Aguilar and R.A.Garćıa. An extension of LaSalle’s invari-
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A Proof of Lemma 3.2

The following lemma is used in the proofs of Lemma 3.2 and Theorem 3.1.

Lemma A.1 Let {σk} be a sequence of switching signals in Sa[τD, N0] with
τD > 0 and N0 ∈ N. Then there exist a subsequence {σkl} and a switching
signal σ∗ ∈ Sa[τD, N0] such that

1. liml→∞ σkl(t) = σ∗(t) for almost all t ∈ R;
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2. for each t ∈ R there exists a sequence of times {rl(t)} such that

lim
l→∞

rl(t) = t, lim
l→∞

σkl(rl(t)) = σ∗(t) and lim
l→∞

τ 1σkl
(rl(t))− rl > 0.

Proof. Let m ∈ N. By applying Lemma A.1 in [16] to the sequence {σk(· −
m)},the thesis holds with [−m,+∞) instead of R. In addition, for any t ≥
−m the sequence {rl(t)} can be chosen to satisfy the condition rl(t) > −m
for all l.

Due to this fact, for each m ∈ N we can construct recursively a sequence
of positive integers {km

j }j∈N such that:

a) {km+1
j }j∈N is a subsequence of {km

j }j∈N for all m ∈ N;

b) For each m ∈ N there exists σ∗
m ∈ Sa[τD, N0] such that

1. limj→∞ σkmj
(t) = σ∗

m(t) for almost all t ≥ −m;

2. for each t ∈ [−m,∞) there exists a sequence of times {rmj (t)}j∈N,
with rmj (t) > −m for all j ∈ N, such that

lim
j→∞

rmj (t) = t, lim
j→∞

σkmj
(rmj (t)) = σ∗

m(t) and lim
l→∞

τ 1σkm
j

(rmj (t))−rmj (t) > 0.

In addition, if m ≥ 2 and t ≥ −m − 1, {rmj (t)}j∈N is a subsequence of

{rm−1
j (t)}j∈N.

Let us define {σkl} by σkl = σkl
l
for all l ∈ N, σ∗ by σ∗(t) = σ∗

l (t) if

t ∈ [−l,−l + 1) with l ≥ 2, and by σ∗(t) = σ1(t) if t ∈ [−1,∞) and {rl(t)}
by rl(t) = rll(t) for all t ∈ R and all l ∈ N. Taking into account that
for all t ≥ −m, {kl

l}l≥m and {rll(t)}l≥m are subsequences of {km
l }l∈N and of

{rml (t)}l∈N respectively, the theorem follows.
Proof of Lemma 3.2. Since it is clear that the three families of switching

signals verify 1. and 2. of definition 3.3, we only have to prove that they also
verify property 3. That this fact is true for Sa[τD, N0] follows from Lemma
A.1, and next we proceed to show that the other families of switching signals
also have this property.

Suppose that σk ∈ Sd[τD]∩SH for all k. Then, from Lemma A.1 and the
fact that Sd[τD] = Sa[τD, 1] , there exist a subsequence {σkl} and σ∗ ∈ Sd[τD]
such that σkl → σ∗ a.e. on R. Let t ∈ R be a switching time of σ∗; since
σkl(τ) → σ∗(τ) for almost all τ , there exist s < t < s′ such that σkl(s) →
σ∗(s), σkl(s

′) → σ∗(s′) and s′ − s < τD. We note that σ∗(s′) = σ∗(t) 6=
σ∗(t−) = σ∗(s).

Then, for l large enough, σkl(s) 6= σkl(s
′), and in consequence, σkl has

a unique switching time in the interval (s, s′]. Thus, (σkl(s), σkl(s
′)) ∈

Graph(H) for l large enough and, in consequence, since Graph(H) is closed,

(σ∗(t−), σ∗(t)) = (σ∗(s), σ∗(s′)) ∈ Graph(H).
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Therefore σ∗ ∈ Sd[τD] ∩ SH .
Suppose now that {σk} ⊂ Sd[τD] ∩ Se[T ]. By the same arguments of the

previous case, there exist a subsequence {σkl} and σ∗ ∈ Sd[τD] such that
σkl → σ∗ a.e. on R.

Let t0 ≥ 0, γ ∈ Γ and ǫ > 0 be fixed, and suppose that

σ∗−1(γ) ∩ [t0, t0 + T + ǫ] = ∅. (8)

Let ǫ′ > 0 such that ǫ′ < min{ǫ/2, τD/2} and

lim
k→∞

σk(t0 + ǫ′) = σ∗(t0 + ǫ′) = γ0 6= γ,

lim
k→∞

σk(t0 + T + ǫ− ǫ′) = σ∗(t0 + T + ǫ− ǫ′) = γ1 6= γ.

Then, since Γ is a finite set, there exists K0 ∈ N such that

σk(t0 + ǫ′) = γ0 and σk(t0 + T + ǫ− ǫ′) = γ1 ∀k ≥ K0. (9)

Let I = [t0 + ǫ′, t0 + T + ǫ − ǫ′]; as the length of I is greater than T and
(9) holds, then for each k ≥ K0 there exists tk ∈ I such that σk(tk) = γ
and σk(t

−
k ) 6= γ. From the compactness of I, there exists a subsequence

{tkl} ⊂ {tk} that converges to, say, tγ ∈ I.
Let ǫ′′ ∈ (0, ǫ′/2) and L0 ∈ N such that tkl ∈ (tγ − ǫ′′, tγ + ǫ′′) for every

l ≥ L0. Since for all l ≥ L0, σkl(s) = γ ∀s ∈ [tkl, tkl + τD), then for those
l’s σkl(s) = γ ∀s ∈ [tγ + ǫ′′, tγ + ǫ′) ⊂ [t0, t0 + T + ǫ]. Hence, there exists
t ∈ [tγ + ǫ′′, tγ + ǫ′) such that γ = liml→∞ σkl(t) = limk→∞ σk(t) = σ∗(t),
which contradicts (8). In consequence for every ǫ > 0, every t0 ≥ 0 and
every γ ∈ Γ, σ∗−1(γ) ∩ [t0, t0 + T + ǫ] 6= ∅.

Suppose now that for certain t0 ≥ 0 and γ ∈ Γ, σ∗−1(γ)∩ [t0, t0+ T ] = ∅;
then σ∗(t0 + T ) 6= γ and since σ∗ in right-continuous, there exists ǫ > 0 such
that σ∗(t0 + T + s) 6= γ ∀s ∈ [0, ǫ] and then σ∗−1(γ) ∩ [t0, t0 + T + ǫ] = ∅
which is a contradiction. In consequence σ∗−1(γ) ∩ [t0, t0 + T ] 6= ∅ for every
t0 ≥ 0 and every γ ∈ Γ, and the lemma follows.

B Proof of Theorem 3.1

The next result, that shows that under suitable hypotheses certain families
of trajectories of system (1) enjoy a certain kind of sequential compactness,
is used in the proof of Theorem 3.1.

We say that a sequence {(xk, σk)} of trajectories of (1) is uniformly pre-
compact if there exists a compact set B ⊂ R

n such that xk(t) ∈ B for all
t ∈ Ixk

.
Consider next the family I composed by the intervals I = [a, b) or I =

(−∞, b) with b finite or b = +∞.
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Proposition B.1 Let {(xk, σk)} be a uniformly precompact sequence of tra-
jectories of (1) such that for a certain interval I ∈ I and certain τD > 0
and N0 ∈ N, σk ∈ Sa[τD, N0] and Ixk

= I for all k. Then, there exist a
subsequence {(xkl , σkl)} and a trajectory (x∗, σ∗) of (1) with Ix∗ = I and
σ∗ ∈ Sa[τD, N0] such that

1. xkl → x∗ uniformly on compact subsets of I;

2. σkl → σ∗ a.e. on R.

Proposition B.1 makes use of the assertions of the following lemma.

Lemma B.1 Let {(xk, σk)} be a sequence such that for all k ∈ N, xk :
[a, b] → R

n is absolutely continuous, σk : [a, b] → Γ and ẋ(t) = f(xk(t), σk(t))
a.e. on [a, b]. Suppose that there exist a compact set B ⊂ R

n such that
xk([a, b]) ⊂ B for all k, and a function σ : [a, b] → Γ such that limk→∞ σk(t) =
σ(t) for almost all t ∈ [a, b]. Then there exist a subsequence {xkj} of {xk}
and an absolutely continuous function x : [a, b] → R

n such that xkj → x
uniformly on [a, b] and ẋ(t) = f(x(t), σ(t)) a.e. on [a, b].

Proof. Since for all k ∈ N, (xk(t), σk(t)) ∈ dom(f) ∩ (B × Γ), ẋk(t) =
f(xk(t), σk(t)) a.e. [a, b] and f is continuous on the compact set dom(f) ∩
(B×Γ), there exists M > 0 such that for all k ∈ N, |ẋk(t)| ≤ M for almost all
t ∈ [a, b]. In consequence {xk} is uniformly Lipschitz, since |xk(t)− xk(s)| ≤
M |t− s| for all t, s ∈ [a, b] and all k, and therefore equicontinuous.

Then, due to Arzelà-Ascoli Theorem, there exist a subsequence {xkj} and
a continuous function x : [a, b] → R

n such that xkj → x uniformly on [a, b].
We note that (x(t), σ(t)) ∈ dom(f) a.e. on [a, b] since for every t ∈ [a, b]

such that limk→∞ σk(t) = σ(t) and that (xk(t), σk(t)) ∈ dom(f) for all k ∈ N,
(x(t), σ(t)) ∈ dom(f).

Given that limj→∞ ẋkj (t) = limj→∞ f(xkj(t), σkj (t)) = f(x(t), σ(t)) for
almost all t ∈ [a, b] and that {ẋkj} is majorized by the constant function
ρ(t) = M on [a, b], by applying Lebesgue’s Dominated Convergence Theorem
we have that

x(t) = lim
j→∞

(

xkj(a) +

∫ t

a

ẋkj(s)ds

)

= x(a) +

∫ t

a

f(x(s), σ(s)) ds,

and the lemma follows.
Proof of Proposition B.1 Due to Lemma A.1 we can suppose without loss

of generality that there exists a switching signal σ∗ ∈ Sa[τD, N0] such that
limk→∞ σk(t) = σ∗(t) for almost all t ∈ R.
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Consider a sequence of intervals {[ak, bk]} such that for all k ∈ N, [ak, bk] ⊂
[ak+1, bk+1] ⊂ I and ∪k∈N[ak, bk] = I and let a compact set B such that
xk(I) ⊂ B for all k. Since xk([a1, b1]) ⊂ B, it follows from Lemma B.1 that
there exist a subsequence {(x1

k, σ
1
k)} and an absolutely continuous function

x1 : [a1, b1] → R
n such that x1

k → x1 uniformly on [a1, b1] and ẋ1(t) =
f(x1(t), σ∗(t)) a.e. [a1, b1]. Applying Lemma B.1 to the sequence {(x1

k, σ
1
k)}

on the interval [a2, b2] we can assure the existence of a subsequence {(x2
k, σ

2
k)}

of {(x1
k, σ

1
k)} and an absolutely continuous function x2 : [a2, b2] → R

n such
that x2

k → x2 uniformly on [a2, b2] and ẋ2(t) = f(x2(t), σ∗(t)) a.e. [a2, b2].
Proceeding in this way, it follows that for each l ∈ N we can construct
recursively a subsequence {(xl

k, σ
l
k)} of {(xk, σk)} such that:

1. {xl+1
k } is a subsequence of {xl

k} for all l ∈ N;

2. for each l ∈ N there exists an absolutely continuous function xl :
[al, bl] → R

n such that xl
k → xl uniformly on [al, bl] and ẋl(t) =

f(xl(t), σ∗(t)) a.e. [al, bl].

Let now the subsequence {(x∗
l , σ

∗
l )} of {(xk, σk)} defined for each l ∈ N as

x∗
l (t) = xl

l(t) for all t ∈ I and σ∗
l (t) = σl

l(t) for all t ∈ R and let x∗ : I → R
n

be the function given by x∗(t) = xl(t) for all t ∈ [al, bl] and all l ∈ N. Clearly,
x∗ is locally absolutely continuous on I and we show next that x∗

l → x∗

uniformly on compact subsets of I.
Let K ⊂ I be compact; then there exists j ∈ N such that K ⊂ [aj, bj ].

Since for all l ≥ j, x∗
l ∈ {xj

k}, it follows that x∗
l → xj uniformly on [aj, bj ].

The uniform convergence of {x∗
l } to x

∗ follows from the fact that x∗(t) = xj(t)
for all t ∈ [aj , bj].

Let now for all l ∈ N, kl ∈ N such that (xkl , σkl) = (x∗
l , σ

∗
l ). Then the

subsequence {(xkl, σkl)} verifies 1. and 2. of the thesis.
The proof finishes by showing that (x∗, σ∗) is a trajectory of (1). By

construction we have that ẋ∗(t) = f(x∗(t), σ∗(t)) for almost all t ∈ I. It
remains to prove that (x∗(t), σ∗(t)) belongs to dom(f) for all t ∈ I.

Let t ∈ I; then there exists a sequence of times {tk}, such that: i) for all k,
tk ∈ I, tk > t, (x∗(tk), σ

∗(tk)) ∈ dom(f) and σ∗(tk) = σ∗(t), ii) limk→∞ tk = t.
Hence, (x∗(tk), σ

∗(tk)) → (x∗(t), σ∗(t)) and (x∗(t), σ∗(t)) ∈ dom(f) since
dom(f) is closed.

From Proposition B.1 and by arguments similar to those used in its proof,
we can derive the following

Proposition B.2 Let τD > 0 and N0 ∈ N and let {(xk, σk)} be an uniformly
precompact sequence of trajectories of (1) such that σk ∈ Sa[τD, N0] and
[−k,∞) ⊂ Ixk

for all k. Then, there exist a subsequence {(xkl, σkl)} and a
trajectory (x∗, σ∗) ∈ Ta[τD, N0] such that
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1. xkl → x∗ uniformly on compact subsets of R;

2. σkl → σ∗ a.e. on R.

Proof of Theorem 3.1. Without loss of generality we can suppose that
Ix = [0,+∞). Let (ξ, γ) ∈ Ω♯(x, σ); then there exists a strictly increasing
and unbounded sequence {sk} which verifies 1. and 2. of Definition 3.1. Let
σk(·) = σ(·+ sk) and xk(·) = x(· + sk) and note that σk ∈ S∗ for all k since
S∗ has property P. As the sequence {(xk, σk)} is uniformly precompact,
Ixk

= [−k,∞) and, due to 1. of Definition 3.3, S∗ ⊂ Sa[τD, N0] for some
τD > 0 and some N0 ∈ N, then from Proposition B.2 and taking into account
3. of Definition 3.3, there exist a subsequence (xkl, σkl) and a trajectory
(x∗, σ∗) ∈ T ∗ such that {xkl} converges to x∗ uniformly on compact subsets
of R and {σkl} converges to σ∗ a.e. on R.

Due to Lemma A.1, we can assume without loss of generality that {σkl}
verifies condition 2 of that lemma.

The proof ends provided that we show that (x∗(0), σ∗(0)) = (ξ, γ) and
that (x∗(t), σ∗(t)) ∈ Ω♯(x, σ) for all t ∈ R.

Let us prove first that (x∗(0), σ∗(0)) = (ξ, γ). From the fact that xk(0) =
x(sk), from 2. of Definition 3.1 and due to the convergence of {xkl} to x∗, it
holds that x∗(0) = ξ.

According to 2. of Lemma A.1, there exists a sequence {rl} ⊂ R such
that liml→∞ rl = 0, liml→∞ τ 1σkl

(rl)−rl > 0 and liml→∞ σkl(rl) = σ∗(0). From

item 1. of Definition 3.1 and the fact that τ 1σk
(0) = τ 1σ(sk)− sk for all k ∈ N,

it follows that liml→∞ τ 1σkl
(0) > 0. Then rl < τ 1σkl

(0) for l large enough and

therefore, σ∗(0) = liml→∞ σkl(rl) = liml→∞ σkl(0) = liml→∞ σ(skl) = γ.
In order to prove that (x∗(t), σ∗(t)) ∈ Ω♯(x, σ) for all t ∈ R, t 6= 0, let one

such time t and let {rl(t)} be a sequence as in 2. of Lemma A.1. In order to
simplify the notation, we will write rl instead of rl(t).

Consider the unbounded sequence {s′l}, defined by s′l = rl + skl, which
we assume, without loss of generality, strictly increasing. Since τ 1σ(s

′
l) =

τ 1σkl
(rl) + skl, we have that liml→∞ τ 1σ(s

′
l)− s′l > 0. So {s′l} satisfies condition

1. of Definition 3.1.
That liml→∞ σ(s′l) = liml→∞ σkl(rl) = σ∗(t) follows from 2. of Lemma

A.1. From the uniform convergence of {xkl} to x∗ on compact sets and the
continuity of x∗ we have that liml→∞ x(s′l) = liml→∞ xkl(rl) = x∗(t). Hence
(x(s′l), σ(s

′
l)) → (x∗(t), σ∗(t)) as l → ∞ and in consequence (x∗(t), σ∗(t)) ∈

Ω♯(x, σ).
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