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Abstract— This paper studies the consensus among identical
agents that are at most critically unstable and coupled through
networks with uniform constant communication delay. An
achievable upper bound of delay tolerance is obtained which
explicitly depends on agent dynamics and network topology.
The dependence on network topology disappears in the case of
undirected networks. For any delay satisfying this upper bound,
a controller design methodology without exact knowledge of the
network topology is proposed so that the multi-agent consensus
in a set of unknown networks can be achieved. Moreover,
when the network topology is known, a larger delay tolerance
is possible via a topology-dependent consensus controller. The
results are illustrated by simulations.

I. INTRODUCTION

The consensus problem in a network has received substan-
tial attention in recent years, partly due to the wide appli-
cations in areas such as sensor networks and autonomous
vehicle control. A relatively complete coverage of earlier
work can be found in the survey paper [8], the recent books
[15], [11] and references therein.

Consensus in the network with time delay has been
extensively studied in the literature. Most results consider
the agent model as described by single-integrator dynamics
([1], [12], [9]), or double-integrator dynamics ([13], [5], [2]).
Specifically, it is shown in [9] that a network of single-
integrator agents subject to uniform constant communication
delay can achieve consensus with a particular linear local
control protocol if and only if the delay is bounded by a max-
imum that is inversely proportional to the largest eigenvalue
of the graph Laplacian associated with the network. This
result was later on generalized in [1] to non-uniform constant
or time-varying delays. Sufficient conditions for consensus
among agents with first order dynamics were also obtained
in [12]. The results in [9] were extended in [5], [2] to double
integrator dynamics. An upper bound on the maximum
network delay tolerance for second-order consensus of multi-
agent systems with any given linear control protocol was
obtained.

In this paper, we study the multi-agent consensus problem
with uniform constant communication delay. The agents are
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assumed to be at most critically unstable, i.e. each agent
has all its eigenvalues in the closed left half plane. The
contribution of this paper with respect to [9], [1], [5],
[2] is twofold: first, we find a sufficient condition on the
tolerable communication delay for agents with high-order
dynamics, which has an explicit dependence on the agent
dynamics and network topology. For undirected network, this
upper bound can be independent of the network topology
provided that the network is connected. Moreover, in a
special case where the agents only have zero eigenvalues,
such as single- and double-integrator dynamics, arbitrarily
large but bounded delay can be tolerated. Another layer
of contribution is that for delays satisfying the proposed
upper bound, we present a controller design methodology
without exact knowledge of network topology so that multi-
agent consensus in a set of unknown networks can be
achieved. When the network topology is precisely known, the
controller design can be modified to be topology-dependent
and a larger delay tolerance is attainable. Some additional
work exists on nonuniform communication delays, see [6],
[7]. These address only very specific cases and no general
design methodology exists at this moment.

The rest of the paper is organized as follows: notations
and some preliminary results are declared in the remainder of
Section I. System and network configuration and consensus
problem formulations are given in Section II. The consensus
problem with full-state coupling is solved in Section III.
The corresponding problem with partial-state coupling is
dealt with in Section IV. In Section V, we discuss the
special of neutrally stable systems. Some technical lemmas
are appended at the end of this paper.

A. Notations and Preliminaries

For a vector d , we denote a diagonal matrix by D=diagfdg
where the diagonal is specified by d . For column vectors
x1; : : : ; xn, the stacking column vector of x1; : : : ; xn is
denoted by Œx1I : : : I xn�.

A graph G is defined by a pair .N ;E/ where N D

f1; : : : ; N g is a vertex set and E is a set of pairs of vertices
.i; j /. Each pair in E is called an arc. G is undirected if
.i; j / 2 E ) .j; i/ 2 E . Otherwise, G is directed. A
directed path from vertex i1 to ik is a sequence of vertices
fi1; : : : ; ikg such that .ij ; ijC1/ 2 E for j D 1; : : : ; k � 1. A
directed graph G contains a directed spanning tree if there
is a node r such that a directed path exists between r and
every other node.

The graph G is weighted if each arc .i; j / is assigned
with a real number aij . For a weighted graph G, a matrix
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L D f`ij g with

`ij D

(PN
jD1 aij ; i D j

�aij ; i ¤ j;

is called the Laplacian matrix associated with graph G. In
the case where G has non-negative weights, L has all its
eigenvalues in the closed right half plane and at least one
eigenvalue at zero associated with right eigenvector 1 (see
[4]). If G has a directed spanning tree, L has a simple
eigenvalue at zero and all the other eigenvalues have strictly
positive real parts (see e.g. [10]).

II. PROBLEM FORMULATION

Consider a network of N identical agents�
Pxi .t/ D Axi .t/C Bui .t/; i D 1; : : : ; N;

zi .t/ D �
PN
jD1 `ijx

j .t � �/:
(1)

where xi 2 Rn, ui 2 Rm and zi 2 Rn, � > 0 is an unknown
constant satisfying � 2 Œ0; N��. The coefficients `ij are such
that `ij � 0 for i ¤ j and `i i D �

PN
j¤i `ij . In (1),

each agent collects a delayed measurement zi of the state
of neighboring agents through the network, which we refer
to as full-state coupling.

It is also common that zi may consist of the output of
neighboring agents instead of the complete state which can
be formulated as follows:8<: Px

i .t/ D Axi .t/C Bui .t/;

yi .t/ D Cxi .t/; i D 1; : : : ; N;

zi .t/ D �
PN
jD1 `ijy

j .t � �/;

(2)

where xi 2 Rn, ui 2 Rm and yi ; zi 2 Rp . We refer to the
agents in this case as having partial-state coupling.

The matrix L D f`ij g 2 RN�N defines the communication
topology which can be captured by a weighted graph G D
.N ;E/ where .j; i/ 2 E , `ij < 0 and ai i D 0 and
aij D �`ij for i ¤ j . The G is directed in general. However,
in a special case where L is symmetric, G is undirected. This
L is the the Laplacian matrix associated with G.

Assumption 1: The following assumptions are made
throughout the paper:

1) The agents are at most critically unstable, that is, A
has all its eigenvalues in the closed left half plane;

2) .A;B/ is stabilizable and .A; C / is detectable;
3) The communication topology described by the graph

G contains a directed spanning tree.
Remark 1: As noted before, under Assumption 1, L has

one simple eigenvalue in zero and the others lie in the open
left half plane.

It should be noted that in practice, perfect information
of the communication topology is usually not available for
controller design and that only some rough characterization
of the network can be obtained. Using the non-zero eigenval-
ues of L as a “measure” for the graph, we can introduce the
following definition to characterize a set of unknown commu-
nication topologies. Let �1; � � � ; �N denoted the eigenvalues
of L and assume �1 D 0.

Definition 1: For any 
 � ˇ � 0 and �
2
> ' � 0,

Gˇ;
;' is the set of graphs satisfying Assumption 1 and whose
associated Laplacian satisfies

j�i j 2 .ˇ; 
/ and arg�i 2 Œ�'; '�

for i D 2; : : : ; N .
Definition 2: The agents in the network achieve consensus

if

lim
t!1

.xi .t/ � xj .t// D 0; 8i; j 2 f1; : : : ; N g:

Two consensus problems for agents with full-state cou-
pling (1) and partial-state coupling (2) respectively can be
formulated for this set of networks as follows:

Problem 1: Consider a network of agents (1) with full
state coupling. The consensus problem given a set of possible
communication topologies Gˇ;
;' and a delay upper bound
N� is to design linear static controllers ui D F zi for i D
1; : : : ; N such that the agents (1) with ui D F zi achieve
consensus with any communication topology belonging to
Gˇ;
;' for � � N� .

Problem 2: Consider a network of agents (2) with partial
state coupling. The consensus problem with a set of possible
communication topologies Gˇ;
;' and a delay upper bound
N� is to design linear dynamic control protocols of the form:�

P�i D Ac�
i C Bcz

i

ui D Cc�
i ;

(3)

for i D 1; : : : ; N such that the agents (2) with controller
(3) achieve consensus with any communication topology
belonging to Gˇ;
;' for � � N� .

III. CONSENSUS WITH FULL-STATE COUPLING

In this section, we consider agents with full-state coupling
as given in (1) and solve Problems 1.

For a given set of networks Gˇ;
;' , we design a decentral-
ized local consensus controller for any network in Gˇ;
;' as
follows:

ui D ˛F"z
i ; (4)

where F" D B 0P". Here P" is the positive definite solution
of the Algebraic Riccati Equation (ARE)

A0P" C P"A � P"BB
0P" C "I D 0: (5)

and ", as well as ˛, are design parameters which will be
chosen according to ˇ, 
 and ' so that the multi-agent
consensus can be achieved with any communication topology
belonging to Gˇ;
;' . Let

!max D

(
0; A is Hurwitz:
maxf! 2 R j det.j!I � A/ D 0g; otherwise:

The first main result of this paper is stated in the next
theorem which solves the network consensus problem with
respect to Gˇ;
;' .

Theorem 1: For a given set Gˇ;
;' and N� > 0, consider
the agents (1) and any coupling network belonging to the
set Gˇ;
;' . In that case Problem 1 is solvable if,

N� <

�
2
� '

!max
: (6)
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Moreover, it can be solved by the consensus controller (4) if
(6) holds. Specifically, for given Gˇ;
;' and given N� satisfying
(6), there exist ˛ > 0 and "� > 0 such that for this ˛ and
any " 2 .0; "��, the agents (1) with controller (4) achieve
consensus for any communication topologies in Gˇ;
;' and
� 2 Œ0; N��.

Proof: It follows from Lemma 1 in the Appendix that
Theorem 1 holds if for any 
 � ˇ > 0, N� > 0 and '

satisfying (6), there exist ˛ > 0 and "� such that for " 2
.0; "��, the system

Px D Ax � �˛ej BF"x.t � �/: (7)

is asymptotically stable for all � 2 Œ0; N��, � 2 .ˇ; 
/ and
 2 Œ�'; '�.

Since N� and ' satisfy condition (6), there exists an ˛ > 0
such that

arccos. 1
˛ˇ
/ > ' C !max N�: (8)

Let this ˛ be fixed. By Lemma 4, (8) implies that
˛� cos.'/ > 1, and hence, A�˛�ej BF" is Hurwitz stable
for  2 Œ�'; '�. Then it follows from Lemma 3 that system
(7) is asymptotically stable if

det
h
j!I � AC ˛�ej. �!�/BF"

i
¤ 0; (9)

for ! 2 R, � 2 Œ0; N�� and  2 Œ�'; '�.
First, we note that given (8), there exists a ı > 0 such that

arccos. 1
2˛ˇ

/ > ' C ! N�; 8j!j < !max C ı: (10)

Next we will split the proof of (9) in two cases where j!j <
!max C ı and j!j � !max C ı respectively.

If j!j � !maxC ı, we have det.j!I �A/ ¤ 0, in another
word, �.j!I �A/ > 0. Hence, there exists � > 0 such that

�.j!I � A/ > �; 8!; s.t. j!j � !max C ı:

To see this, note that for ! satisfying j!j > N! WD maxfkAkC
1; !max C ıg,

�.j!I � A/ > j!j � kAk > 1:

But for ! with j!j 2 Œ!max C ı; N!�, there exists � 2 .0; 1�
such that

�.j!I � A/ � �;

which is due to the fact that �.j!I � A/ depends contin-
uously on !. Given ˛ and � 2 .ˇ; 
/, there exists "� > 0

such that k�˛BF"k � �=2 for " < "�. Then

�.j!I � AC ˛�ej. �!�/BF"/ � � � �=2 � �=2:

Therefore, condition (9) holds for j!j � !max C ı.
It remains to verify (9) with j!j < !max C ı. By the

definition of ı, we find that

˛� cos. � !�/ > ˛ˇ cos.' C j!j N�/ > 1
2
;

and hence by Lemma 4, A � ˛�ej. �!�/BF" is Hurwitz
stable, for ! 2 .�!max�ı; !maxCı/, � 2 .ˇ; 
/,  2 Œ�'; '�
and � 2 Œ0; N��. Therefore, (9) also holds with j!j < !maxCı.

Remark 2: Some comments on implementation of the
consensus controller (4) are worthwhile. Four parameters are
chosen sequentially in the consensus design and analysis,
namely ˛, ı, � and ". First, we select the scaling parameter
˛ in (8) using the given data ˇ, ' and !max. Then, ı is chosen
based on network data and the choice of ˛ and such a ı will
yield corresponding value of �. Eventually, " is determined
by � and 
 .

Remark 3: The consensus controller design depends only
on the agent model and parameters N�; ˇ; 
 and ' and is
independent of specific network topology provided that the
network satisfies Assumption 1.

In the special case where !max D 0, i.e. the eigenvalues
of A are either zero or in the open left half plane, then
arbitrarily bounded communication delay can be tolerated as
formulated in the following corollary:

Corollary 1: For a given set Gˇ;
;' and N� > 0, consider
the agents (1) and any communication topology belonging
to the set Gˇ;
;' . Suppose the eigenvalues of A are either
zero or in the open left half plane. In that case, Problem 1 is
always solvable via the consensus controller (4). Specifically,
for given Gˇ;
;' and N� > 0, there exist ˛ and "� such that
for any " 2 .0; "��, the agents (1) with controller (4) achieve
consensus for any communication topologies in Gˇ;
;' and
� 2 Œ0; N��.

Remark 4: In the previous study of network consensus
problem, agents are normally assumed to have single- or
double-integrator type dynamics. Based on Corollary 1, we
find that the delay tolerance in such cases is independent
of network topology and can be made arbitrarily large. This
result in no way contradicts that in [9], [5], [2] since the
goal here is to find the maximal achievable delay tolerance
by controller design whereas obtained in [9], [5], [2] are the
conditions on delay for which the consensus with certain
given controller is not spoiled.

Remark 5: Note that for undirected and connected net-
works, the Laplacian associated with G is symmetric and
hence has only real eigenvalues, i.e. we can set ' D 0. In
this case, the upper bound of tolerable delay is independent
of network topology. However, in directed networks, we have
to sacrifice some robustness in the delay tolerance in order
to cope with the complex part of Laplacian eigenvalues.

IV. CONSENSUS WITH PARTIAL-STATE COUPLING

Next, we proceed to the case of partial-state coupling
and design a dynamic consensus controller (3) which solves
Problem 2.

For " > 0, let P" be the positive definite solution of the
ARE (5). A dynamic low-gain consensus controller can be
constructed as �

P�i D .ACKC/�i �Kzi

ui D ˛B 0P"�
i ;

(11)

where K is such that A C KC is Hurwitz stable. ˛ and "
are design parameters to be chosen later. We shall prove that
the consensus controller solves Problem 2.
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Theorem 2: For a given set Gˇ;
;' and N� > 0, consider
the agents (2) with any communication topology belonging
to Gˇ;
;' . In that case, Problem 2 is solvable if,

N� <

�
2
� '

!max
: (12)

Moreover, it can be solved by the consensus controller (11)
if (12) holds. Specifically, for given ˇ and 
 and given '
and N� satisfying (12), there exist ˛ > 0 and "� such that for
any " 2 .0; "��, the agents (2) with controller (11) achieve
consensus for any communication topology in Gˇ;
;' and
� 2 Œ0; N��.

Proof: It follows from Lemma 2 in the Appendix that
Theorem 2 holds if there exist ˛ > 0 and "� > 0 such that
for " 2 .0; "��, the system�

Px.t/ D Ax.t/ � ˛�ej BB 0P"�.t � �/

P�.t/ D .ACKC/�.t/ �KCx.t/
(13)

is asymptotically stable for any � 2 .ˇ; 
/,  2 Œ�'; '� and
� 2 Œ0; N��.

Define

NA D

�
A 0

�KC ACKC

�
; NB D

�
B

0

�
; NF" D

�
0 �B 0P"

�
:

First of all, for � 2 .ˇ; 
/ and  2 .�'; '/, there exists ˛
such that

�˛ cos.' C !max N�/ > 2: (14)

Let this ˛ be fixed. By Lemma 5 in the Appendix, there exists
"1 such that for " 2 .0; "1�, NAC˛�ej NB NF" is Hurwitz stable
for � 2 .ˇ; 
/ and  2 .�'; '/. It follows from Lemma 3
that (13) is asymptotically stable if

det
h
j!I � NA � ˛�ej. �!�/ NB NF"

i
¤ 0; 8! 2 R;

8� 2 .ˇ; 
/; 8 2 .�'; '/; 8� 2 Œ0; N��: (15)

Given (14), there exists ı > 0 such that

�˛ cos.' C ! N�/ > 1; 8j!j < !max C ı: (16)

We can show, as in the proof of Theorem 1, that there exists
"2 � "1 such that for " 2 .0; "2�, condition (15) holds for
j!j � !max C ı.

For j!j < !maxCı, it follows from (16) and Lemma 5 that
NAC˛�ej. �!�/ NB NF" is Hurwitz stable. Therefore, condition

(15) also holds with j!j < !max C ı.
Remark 6: The low-gain compensator (11) is constructed

based on the agent model and the network characteristics ˇ,

 and '. The four parameters ˛, ı, � and " used in the
design of controller (11) are chosen with the same order and
relation as in the proof of Theorem 1.

The next corollary is concerned with the case !max D 0

where the eigenvalues of A are either zero or in the open
left half plane.

Corollary 2: For a given set Gˇ;
;' and N� > 0, consider
the agents (2) with any communication topology belonging
to Gˇ;
;� . Suppose the eigenvalues of A are either zero or in
the open left half plane. In that case, Problem 2 is solvable

by the consensus controller (11). Specifically, for given ˇ,

 , ' and N� > 0, there exist ˛ > 0 and "� > 0 such that for
any " 2 .0; "��, the agents (2) with controller (11) achieve
consensus for any communication topology in Gˇ;
;' and
� 2 Œ0; N��.

V. SPECIAL CASE: NEUTRALLY STABLE AGENTS

We observe that the consensus controller design in Theo-
rem 1 and Theorem 2 for general critically unstable agents
depends on ˇ which is related to the algebraic connectivity
of the graph. We next consider a special case where the agent
dynamics are neutrally stable, that is, the eigenvalues of A
on the imaginary axis, if any, are semi-simple. Without loss
of generality, we assume that A0 C A � 0 which can be
obtained after a suitable basis transformation. In this case,
we shall show that the consensus controller design no longer
requires the knowledge of ˇ and hence allows us to deal with
a larger set of unknown communication topologies that can
be denoted as G0;
;' .

Consider the agents (1). Assume A0 C A � 0. A local
consensus controller can be constructed as

ui D "B 0zi : (17)

We have the following theorem:
Theorem 3: For a given set G0;
;' and N� > 0, consider

the agents (1) and any communication topology belonging
to the set G0;
;' . Suppose A0CA � 0. In that case, Problem
1 is solvable if,

N� <

�
2
� '

!max
; (18)

Moreover, it can be solved by the consensus controller (17)
if (18) holds. Specifically, for given 
 and given ' and N�
satisfying (18), there exists an "� such that for any " 2

.0; "��, the agents (1) with controller (17) achieve consensus
for any communication topology in G0;
;' and � 2 Œ0; N��.

Proof: It follows from Lemma 1 that Theorem 3 holds
if the system

Px D Ax � �"ej BB 0x.t � �/ (19)

is asymptotically stable for � 2 .0; 
/,  2 Œ�'; '� and
� 2 Œ0; N��, which, by Lemma 3, is true if and only if

det
�
j!I � AC "�ej �j!�BB 0

�
¤ 0;

8! 2 R; � 2 .0; 
/;  2 Œ�'; '�; � 2 Œ0; N��: (20)

There exists ı > 0 such that

! N� C ' < �
2
; 8! s.t. j!j < !max C ı:

For given � 2 .0; 
/, we can show with a similar argument
as in the proof of Theorem 1 that there exists a � > 0 and
a "1 such that for " 2 .0; "1� and � 2 .0; 
/

�.j!I �AC "�ej �j!�BB 0/ > �;8! s.t. j!j � !maxC ı:

Hence, (20) is satisfied with j!j � !max C ı.
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It remains to show (20) for j!j < !max C ı. Note that
 � !� 2 .��

2
; �
2
/ by definition of ı and hence cos. �

!�/ > 0. Then

ŒA � "�ej �j!�BB 0�� C ŒA � �"ej �j!�BB 0�

D �2�" cos. � !�/BB 0 � 0

Since .A;B/ is controllable, we conclude that A �

�"ej �j!�BB 0 is Hurwitz, and hence (20) also holds, with
j!j < !max C ı.

The next theorem addresses the consensus problem for
networks with partial state coupling. In this case, a low-gain
consensus controller can be designed as�

P�i D .ACKC/�i �Kzi

ui D "B 0�i ;
(21)

where K is such that ACKC is Hurwitz.
Theorem 4: For a given set G0;
;' and N� > 0, consider

the agents (2) with any communication topology belonging
to G0;
;' . Suppose A C A0 � 0. In that case, Problem 2 is
solvable if,

N� <

�
2
� '

!max
: (22)

Moreover, it can be solved by the consensus controller (21)
if (22) holds. Specifically, for given 
 and given ' and N�
satisfying (22), there exists an "� such that for any " 2

.0; "��, the agents (2) with controller (21) achieve consensus
for any communication topology in G0;
;' and � 2 Œ0; N��.

Proof: It follows from Lemma 2 in the Appendix that
Theorem 2 holds if there exist ˛ > 0 and "� > 0 such that
for " 2 .0; "��, the system�

Px.t/ D Ax.t/ � "�ej BB 0�.t � �/

P�.t/ D .ACKC/�.t/ �KCx.t/
(23)

is asymptotically stable for any � 2 .0; 
/,  2 Œ�'; '� and
� 2 Œ0; N��.

Define

NA D

�
A 0

�KC ACKC

�
; NB D

�
B

0

�
; NF" D

�
0 �"B 0

�
:

By Lemma 6 in the Appendix, there exists "1 such that for
" 2 .0; "1�, NA C ˛�ej NB NF" is Hurwitz stable. It follows
from Lemma 3 that (23) is asymptotically stable if

det
h
j!I � NA � ˛�ej. �!�/ NB NF"

i
¤ 0; 8! 2 R;

8� 2 .ˇ; 
/; 8 2 .�'; '/; 8� 2 Œ0; N��: (24)

Similarly as before, there exist ı > 0 and "2 � "1 such that
for " 2 .0; "2�, condition (24) holds for j!j � !max C ı.

On the other hand, j!j < !maxCı, it follows from Lemma
6 that NA C ˛�ej. �!�/ NF" is Hurwitz stable. Therefore,
condition (24) also holds with j!j < !max C ı.

VI. CONCLUDING REMARKS

In this paper, we study the multi-agent consensus with
uniform constant communication delay for agents with high-
order dynamics. A sufficient condition on delay is derived
under which the multi-agent consensus is attainable. When-
ever this condition is satisfied, a controller without the exact
knowledge of network topology can be constructed such that
consensus can be achieved in a set of networks.

Although this paper focuses on unknown communication
topologies, when the perfect information about the topology
is in fact available, the design procedure can be easily
modified to achieve a stronger result. In this case, input ui
to each agents can be first scaled as ui D di Nui where these
di are such that diagfdigL has a simple eigenvalue at zero
and the rest are real and strictly positive. The existence of
such di s is proved by [3]. Then we can design Nui following
the procedure proposed in this paper.

Future research will continuous in two directions: 1.
extend the results to non-identical agents; 2. consider non-
uniform and time-varying delay.

APPENDIX

Due to space limitation, all the proofs have been deleted,
which can be found in the full version [14].

A. Connection of network consensus to robust stabilization

Lemma 1: Problem 1 is solvable via consensus controller
ui D F zi if the following N � 1 systems

P� i .t/ D A� i .t/ � �iBF �
i .t � �/ (A.1)

are asymptotically stable where �i , i D 2; :::; N are the
non-zero eigenvalues of the Laplacian associated with the
communication topology.

Lemma 2: Problem 2 is solvable via consensus controller
(3) if the following N � 1 systems�

Pxi .t/ D Axi .t/ � �iBCc�
i .t � �/

P�i .t/ D Ac�
i .t/C Bcz

i .t/
(A.2)

are asymptotically stable where �i for i D 2; : : : ; N are the
non-zero eigenvalues of the Laplacian matrix L.

The following lemma is adapted from [16].
Lemma 3: Consider a linear time-delay system

Px D Ax C Adx.t � �/: (A.3)

Assume ACAd is Hurwitz. We have that (A.3) is globally
asymptotically stable for � 2 Œ0; N�� if

det
�
j!I � A � e�j!�Ad

�
¤ 0; 8! 2 R; 8� 2 Œ0; N��;

for all ! 2 R and � 2 Œ0; N��.
In this subsection, we recall some classical robust prop-

erties of low-gain feedback and compensator. Consider an
uncertain system �

Px D Ax C �Bu

y D Cx;
(A.4)

where .A;B/ is stabilizable, .A; C / is detectable and A has
all its eigenvalues in the closed left half plane. The � 2 C is
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input uncertainty. For " > 0, let P" be the positive definite
solution of ARE

A0P" C AP" � P"B
0BP" C "I D 0:

The robustness of a low-gain state feedback u D �B 0P"x is
inherited from that of a classical LQR.

Lemma 4: A � �BB 0P" is Hurwitz stable for any � 2

fs 2 C j Re.s/ � 1
2
g.

The next lemma proves similar property of a low-gain
compensator.

Lemma 5: For any a priori given bounded set

W � fs 2 C j Re.s/ � 1g;

there exists "� such that for any " 2 .0; "��, the closed-loop
system of (A.4) and the low-gain compensator�

P� D .ACKC/� �Ky;

u D �B 0P"�
(A.5)

is asymptotically stable for any � 2 W .
Lemma 6: Consider system (A.4). Suppose A0 C A � 0.

For any a priori given ' 2 .0; �
2
/ and a bounded set

W � fs 2 C j s ¤ 0; arg.s/ 2 Œ�'; '�g;

there exists "� such that for any " 2 .0; "��, the closed-loop
system of (A.4) and the low-gain compensator�

P� D .ACKC/� �Ky;

u D �"B 0�
(A.6)

is asymptotically stable for any � 2 W .
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