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Stability of dynamical distribution networks with arbitra ry flow
constraints and unknown in/outflows*

Jieqiang Wei1 and Arjan van der Schaft2

Abstract— A basic model of a dynamical distribution net-
work is considered, modeled as a directed graph with storage
variables corresponding to every vertex and flow inputs cor-
responding to every edge, subject to unknown but constant
inflows and outflows. We analyze the dynamics of the system in
closed-loop with a distributed proportional-integral controller
structure, where the flow inputs are constrained to take value in
closed intervals. Results from our previous work are extended to
general flow constraint intervals, and conditions for asymptotic
load balancing are derived that rely on the structure of the
graph and its flow constraints.

I. INTRODUCTION

In this paper we study a basic model for the dynamics
of a distribution network. Identifying the network with a
directed graph we associate with every vertex of the graph
a state variable corresponding tostorage, and with every
edge a control input variable corresponding toflow, which
is constrained to take value in a given closed interval.
Furthermore, some of the vertices serve as terminals where
an unknown but constant flow may enter or leave the network
in such a way that the total sum of inflows and outflows is
equal to zero. The control problem to be studied is to derive
necessary and sufficient conditions for a distributed control
structure (the control input corresponding to a given edge
only depending on the difference of the state variables of the
adjacent vertices) which will ensure that the state variables
associated to all the vertices will converge to the same value
equal to the average of the initial condition, irrespectiveof
the values of the constant unknown inflows and outflows.

The structure of the paper is as follows. Preliminaries
and notations will be given in Section 2. In Section 3 we
will briefly recall how in the absence of constraints on the
flow input variables a distributed proportional-integral (PI)
controller structure, associating with every edge of the graph
a controller state, will solve the problem if and only if the
graph is weakly connected; see also [1]. This will be shown
by identifying the closed-loop system as a port-Hamiltonian
system, with state variables associated both to the vertices
and the edges of the graph, in line with the general definition
of port-Hamiltonian systems on graphs [2], [3], [4], [5]; see
also [6], [7].

In Sections 4 and 5 the same problem is studied in
the presence of constraints on the flow inputs. In [8], the
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authors consider a similar model and present a discontinuous
Lyapunov-based controller to stabilize the system without
violating the storage and flow constraints. In [9], using the
same model as in [8], the authors focus on a different
problem of driving the state to a small neighborhood of
the reference value and relate the control input value at
equilibrium to an optimization problem. In the current paper
we will generalize most of the results of our previous work
[10] to the case ofarbitrary constraint intervals, making use
of a new technique extending the graph to a graph with
a larger number of edges admitting a coverage by non-
overlapping cycles. Section 6 contains the conclusions.

II. PRELIMINARIES AND NOTATIONS

First we recall some standard definitions regarding di-
rected graphs, as can be found e.g. in [11]. Adirected graph
G consists of a finite setV of verticesand a finite setE of
edges, together with a mapping fromE to the set of ordered
pairs ofV , where no self-loops are allowed. Thus to any edge
e ∈ E there corresponds an ordered pair(v, w) ∈ V×V (with
v 6= w), representing the tail vertexv and the head vertexw
of this edge.

A directed graph is specified by itsincidence matrixB,
which is ann ×m matrix, n being the number of vertices
and m being the number of edges, with(i, j)th element
equal to 1 if the j th edge is towards vertexi, and equal
to −1 if the j th edge is originating from vertexi, and 0
otherwise. Since we will only consider directed graphs in
this paper ‘graph’ will throughout mean ‘directed graph’ in
the sequel. A directed graph isstrongly connectedif it is
possible to reach any vertex starting from any other vertex
by traversing edges following their directions. A directed
graph is calledweakly connectedif it is possible to reach any
vertex from every other vertex using the edgesnot taking
into account their direction. A graph is weakly connected
if and only if kerBT = span1n. Here1n denotes then-
dimensional vector with all elements equal to1. A graph that
is not weakly connected falls apart into a number of weakly
connected subgraphs, called the connected components. The
number of connected components is equal todimkerBT .
For each vertex, the number of incoming edges is called the
in-degreeof the vertex and the number of outgoing edges
its out-degree. A graph is calledbalancedif and only if the
in-degree and out-degree of every vertex are equal. A graph
is balanced if and only if1n ∈ kerB.

Given a graph, we define itsvertex spaceas the vector
space of all functions fromV to some linear spaceR. In the
rest of this paper we will takeR = R, in which case the
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vertex space can be identified withRn. Similarly, we define
its edge spaceas the vector space of all functions fromE to
R = R, which can be identified withRm. In this way, the
incidence matrixB of the graph can be also regarded as the
matrix representation of a linear map from the edge space
R

m to the vertex spaceRn.
Notation: For a, b ∈ R

m the notationa 6 b (resp.A <

b) will denote elementwise inequalityai ≤ bi (resp.ai <

bi), i = 1, . . . ,m. For a < b the multidimensional saturation
function sat(x ; a, b) : Rm → R

m is defined as

sat(x ; a, b)i =







ai if xi ≤ ai,

xi if ai < xi < bi,

bi if xi ≥ bi,

i = 1, . . . ,m.

(1)

III. A DYNAMICAL NETWORK MODEL WITH PI
CONTROLLER

Consider the following dynamical system defined on the
graphG

ẋ = Bu, x ∈ R
n, u ∈ R

m

y = BT ∂H
∂x

(x), y ∈ R
m,

(2)

whereH : Rn → R is a differentiable function, and∂H
∂x

(x)
denotes the column vector of partial derivatives ofH . Here
the i-th elementxi of the state vectorx is the state variable
associated to thei-th vertex, whileuj is a flow input variable
associated to thej-th edge of the graph. System (2) defines a
port-Hamiltonian system([12], [13]), satisfying the energy-
balance

d

dt
H = uT y. (3)

Note that geometrically its state space is the vertex space,
its input space is the edge space, while its output space is
the dual of the edge space [2]. Many distribution networks
are of this form; see [1], [2] for further background.

Furthermore, we extend the dynamical system (2) with a
vectord of inflows and outflows

ẋ = Bu+ Ed, x ∈ R
n, u ∈ R

m, d ∈ R
k

y = BT ∂H
∂x

(x), y ∈ R
m,

(4)

whereE is ann×k matrix whose columns consist of exactly
one entry equal to1 (inflow) or −1 (outflow), while the rest
of the elements is zero. ThusE specifies thek terminal
vertices where flows can enter or leave the network (sources
andsinks).

As in [1], [10] we will regardd as a vector ofconstant
disturbances, and we want to investigate control schemes
which ensure asymptotic load balancing of the state vectorx

irrespective of the unknown value ofd. The simplest strategy
is to apply a proportional output feedback (as in [9])

u = −Ry = −RBT ∂H

∂x
(x), (5)

whereR is a diagonal matrix with strictly positive diagonal
elementsr1, . . . , rm. Note that this defines adecentralized
control scheme ifH is of the formH(x) = H1(x1) + . . .+
Hn(xn), in which case theith input is given asri times the

difference of the component of∂H
∂x

(x) corresponding to the
head vertex of theith edge and the component of∂H

∂x
(x)

corresponding to its tail vertex.
However, ford 6= 0 proportional controlu = −Ry will not

be sufficient to reach load balancing, since the disturbanced

can only be attenuated at the expense of increasing the gains
in the matrixR. Hence we consider instead aproportional-
integral (PI) control structure, given by

ẋc = y,

u = −Ry − ∂Hc

∂xc
(xc),

(6)

where Hc(xc) denotes the storage function (energy) of
the controller. Note that this PI controller is of the same
distributed nature as the static output feedbacku = −Ry.

Thej-th element of the controller statexc can be regarded
as an additional state variable corresponding to thej-th edge.
Thusxc ∈ R

m, the edge space of the network. The closed-
loop system resulting from the PI control (6) is given as

[

ẋ

ẋc

]

=

[

−BRBT −B

BT 0

][

∂H
∂x

(x)

∂Hc

∂xc
(xc)

]

+

[

E

0

]

d, (7)

This is again a port-Hamiltonian system, with total Hamil-
tonian

Htot(x, xc) := H(x) +Hc(xc),

and satisfying the energy-balance

d

dt
Htot = −

∂TH

∂x
(x)BRBT ∂H

∂x
(x) +

∂TH

∂x
(x)Ed (8)

Consider now a constant disturbanced̄ for which there exists
a matchingcontroller statēxc, i.e.,

Ed̄ = B
∂Hc

∂xc

(x̄c). (9)

By modifying the total HamiltonianHtot(x, xc) into the
candidate Lyapunov function

Vd̄(x, xc) :=H(x) +Hc(xc)

−
∂THc

∂xc

(x̄c)(xc − x̄c)−Hc(x̄c),
(10)

the following theorem is obtained [1], [10].
Theorem 1:Consider the system (4) on the graphG

in closed-loop with the PI-controller (6). Let the constant
disturbanced̄ be such that there exists āxc satisfying the
matching equation (9). Assume thatVd̄(x, xc) is radially
unbounded. Then the trajectories of the closed-loop system
(7) will converge to an element of the load balancing set

Etot = {(x, xc) |
∂H

∂x
(x) = α1, α ∈ R, B

∂Hc

∂xc

(xc) = Ed̄ }.

(11)
if and only if G is weakly connected.

Corollary 2: If kerB = 0, which is equivalent ([11]) to
the graph having nocycles, then for everyd̄ there exists a
uniquex̄c satisfying (9), and convergence is towards the set
Etot = {(x, x̄c) |

∂H
∂x

(x) = α1, α ∈ R, xc = x̄c}.



Corollary 3: In case of the standard quadratic Hamiltoni-
ansH(x) = 1

2
‖x‖2, Hc(xc) =

1

2
‖xc‖2 there exists for every

d̄ a controller statēxc such that (9) holds if and only if

imE ⊂ imB. (12)

Furthermore, in this caseVd̄ equals the radially unbounded
function 1

2
‖x‖2 + 1

2
‖xc − x̄c‖2, while convergence will be

towards the load balancing setEtot = {(x, xc) | x = α1, α ∈
R, Bxc = Ed̄}.

A necessary (and in case the graph is weakly connected
necessaryandsufficient) condition for the inclusionimE ⊂
imB is that 1TE = 0. In its turn 1TE = 0 is equivalent
to the fact that for everȳd the total inflow into the network
equals to the total outflow). The condition1TE = 0 also
implies

1
T ẋ = −1TBRBT ∂H

∂x
(x) + 1

TEd̄ = 0, (13)

implying (as in the cased = 0) that 1Tx is a conserved
quantity for the closed-loop system (7). In particular it
follows that the limit valuelimt→∞ x(t) ∈ span{1} is
determined by the initial conditionx(0).

IV. BASIC SETTING WITH CONSTRAINED FLOWS

In many cases of interest, the elements of the vector of
flow inputsu ∈ R

m corresponding to the edges of the graph
will be constrained, that is

u ∈ U := {u ∈ R
m | u−

6 u 6 u+} (14)

for certain vectorsu− and u+ satisfying u−

i < u+

i , i =
1, . . . ,m. In our previous [10] we focused on the caseu−

i 6

0 < u+

i , i = 1, 2, . . . ,m. In the present paper we consider
arbitrary constraint intervals, necessitating a novel approach
to the problem.

Thus we consider a general constrained version of the PI
controller (6) discussed in the previous section, given as

ẋc = y,

u = sat
(

−Ry − ∂Hc

∂xc
(xc) ;u

−, u+
)

(15)

For simplicity of exposition we consider throughout the rest
of this paper the standard HamiltonianHc(xc) = 1

2
‖xc‖2

for the constrained PI controller and the identity gain matrix
R = I, while we throughout assume that the Hessian matrix
of HamiltonianH(x) is positive definite for anyx. Then the
system (4) with nonzero in/outflows is given as

ẋ = B sat
(

−BT ∂H

∂x
(x)− xc ;u

−, u+
)

+ Ed̄,

ẋc = BT ∂H

∂x
(x),

(16)

In the rest of this section, we will show how the disturbance
can beabsorbedinto the constraint intervals and how the
orientation can be made compatible with the flow constraints.

First we note that we can incorporate the constant vector
d̄ of in/outflows into the constraint intervals. Indeed, for any
η ∈ R

n, we have the identity

sat(x− η ;u−, u+) + η = sat(x ;u− + η, u+ + η). (17)

Therefore for an in/out flowd̄ satisfying the matching
condition, i.e., such that there exists̄xc with Bx̄c = Ed̄,
we can rewrite system (16) as

ẋ = B sat(−BT ∂H

∂x
(x) − x̃c ;u

− + x̄c, u
+ + x̄c),

˙̃xc = BT ∂H

∂x
(x),

(18)

wherex̃c = xc−x̄c. It follows that, without loss of generality,
we can restrict ourselves to the study of the closed-loop
system

ẋ = B sat
(

−BT ∂H

∂x
(x) − xc ;u

−, u+
)

,

ẋc = BT ∂H

∂x
(x).

(19)

for generalu− andu+ with u−

i < u+

i , i = 1, . . . ,m (where
the vector d̄ of in/outflows has been incorporated in the
vectorsu−, u+).

An essential ingredient in the analysis of the dynamical
system (19) will be the following property of the scalar
saturation functionsat(x;u−, u+), which allows us to split
any edge inG into multiple edges. The scalar saturation
function satisfies

sat(x;u−, u+)

= sat(x;u−, b2) +
n−1
∑

i=3

sat(x− bi−1; 0, bi − bi−1)

+ sat(x− bn−1; 0, u
+ − bn−1)

(20)

for arbitrary bi, i = 2, . . . , n − 1 satisfying u− < b2 <

· · · < bn−1 < u+. The above identity will imply that we
can split any edge inG into multiple edges with the same
orientation as the original one, and with constraint intervals
[u−, b2], [0, b3−b2], . . . , [0, bn−1−bn−2], [0, u

+−bn−1]. For
anyi-th edge inG the multiple edges resulting from splitting
of the i-th edge will be denoted as thei1-th,. . . ,in−1-th
edges. Furthermore, we will denote the augmented graph
which is generated by splitting thei-th edge in G into
multiple edges bỹG.

By choosing suitable initial conditions for the edge states
at the newly added edges ofG̃, the evolution ofx will be the
same as that in the original dynamical system (19) defined on
G. Indeed, corresponding to the identity (20) we can choose
the initial conditions for the newly added edges as follows

xci1(0) = xci(0)

xcik(0) = xci(0) + bk, k = 2, . . . , n− 1,
(21)

wherexci(0) is the initial condition of thei-th edge state in
the dynamical system (19) defined onG.

As a special case of the above construction, thebi-
directional edge whose constraint interval satisfiesu−

i <

0 < u+

i , can be divided intotwo uni-directionaledges with
constraint intervals[u−

i , 0], [0, u
+

i ] respectively, and the same
orientation.

Finally, we may change theorientation of some of the
edges of the graph at will; replacing the corresponding



columnsbi of the incidence matrixB by −bi. Noting the
identity

sat(−x ;u−

i , u
+

i ) = − sat(x ;−u+

i ,−u−

i ) (22)

this implies that we may assumewithout loss of generality
that the orientation of the graph is chosen such that

u+

i > 0, i = 1, 2, . . . ,m. (23)

Example 4.1:Consider the graph given as in Fig.1, where
the constraint interval for edgee1 is [−2,−1]. Clearly this
network is equivalent to the network where the edge direction
is reversed fromv2 to v1 while the constraint interval is
modified into[1, 2].
By dividing bi-directional edges into uni-directional ones and
changing orientations afterwards, we can also without loss
of generality assume that

u−

i > 0, i = 1, 2, . . . ,m. (24)

Conditions (23) and (24) will be standing assumptions
throughout the rest of the paper. In general, we will say that
the graph iscompatible with the flow constraintsif (23) and
(24) hold.

V. CONVERGENCE CONDITIONS FOR THE CLOSED-LOOP

DYNAMICS WITH GENERAL FLOW CONSTRAINTS

In this section, we will analyze system (19) defined on a
general graphG with arbitrary constraint intervals. The main
construction is based on the following result which is proved
in [10].

Lemma 4:A strongly connected graph is balanced if and
only if it can be covered by non-overlapping cycles.
The main idea for the subsequent analysis is now as follows.
In view of Lemma 4 the analysis of the system (19) on
a balanced graph can be conducted separately on each
cycle. In other words, the behavior of the system (19) on
a balanced graph is determined by thesubsystemdefined on
each cycle. Furthermore, thesesubsystemsare independent
of each other, and as will follow from the subsequent Lemma
5, the steady states of the system (19) defined on each cycle
are determined only by the constraint intervals. On the other
hand, for a graphG which is not balanced, we can split the
overlapped edges into multiple ones, using the construction
explained in the previous section, in order torenderthe graph
balanced, and then use the same process as in the balanced
case.

Before delving into the analysis, let us consider two
examples which show that the stability of the system (19) is
dependent on the strong connectedness and on the constraint
intervals, especially the interval of the form[0, u+

i ].
Example 5.1:Consider the dynamical system (19) defined

on the graph given by Fig.1
[

ẋ1

ẋ2

]

=

[

−1

1

]

sat(x1 − x2 − xc, 0, 1)

ẋc = x2 − x1.

(25)

This system will converge to a state satisfyingx2 > x1 and
sat(x1 − x2 − xc, 0, 1) = 0. We see that although the graph
G is not strongly connected, the system still may reach a
steady state.

1 2
e1

Fig. 1. Illustrative graph

Example 5.2:Consider the dynamical system (19) defined
on the same graph as in Fig. 1, but now with a different
constraint interval. The system can be written as

[

ẋ1

ẋ2

]

=

[

−1

1

]

sat(x1 − x2 − xc, 1, 2)

ẋc = x2 − x1.

(26)

At each timet, there will be positive flow fromx1 to x2.
Therefore the states of system will go to plus or minus
infinity. In this case, we call the systemunstable.

As indicated in the beginning of this section, the analysis
of the closed-loop system (19) defined on a cycle constitutes
the cornerstone of the analysis. The stability analysis on a
cycle is given in the following lemma.

Lemma 5:Consider the closed-loop dynamical system
(19) on a cycle whose orientation is compatible with the
constraint intervals[u−, u+]. The trajectories of the closed-
loop system (19) converge to the set

Etot = {(x, xc) |
∂H

∂x
(x) = α1n, B sat(−xc ;u

−, u+) = 0}.

(27)
if and only if the cycle is strongly connected and the
intersection of all the constraint intervals is again an interval
with non-empty interior.

Remark 6:Notice that when the graph contains cycles, the
choice ofx̄c in (18) is not unique because for a cyclekerB =
span{1}. However, this fact does not affect the condition
in Lemma 5. Indeed, consider a cycle, denoted asC, whose
orientation is compatible with[u−, u+] is strongly connected
and such that∩m

i=1[u
−

i , u
+

i ] has nonempty interior. Suppose
that new constraint intervals[u−+ c1, u++ c1] are imposed
on C. If the orientation is compatible with the new constraint
intervals, then clearlyC is strongly connected. If not, we can
prove that the cycleC′ with reversed orientation with respect
to C is compatible with[−u+ − c1,−u− − c1] and again
strongly connected. Obviously,∩m

i=1[u
−

i + c, u+

i + c] and
∩m
i=1[−u+

i − c,−u−

i − c] both have nonempty interiors.
Proof: [of Lemma 5] Sufficiency: Consider the Lya-

punov function given by

V (x, xc) = 1
T
mS

(

−BT ∂H

∂x
(x)−xc ;u

−, u+
)

+H(x), (28)

with

S(x ;u−, u+)i :=

∫ xi

0

sat(y ;u−

i , u
+

i )dy. (29)



The invariant set is given as

I = {(ν, xc) | xc = BT ∂H

∂x
(ν)t+ xc(0),

B sat
(

−BT ∂H

∂x
(ν)−BT ∂H

∂x
(ν)t− xc(0) ;u

−, u+
)

= 0,

∀t ≥ 0}.
(30)

For a strongly connected cycle,kerB = span{1}. Sup-
poseBT ∂H

∂x
(ν) 6= 0, then there exists an edge, say thei-th

edge, whose flow reaches its upper bound, and an edge, say
the j-th edge whose flow reaches its lower bound. Because
[u−

i , u
+

i ] and [u−

j , u
+

j ] are overlapped, it follows that

u+

i > u−

j (31)

Then the vector whosei-th component isu+

i and j-th
component isu−

j does not belong tospan{1}. Therefore,
for t large enough,

B sat
(

−BT ∂H

∂x
(ν) −BT ∂H

∂x
(ν)t− xc(0) ;u

−, u+
)

6= 0

(32)
and we have reached a contradiction.

Necessity: First, suppose that the cycle compatible with
the constraint interval is not strongly connected. Say there is
a path fromxi to xj , but not a path fromxj to xi. In other
words, there can be a positive flow fromxi to xj , but not
vice versa. Then for suitable initial conditions,∂H

∂xi
(x(t)) <

∂H
∂xj

(x(t)) for all t > 0.
Secondly, suppose the graph compatible with constraints

interval is strongly connected, but there exist two constraints
intervals such that their intersection is empty, then the system
(19) is unstable. Indeed, suppose[u−

i , u
+

i ] ∪ [u−

j , u
+

j ] = ∅,
where, without loss of generality, we can assumeu−

i > u+

j .
So there will be more positive flow along thei-th edge than
along thej-th edge, which makes the system unstable.

Now we analyze the case that the intersection of any two
constraints intervals is not empty but a single point. Without
loss of generality,

[u−

i , u
+

i ] ∩ [u−

j , u
+

j ] = {u+

i } (33)

and u+

i ∈ [u−

k , u
+

k ], k = 1, 2, · · · ,m. So there exist
BT ∂H

∂x
(ν) 6= 0 and suitablexc(0) such that

B sat
(

−BT ∂H

∂x
(ν)−BT ∂H

∂x
(ν)t− xc(0) ;u

−, u+
)

= 0,

(34)
for all t > 0, that is

sat
(

−BT ∂H

∂x
(ν)−BT ∂H

∂x
(ν)t− xc(0) ;u

−, u+
)

= u+

i 1.

(35)
In this case,ν is an equilibrium forx satisfyingBT ∂H

∂x
(ν) 6=

0. In fact, flows in those edges which belong toE1 =
{k-th edge | u+

k = u+

i } reach their upper bounds, while
flows in the edges which belong toE2 = {k-th edge |
u−

k = u+

i } reach their lower bounds. Thus∂H
∂x

will form
a clustering, and no consensus will be reached

Corollary 7: The statex will converge to a clustering if
and only if the intersection of all the constraint intervalsis

only a single point. The system is unstable if the intersection
of all the constraint intervals is empty.

Example 5.3:Consider the dynamical system (19) defined
on the Fig.2. We will show three different constraints inter-
vals and the corresponding results.

1. The constraint intervals for the edgese1, e2, e3 are
[1, 2], [2, 3], [0, 3] respectively. In this casex will converge
to a clustering. The result is given in Fig.3(a).

2. If we consider constraint intervals[1, 2.5], [2, 3], [0, 3]
for the edgese1, e2, e3, thenx will converge to consensus,
as can be seen from Fig.3(b).

3. Suppose the constraint intervals fore1, e2, e3 are
[1, 1.5], [2, 3], [0, 3] respectively. In this casex will explode.
The result is given in Fig.3(c).

1

2 3

e1

e2

e3

Fig. 2. Network of Example5.3
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Fig. 3. The trajectories of the storage at the vertices

Now let us consider the closed-loop system (19) defined on
a general graph. At this moment we will only give asufficient
condition for the system (19) under arbitrary constraints
to reach load balancing (consensus). Consider a strongly
connected network compatible with the constraint intervals
[u−, u+]. According to Lemma 4, suppose there existsk

cycles to cover the graph, denoted asT = (C1, C2, . . . , Ck).
GivenT , we can define amultiplicity vectorT ∈ R

m whose
i-th component is the number of cycles inT which contain
the i-th edge. Then we construct an augmented network
G̃(T ) by splitting each edge ofG into multiple edges based
on their multiplicities, using the identity (20). For instance,
if the i-th edge ofG has been usedTi times inT then we
splitting i-th edge intoTi edges. The newly generated edges
have constraint intervals[u−

i , b2], [0, b3 − b2], . . . , [0, u
+

i −
bTi

], for arbitraryu−

i < b2 < · · · < bTi
< u+

i . Furthermore,
it can be easily seen that̃G(T ) is balanced, and that it can
be covered by non-overlapping cycles. We denote the set
of cycles to coverG̃(T ) by T̃ . The above process can be
explained by the following example.

Example 5.4:In this example, we consider the graphG
given as in Figure. 4(left). Notice thatG is unbalanced and
that T = {C1, C2} is a minimal covering set whereC1 =
{e1, e2, e3} and C1 = {e3, e4, e5}. So the corresponding
multiplicity vectorT is given asT = [1, 1, 2, 1, 1]T .
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Fig. 4. Left: The graphG. Right: The augmented graph̃G(T ).The
generation of the augmented graph̃G(T ) based onT .

By dividing e3 into two edges, we obtain the augmented
graph G̃(T ) as in Figure.4(right). Here the constraint in-
tervals for the edgee31 and the edgee32 in G̃(T ) are
[u−

3 , b], [0, u
+
3 − b] respectively, while[u−

3 , u
+
3 ] is the con-

straint interval fore3 in G with u−

3 < b < u+

3 .
Now G̃(T ) is balanced and can be covered by non-

overlapping cycles. Indeed,̃T = {C̃1, C̃2} where C̃1 =
{e1, e2, e31} and C̃2 = {e4, e5, e32}.

The main result of the paper can be summarized as the
following theorem substantially generalizing Lemma 5.

Theorem 8:Consider the closed-loop dynamical system
(19) defined on a strongly connected graph which is com-
patible with the constraint intervals. LetT be a minimal
covering set forG and let G̃(T ) be the augmented graph
based onT . Let T̃ = (C̃1, C̃2, . . . , C̃k) be a covering set of
cycles forG̃(T ). If there exists a splitting of the overlapped
edges inG such that the intersection of all constraint intervals
of each cycleC̃i, i = 1, 2, . . . , k has non-empty interior, then
the trajectories of the system (19) will converge to

Etot ={(x, xc) |
∂H

∂x
(x) = α1, α ∈ R,

B sat(−xc ;u
−, u+) = 0 }.

(36)

Proof: Because of lack of space, we only give a sketch
of the proof. Consider the same Lyapunov function (28). If
we choose a constant vector(ν, xc(0)) ∈ I, which is the
largest invariant set in{(x, xc) | V̇ = 0}, then along this
trajectoryV (ν,BT ∂H

∂x
(ν)t + xc(0)) is constant for all time

t > 0. SupposeBT ∂H
∂x

(ν) 6= 0, then by the fact that̃G(T )
can be covered by non-overlapping cycles, we can prove that
for t large enough,d

dt
V (ν,BT ∂H

∂x
(ν)t + xc(0)) > 0. This

yields a contradiction.
Example 5.5:The sufficiency condition in Theorem 8 is

not a necessary condition. Indeed, consider the dynamic (19)
defined on the network given in Fig.4(left). The constraint
intervals forei, i = 1, 2, . . . , 5 are[0.3, 1], [0.3, 1], [0.5, 0.8],
[0.3, 1], [0.3, 1] respectively. There does not exist any split-
ting such that the intersections of the constraint intervals
have nonempty interior. However∂H

∂x
(x(t)) converges to

consensus. A special case withH(x) = 1

2
‖x‖2 is shown

in Fig.5.

VI. CONCLUSIONS

We have discussed a basic model of dynamical distribution
networks where the flows through the edges are generated
by distributed PI controllers. The resulting system can be
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Fig. 5. The trajectories of the storage at the vertices

naturally modeled as a port-Hamiltonian system with ar-
bitrary flow constraint intervals. Key tools in the analysis
are the construction of aC1 Lyapunov function and the
observation given in Lemma 4. Based on that, we have
derived necessary and sufficient conditions for asymptotic
consensus and clustering for a dynamical system defined on
a cycle. For arbitrary networks we have obtained a sufficient
condition for consensus or clustering.

An obvious open problem is to find sufficient and neces-
sary conditions for an arbitrary network to reach consensus
or clustering. This is currently under investigation. Many
other questions can be addressed within the same framework.
For example, what is happening if the in/outflows are not
assumed to be constant, but are e.g. periodic functions of
time; see already [14].
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