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Abstract

We address the traffic light control problem for a
single intersection by viewing it as a stochastic hy-
brid system and developing a Stochastic Flow Model
(SFM) for it. We adopt a quasi-dynamic control pol-
icy based on partial state information defined by de-
tecting whether vehicle backlog is above or below a
certain threshold, without the need to observe an ex-
act vehicle count. The policy is parameterized by green
and red cycle lengths which depend on this partial state
information. Using Infinitesimal Perturbation Analysis
(IPA), we derive on-line gradient estimators of an aver-
age traffic congestion metric with respect to these con-
trollable green and red cycle lengths when the vehicle
backlog is above or below the threshold. The estima-
tors are used to iteratively adjust light cycle lengths so
as to improve performance and, in conjunction with a
standard gradient-based algorithm, to seek optimal val-
ues which adapt to changing traffic conditions. Simula-
tion results are included to illustrate the approach and
quantify the benefits of quasi-dynamic traffic light con-
trol over earlier static approaches.

1. Introduction

The Traffic Light Control (TLC) problem aims at
dynamically controlling the flow of traffic at an inter-
section through the timing of green/red light cycles with
the objective of reducing congestion, hence also the de-
lays incurred by drivers. The more general problem
involves a set of intersections and traffic lights with
the objective of reducing overall congestion over an
area covering multiple urban blocks. Control strategies
employed for TLC problems are generally classified
into two categories: fixed-cycle strategies and traffic-
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responsive strategies. Fixed-cycle Strategies are de-
rived off-line based on historical constant demands and
turning rates for each stream; traffic-responsive strate-
gies make use of real-time measurements to calculate in
real time the best signal settings [1]. Recent technolog-
ical developments involving better, inexpensive sensors
and wireless sensor networks have enabled the collec-
tion of data (e.g., counting vehicles in a specific road
section) which can be used for traffic-responsive strate-
gies. Thus, methodologies that would not be possible
to implement not long ago are now becoming feasible.
The approach proposed in this paper to the TLC prob-
lem is specifically intended to exploit these recent de-
velopments.

Numerous algorithms have been proposed to solve
the TLC problem. It is formulated as a Mixed Inte-
ger Linear Programming (MILP) problem in [2], and as
an Extended Linear Complementary Problem (ELCP)
in [3]. A Markov Decision Process (MDP) approach
has been proposed in [4] and Reinforcement Learning
(RL) was used in [5]. A game theoretic viewpoint is
given in [6]. Due to its complexity when viewed as
an optimization problem, fuzzy logic is often used in
both a single (isolated) junction [7] and multiple junc-
tions [8]. The authors in [9] proposed an ALLONS-D
framework (Adaptive Limited Lookahead Optimization
of Network Signals - Decentralized), which is a decen-
tralized method based on the Rolling Horizon (RH) con-
cept. Perturbation analysis techniques were used in [10]
and a formal approach using Infinitesimal Perturbation
Analysis (IPA) to solve the TLC problem was presented
in [11] for a single intersection.

In [12], we studied the TLC problem for a single
intersection using a Stochastic Flow Model (SFM) and
Infinitesimal Perturbation Analysis (IPA), and extended
the method to multiple intersections in [13]. In this
prior work, the green/red cycle lengths are viewed as
controllable parameters. The traffic light controller ad-
justs their values based on data collected over an in-
terval at the end of which an IPA estimator dictates the
adjustments. The data consist of counters and timers for
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simple, directly observable events, but no state informa-
tion (in the form of instantaneous vehicle backlogs) is
used. In this paper, we make a first attempt to use state
feedback for the controller in between two light cycle
adjustment points and use this information to improve
the adjustments made. However, since it is unrealistic
to obtain instantaneous vehicle backlog information and
derive a fully dynamic controller, we make use of partial
state information and derive a quasi-dynamic controller.
In particular, we define for each traffic flow i a mini-
mum and maximum green light cycle length, θi,1, θi,2
respectively, and allow light switches as long as the cy-
cle has exceeded θi,1 depending only on whether some
threshold of the vehicle backlog is reached, assuming
that such events are observable. We use IPA to estimate
the sensitivities of an average traffic congestion metric
with respect to these parameters, hence improving and
seeking to optimize overall performance.

In our analysis, we still adopt a stochastic hybrid
system modeling framework [14],[15], since the prob-
lem involves both event-driven dynamics in the switch-
ing of traffic lights and time-driven dynamics that cap-
ture the flow of vehicles through an intersection. A SFM
as introduced in [16] treats flow models as stochastic
processes. In the TLC problem, this is consistent with
continuously and randomly varying traffic flows, espe-
cially in heavy traffic conditions. With only minor tech-
nical assumptions imposed on the properties of such
processes, a general IPA theory for stochastic hybrid
systems was recently presented in [17],[18] through
which one can estimate on line gradients of certain per-
formance measures with respect to various controllable
parameters. These estimates may be incorporated in
standard gradient-based algorithms to optimize system
parameter settings. IPA estimates become biased when
dealing with aspects of queueing systems such as mul-
tiple user classes, blocking due to limited resource ca-
pacities, and various forms of feedback control. The
use of IPA in stochastic hybrid systems, however, cir-
cumvents these limitations and yields simple unbiased
gradient estimates (under mild technical conditions) of
useful metrics (see [18].) We emphasize that the IPA
gradient estimates we derive in the TLC are indepen-
dent of the stochastic characteristics of all the vehicle
traffic flows involved, rendering them robust to traffic
variations and requiring no explicit models for the traf-
fic flows.

The rest of this paper is organized as follows. In
Section 2, we formulate the TLC problem for two in-
tersections and construct a SFM. In Section III, we de-
rive an IPA estimator for a cost function gradient with
respect to a controllable parameter vector defined by
green and red cycle lengths. Simulation-based exam-

ples are given in Section IV and we conclude with Sec-
tion V.

2. Problem Formulation

A single isolated intersection is shown in Fig. 1,
where there are two roads and two traffic lights, with
each traffic light controlling the associated incoming
traffic flow. For simplicity, we make the following as-
sumptions: (i) Left-turn and right-turn traffic flows are
not considered, i.e., traffic lights only control vehicles
going straight. (ii) A YELLOW light is combined with
a RED light (therefore, the YELLOW light duration is
not explicitly controlled).

Figure 1: A single traffic intersection

2.1. Quasi-dynamic Control

We assign to each queue i a guaranteed mini-
mum GREEN cycle length θi,1, and a maximum length
θi,2. These are both controllable parameters so that
the controllable parameter vector of interest is θ =
[θ1,1,θ1,2,θ2,1,θ2,2]. We define a state vector x(θ , t) =
[x1(θ , t),x2(θ , t)] where xi(θ , t) ∈ R+ is the content
of queue i. For each queue i, we also define a left-
continuous “clock” state variable zi(θ , t), i= 1,2, which
measures the time since the last switch from RED
to GREEN of the traffic light for queue i, therefore,
zi(θ , t) ∈ [0,θi,2]. Setting z(θ , t) = [z1(θ , t),z2(θ , t)],
the complete system state vector is [x(θ , t),z(θ , t)]. For
notational simplicity, we will write xi(t), zi(t) when no
confusion arises.

At any time t, the feasible control set for the traf-
fic light controller is U = {1,2}, where we define the
control as

u(x(t),z(t))≡
{

1 set road 1 GREEN, road 2 RED
2 set road 2 GREEN, road 1 RED

(1)
A dynamic controller is one that makes full use of the
state information z(t) and x(t). Obviously, z(t) is the
controller’s known internal state, but the queue content
state is generally not observable. We assume, however,



that it is partially observable. Specifically, we can only
observe whether xi(t) is below or above some given
threshold Si, i= 1,2 (this is consistent with actual traffic
systems where a single sensor (typically, an inductive
loop detector) is installed at each road near the inter-
section). Based on such partially observed states, we
partition the queue content state space into four regions
as follows:

X0 = {(x1,x2) : x1(t)< S1, x2(t)< S2}

X1 = {(x1,x2) : x1(t)< S1, x2(t)≥ S2}

X2 = {(x1,x2) : x1(t)≥ S1, x2(t)< S2}

X3 = {(x1,x2) : x1(t)≥ S1, x2(t)≥ S2}

The quasi-dynamic controller we consider is of the form
u(z(t),X(t)), where X(t) = X0, . . . ,X3, and is defined as
follows. If X(t) ∈ {X0,X3},

u(z(t)) =
{

1 if z1(t) ∈ (0,θ1,2),z2(t) = 0
2 otherwise (2)

If X(t) = X1,

u(z(t)) =
{

1 if z1(t) ∈ (0,θ1,1),z2(t) = 0
2 otherwise (3)

If X(t) = X2,

u(z(t)) =
{

2 if z2(t) ∈ (0,θ2,1),z1(t) = 0
1 otherwise (4)

This is a simple form of hysteresis control satisfying the
following simple rules with j 6= i:

• If the GREEN light cycle at queue i reaches θi,2, it
switches to RED.

• If the GREEN light cycle at queue i reaches θi,1,
and xi < Si (low i traffic), x j ≥ S j (high j traffic),
it switches to RED.

• If the GREEN light cycle at queue i has exceeded
θi,1, and xi decreases below Si but x j ≥ S j, it
switches to RED.

• If the GREEN light cycle at queue i has exceeded
θi,1, and x j increases above S j but xi < Si, it
switches to RED.

Clearly, the GREEN light cycle may now be dy-
namically interrupted anytime after θi,1 based on the
partial state feedback provided through X(t). Let τk be
the kth time instant when a GREEN cycle starts at queue
i and let j 6= i. Define

ri(τk) = min{t|t ≥ τk,zi(t)≥ θi1,xi(t)< Si,x j(t)≥ S j}

This is the earliest time when all conditions are satis-
fied to interrupt a GREEN cycle: the minimum GREEN
cycle length θi1 has been reached, the queue i length
is low, and the competing queue j length is high. At
t = ri(τk), a GREEN to RED light switching event is
forced as long as the residual GREEN cycle satisfies
θi,2− ri(τk) > 0. Therefore, the condition for such an
interruption event is

ri(τk)< θi,2

At t = θi,2, the GREEN light is forced to switch to RED.
This is an essential component of the quasi-dynamic
controller we have defined. It will also be reflected by
the state dynamics in the next subsection.

2.2. System Dynamics

The system, as described above, involves a number
of stochastic processes which are all defined on a com-
mon probability space (Ω,F,P). Each of the two roads
is considered as a queue with a random arrival flow
process {αn(t)},n = 1,2., where αn(t) is the instanta-
neous vehicle arrival rate at time t. When the traffic
light corresponding to road n is GREEN, the departure
flow process is denoted by {βn(t)},n = 1,2. We em-
phasize again that the IPA estimators we will derive do
not require any knowledge of the processes {αn(t)} and
{βn(t)}; only estimates of arrival and departure flows at
specific observable event times are involved. As in prior
work [18],[12], we assume only that αn(t) and βn(t) are
piecewise continuous w.p. 1.

We can now write the dynamics of each state vari-
able zi(t) based on the control policy (1)-(4) as follows:

żi(t) =
{

1 if z j(t) = 0, j 6= i
0 otherwise (5)

zi(t+) = 0 if zi(t) = θi,2 (6)
or zi(t) = θi,1, xi(t)< Si, x j(t)≥ S j

or zi(t)> θi,1,xi(t−)> Si,xi(t+) = Si,x j(t)≥ S j

or zi(t)> θi,1,xi(t)< Si,x j(t−)< S j,x j(t+) = S j

Note that zi(t) is reset to 0 as soon as a GREEN light
switches to RED and it remains at this value while the
light is GREEN for queue j 6= i.

The dynamics of each state variable xn(t) are as fol-
lows:

ẋn(t)=

 αn(t) if zn(t) = 0
0 if xn(t) = 0 and αn(t)≤ βn(t)
αn(t)−βn(t) otherwise

(7)
Using the standard definition of a Stochastic Hy-

brid Automaton (SHA) (e.g., see [14]), we have a SHA



for the system as shown in Fig. 2. To simplify the
automaton, we omit the dynamics of xn(t) and zn(t)
and aggregate the states xn(t) = 0 and xn(t) > 0 as
one state. As we can see, the system has 14 modes,
which are defined by different combinations of xn(t)
and zn(t). Two transient modes are not shown in the
SHA: z1 ≥ θ1,1,z2 = 0,x1 < S1,x2 ≥ S2 and z1 = 0,z2 ≥
θ2,1,x1 ≥ S1,x2 < S2. It is easy to show that the control
policies (3)-(4) force irreversible transitions into recur-
rent states in Fig. 2.

Figure 2: Stochastic Hybrid Automaton under Quasi-
dynamic Control

Next, we define the set of all events in this
system (causing all mode transitions) as Φn =
{e1,e2,e3,e4,e5,e6,e7} where e1 is the guard condition
[xn = Sn from below]; e2 is the guard condition [xn = Sn
from above]; e3 is the guard condition [zi = θi,1], i.e.,
the GREEN cycle length reaches its lower limit; e4 is
the guard condition [zi = θi,2], i.e., the GREEN cycle
length reaches its upper limit; e5 is the guard condi-
tion [xn = 0 from above], i.e., the nth queue becomes
empty; e6 is a switch in the sign of αn(t)−βn(t) from
non-positive to strictly positive; and e7 is a switch in the
sign of αn(t) from 0 to strictly positive. Events e5, e6
and e7 are not shown in the above automaton (see [12]
for detailed descriptions).

A typical sample path of any one of the queue con-
tent states (as shown in Fig. 3) consists of intervals
over which xn(t) > 0, which we call Non-Empty Pe-
riods (NEPs), followed by intervals where xn(t) = 0,
which we call Empty Periods (EPs). Thus, the entire
sample path consists of a series of alternating NEPs and
EPs. For easier reference, we let “E” denote any “NEP
end” event (caused by e5), “R2G” denote a light switch-
ing event from RED to GREEN, “G2R” denote a light
switching event from GREEN to RED (both G2R and
R2G are caused by e1, . . . ,e4), and “S” denote any “NEP
start” event, which is caused by e6, e7 or G2R (see also

[12]). Our analysis will be based on studying these four
event types.

In Fig. 3, the mth NEP in a sample path of any
queue, m = 1,2, . . ., is denoted by [ξn,m,ηn,m), i.e., ξn,m,
ηn,m are the occurrence times of the mth S and E event
respectively at this queue. During the mth NEP, t j

n,m, j =
1, . . . ,Jm, denotes the time when a traffic light switching
event occurs (either R2G or G2R).

Figure 3: A typical sample path of a traffic light queue

2.3. Objective Function

Our objective is to select θ so as to minimize a cost
function that measures a weighted mean of the queue
lengths over a fixed time interval [0,T ]. Note that the
threshold parameters Si, i= 1,2, are assumed to be fixed
for the purpose of this paper. In particular, we define the
sample function

L(θ ;x(0),z(0),T ) =
1
T

2

∑
n=1

∫ T

0
wnxn(θ , t)dt (8)

where wn is a cost weight associated with queue n and
x(0),z(0) are given initial conditions. It is obvious that
since xn(t) = 0 during EPs of queue n, we can rewrite
(8) in the form

L(θ ;x(0),z(0),T ) =
1
T

2

∑
n=1

Mn

∑
m=1

∫
ηn,m

ξn,m

wnxn(θ , t)dt (9)

where Mn is the total number of NEPs during the sample
path of queue n. For convenience, we also define

Ln,m(θ) =
∫

ηn,m

ξn,m

xn(θ , t)dt (10)

to be the sample cost associated with the mth NEP of
queue n. We can now define our overall performance
metric as

J(θ ;x(0),z(0),T ) = E [L(θ ;x(0),z(0),T ] (11)

Recall that we do not impose any limitations on the
processes {αn(t)} and {βn(t)} and only assume that
αn(t), βn(t) are piecewise continuous w.p. 1. Thus,



it is infeasible to obtain a closed-form expression of
J(θ ;x(0),z(0),T ). The value of IPA, as developed for
general stochastic hybrid systems in [18], is in provid-
ing the means to estimate the performance metric gra-
dient ∇J(θ), by evaluating the sample gradient ∇L(θ).
As shown elsewhere (e.g., see [18]), these estimates are
unbiased under mild technical conditions. Moreover,
an important property of IPA estimates is that they are
often independent of the unknown processes {αn(t)}
and {βn(t)} or they depend on values of αn(t) or βn(t)
at specific event times only. Such robustness proper-
ties of IPA (formally established in [19]) make it at-
tractive for estimating on line performance sensitivi-
ties with respect to controllable parameters such as θ

in our case. One can then use this information to either
improve performance or, under appropriate conditions,
solve an optimization problem and determine an opti-
mal θ ∗ through an iterative scheme:

θi,k+1 = θi,k− γkHi,k(θk,x(0),T,ωk),k = 0,1, ... (12)

where Hi,k(θk,x(0),T,ωk) is an estimate of dJ/dθi
based on the information obtained from the sample path
denoted by ωk, and γk is the stepsize at the kth iteration.
Next we will focus on how to obtain dL/dθ . We may
then also obtain θ ∗ through (12), provided that {αn(t)}
and {βn(t)} are stationary.

3. Infinitesimal Perturbation Analysis
(IPA)

To simplify notation,, we redefine θ1,1,θ1,2 as θ1,
θ2 and θ2,1,θ2,2 as θ3, θ4, and define the derivatives of
the states xn(t,θ) and zi(t,θ) and event times τk(θ) with
respect to θi, i = 1, ...,4, as follows:

x′n,i(t)≡
∂xn(θ , t)

∂θi
, z′i,i(t,θ)≡

∂ zi(θ , t)
∂θi

, τ
′
k,i ≡

∂τk(θ)

∂θi
(13)

Consider a sample path of the system as modeled
in Fig. 2 over [0,T ] and let τk(θ) denote the occurrence
time of the kth event (of any type), where we stress its
dependence on θ . Taking derivatives with respect to θi
in (9), and observing that xn(ξn,m) = xn(ηn,m) = 0, we
obtain

dL(θ)
dθi

=
1
T

2

∑
n=1

Mn

∑
m=1

wn
dLn,m(θ)

dθi
(14)

Observe that the determination of the sample
derivatives depends on the state derivatives x′n,i(t). The
purpose of IPA is to evaluate these derivatives as func-
tions of observable sample path quantities. We pur-
sue this next, using the framework established in [18]

where, for arbitrary stochastic hybrid systems, it is
shown that the state and event time derivatives in (13)
can be obtained from three fundamental “IPA equa-
tions”. For the sake of self-sufficiency, these equations
are rederived here as they pertain to our specific SFM.

3.1. IPA review

Looking at (7), note that the dynamics of xn(t) are
fixed over any interevent interval [τk,τk+1) and we write
ẋn(t) = fn,k(t) to represent the appropriate expression
on the right-hand-side of (7) over this interval. We have
xn(t) = xn(τk)+

∫ t
τk

fn,k(τ)dτ . Taking derivatives with
respect to θi and letting t = τ

+
k , we obtain

x′n,i(τ
+
k ) = x′n,i(τ

−
k )+[ fn,k−1(τ

−
k )− fn,k(τ

+
k )] ·τ ′k,i (15)

Moreover, further taking derivatives with respect to t,
we get, for all t ∈ [τk,τk+1),

d
dt

x′n,i(t) =
∂ fn,k

∂xn
(t)x′n,i(t)+

∂ fn,k

∂θi
(t) (16)

Since ∂ fn,k
∂xn

=
∂ fn,k
∂θi

= 0 and we get d
dt x′n,i(t) = 0. There-

fore, x
′
n,i(t) remains constant over all t ∈ [τk,τk+1):

x′n,i(t) = x′n,i(τ
+
k ), t ∈ [τk,τk+1) (17)

Thus, focusing on a NEP of xn(t), the queue content
derivative is piecewise constant with jumps occurring
according to (15). The next step is to obtain the event
time derivatives τ ′k,i appearing in (15).

Clearly τ ′k,i depends on the type of event occur-
ring at time τk. Following the framework in [18], there
are three types of events for a general stochastic hy-
brid system. (i) Exogenous Events. These events cause
a discrete state transition independent of θ and satisfy
τ ′k,i = 0. (ii) Endogenous Events. Such an event occurs
at time τk if there exists a continuously differentiable
function gk :Rn×Θ→R such that τk = min{t > τk−1 :
gk (x(θ , t) ,θ) = 0}, where the function gk normally
corresponds to a guard condition in a hybrid automa-
ton. Taking derivatives with respect to θi, i = 1, . . . ,m,
it is straightforward to obtain

τ
′
k,i =−

∂gk
∂θi

+∑
N
j=1

∂gk
∂x j

x′j,i(τ
−
k )

∑
N
j=1

∂gk
∂x j

f j,k−1(τ
−
k )

(18)

(iii) Induced Events. Such an event occurs at time τk if
it is triggered by the occurrence of another event at time
τm ≤ τk. (details can be found in [18].)



3.2. State and event time derivatives

In the following, we consider each of the four event
types (E, S, R2G, G2R) for queue n that were identi-
fied in the previous section and derive the correspond-
ing event time derivatives. Based on these, we can then
also derive the state derivatives through (15) and (17).

(1) Event E ending a NEP. This is an endogenous
event that occurs when xn(θ , t) = 0. Thus, when such
an event occurs at τk, let gk(x(θ , t),θ) = xn(θ , t) = 0.

Using (18), we get τ ′k,i =
−x′n,i(τ

−
k )

fn,k−1(τ
−
k )

. Looking at (7), note

that fn,k−1(τ
−
k ) =αn(τk)−βn(τk) and fn,k(τ

+
k ) = 0. Us-

ing these values in (15) along with τ ′k,i above we get

x′n,i(τ
+
k ) = x′n,i(τ

−
k )−

[αn(τk)−βn(τk)]x′n,i(τ
−
k )

αn(τk)−βn(τk)
= 0

Thus, at the end of a NEP [ξn,m,ηn,m) of queue n we
have

x′n,i(η
+
n,m) = 0 (19)

indicating that these state derivatives are always reset to
0 upon ending a NEP.

(2) G2R event. If a G2R event occurs within a
NEP (i.e., xn(τk) > 0), then, based on (7), we have
fn,k−1(τ

−
k ) = αn(τk)− βn(τk) and fn,k(τ

+
k ) = αn(τk).

Therefore, from (15) we get x′n,i(τ
+
k ) = x′n,i(τ

−
k ) −

βn(τk) · τ ′k,i. If, on the other hand, xn(τk) = 0, then
fn,k−1(τ

−
k ) = 0 and we get x′n,i(τ

+
k ) = x′n,i(τ

−
k )−αn(τk) ·

τ ′k,i. Combining these two results,

x′n,i(τ
+
k ) = x′n,i(τ

−
k )−

{
βn(τk) · τ ′k,i if xn(τk)> 0
αn(τk) · τ ′k,i if xn(τk) = 0

(20)
Next we consider all four events e1, . . . ,e4 which may
trigger the G2R event.

Case (2a): G2R event at queue i is triggered by
zi = θi,2 (e4 event). This is an endogenous event. In the
model studied in [12], G2R and R2G events alternate
with fixed GREEN/RED cycles and τ ′k,i is obtained by
simply counting traffic light switches. However, under
the quasi-dynamic control considered here, the GREEN
cycle length can take any value in [θi,1,θi,2] and the
same method no longer applies. In the following lemma
we derive τ ′k,i.

Lemma 1 Let τk be the time of a G2R event induced
by zn = θn,2,n = 1,2, and τp be the last R2G event time
before τk. We then have:

τ
′
k,i =

{
1+ τ ′p,i if i = 2,n = 1 or i = 4,n = 2
τ ′p,i otherwise

(21)

Proof : Without loss of generality, we use queue
1, i.e., n = 1 above, to derive τ ′k,i =

∂τk(θ)
∂θi

for all i =
1,2,3,4. Setting

gk(x(θ , t),θ) = z1−θ2 = 0 (22)

in (18) and taking derivatives with respect to θ1 above,
we have

τ
′
k,1 =−

(
ż1(τ

−
k )
)−1
(

z
′
1,1(τ

−
k )−0

)
=−z

′
1,1(τ

−
k ) (23)

where ż1(τ
−
k )) = 1 since

ż1(t) = f1,k−1(t) =
{

1 if z2(t) = 0
0 otherwise

By the definition of τp, for any t ∈ [τp,τk), f1(t) =
ż1(t) = 1. Using (16), we get

d
dt

z
′
1,1(t) = 0 (24)

so that z
′
1,1(t) remains constant for all t ∈ [τp,τk), i.e.,

z
′
1,1(τ

−
k ) = z

′
1,1(τ

+
p )

At time τp, according to (15), we have

z
′
1,1(τ

+
p ) = z′1,1(τ

−
p )+ [ f1,p−1(τ

−
p )− f1,p(τ

+
p )] · τ

′
p,1
(25)

Define τr to be the last G2R event time before τp. At τr,
z1(τ

+
r ) is reset to 0 according to (5), so that z′1,1(τ

+
r ) =

0. For any t ∈ [τr,τp), we have f1,p−1(t) = ż1(t) = 0,
thus z′1,1(τ

−
p ) = z′1,1(τ

+
r ) = 0. The light switches to

GREEN after τp, so we have f1,p(τ
+
p ) = 1. Hence, (25)

becomes:
z
′
1,1(τ

+
p ) =−τ

′
p,1

Returning to (23), we get

τ
′
k,1 =−z

′
1,1(τ

−
k ) =−z

′
1,1(τ

+
p ) = τ

′
p,1 (26)

Following the same analysis, we have

τ
′
k,3 = τ

′
p,3 (27)

τ
′
k,4 = τ

′
p,4 (28)

This leaves only τ
′
k,2 to consider. Taking derivatives

with respect to θ2 in (22):

τ
′
k,2 =−

(
ż1(τ

−
k )
)−1 (z′1,2(τ−k )−1

)
= 1− z

′
1,2(τ

−
k )

As in (24), for any t ∈ [τp,τk),

d
dt

z
′
1,2(t) = 0



and we get z
′
1,2(τ

−
k ) = z

′
1,2(τ

+
p ). At time τp, we have

z
′
1,2(τ

+
p )= z

′
1,2(τ

−
p )+[ f1,p−1(τ

−
p )− f1,p(τ

+
p )]·τ

′
p,2 =−τ

′
p,2

and we finally get

τ
′
k,2 = 1− z

′
1,2(τ

−
k ) = 1+ τ

′
p,2 (29)

�
This result leaves the value of τ ′p,i unspecified. In

fact, this is the time when an R2G event occurs, which is
Case (3) considered in the sequel where we shall derive
explicit expressions for τ ′p,i.

Case (2b): G2R event at queue i is triggered by
zi = θi,1, where xi < Si and x j ≥ S j (e3 event). We use a
similar lemma for this case.

Lemma 2 Let τk be the time of a G2R event induced by
zn = θn,1,n = 1,2, and τp be the last R2G event before
τk. We then have

τ
′
k,i =

{
1+ τ ′p,i if i = 1,n = 1 or i = 3,n = 2
τ ′p,i otherwise

(30)

Proof : The proof is similar to that of Lemma 1 and is
omitted.

Case (2c): G2R event at queue i is triggered
by xi = Si from above, where zi > θi,1 and x j ≥
S j (e2 event). This is an endogenous event with
gk(x(θ , t),θ) = xn(θ , t)− Si = 0. Using (18), with
fn,k−1(τ

−
k ) = αn(τ

−
k )−βn(τ

−
k ) we get

τ
′
k,i =

−x′n,i(τ
−
k )

αn(τ
−
k )−βn(τ

−
k )

(31)

Case (2d): G2R event at queue i is triggered
by x j = S j from below, where zi > θi,1 and xi ≤ Si
(e1 event). This is also an endogenous event with
gk(x(θ , t),θ) = x j(θ , t)− S j = 0. Using (18), with
f j,k−1(τ

−
k ) = α j(τ

−
k ) we get

τ
′
k,i =

−x′j,i(τ
−
k )

α j(τ
−
k )

(32)

(3) R2G event. If the R2G event occurs within a
NEP (i.e., xn(τp) > 0), then, based on (7), we have
fn,p−1(τ

−
p ) = αn(τp) and fn,p(τ

+
p ) = αn(τp)− βn(τp).

From (15) we get

x′n,i(τ
+
p ) = x′n,i(τ

−
p )+βn(τp) · τ ′p,i (33)

The derivation of τ ′p,i is similar to Case (2) as detailed
next.

Case (3a): R2G event at queue i is triggered by
gp(x(θ , t),θ) = z j−θ j,2 = 0 (e3 event). This is an en-
dogenous event. We have a lemma similar to Lemma 1
whose proof is therefore omitted:

Lemma 3 Let τp be the time of a R2G event induced by
z j = θ j,2, j = 1,2, and τr be the last G2R event before
τp. We then have

τ
′
p,i =


1+ τ ′r,i if i = 2, j = 1 or i = 4, j = 2
τ ′r,i otherwise (34)

Case (3b): R2G event at queue i is triggered by
z j = θ j,1, where x j < S j and xi≥ Si (e3 event). This is an
endogenous event and we have another lemma similar
to Lemma 1 whose proof is also omitted:

Lemma 4 Let τp be the time of a R2G event induced
by z j = θ j,1, j = 1,2, and τr be the last G2R event time
before τp. We then have

τ
′
p,i =


1+ τ ′r,i if i = 1, j = 1 or i = 3, j = 2
τ ′r,i otherwise (35)

Case (3c): R2G event at queue i is triggered
by x j = S j from above, where z j > θ j,1 and xi ≥
Si (e2 event). This is an endogenous event with
gp(x(θ , t),θ) = x j(θ , t) − S j = 0. Using (18) with
f j,p−1(τ

−
p ) = α j(τ

−
p )−β j(τ

−
p ), we get

τ
′
p,i =

−x′j,i(τ
−
p )

α j(τ
−
p )−β j(τ

−
p )

(36)

Case (3d): R2G event at queue i is triggered
by xi = Si from below, where z j > θ j,1 and x j ≤
S j (e1 event). This is an endogenous event with
gp(x(θ , t),θ) = xn(θ , t) − Si = 0. Using (18) with
fn,p−1(τ

−
p ) = αn(τ

−
p ), we get

τ
′
p,i =

−x′n,i(τ
−
p )

αn(τ
−
p )

(37)

(4) Event S starting a NEP. There are three possible
cases to consider as follows.

Case (4a): A NEP starts right after a G2R event.
This is an endogenous event and was analyzed in Case
(2) with xn(τk) = 0 in (20), i.e., x′n,i(τ

+
k ) = x′n,i(τ

−
k )−

αn(τk)ζn,k. Since x′n,i(ξ
−
n,m) = x′n,i(η

+
n,m−1) = 0, we get

x′n,i(τ
+
k ) =−αn(τk)τ

′
k,i (38)

Case (4b): A NEP starts while zi = 0, z j > 0. This
is an exogenous event occurring during a RED cycle for
queue n and is due to a change in αn(t) from a zero to a
strictly positive value. Therefore, τ ′k,i = 0, and

x′n,i(τ
+
k ) = 0 (39)



Case (4c): A NEP starts while z j = 0, zi > 0. This
is an exogenous event occurring during a GREEN cycle
for queue n due to a change in αn(t) or βn(t) that re-
sults in αn(t)−βn(t) switching from a non-positive to a
strictly positive value. The analysis is the same as Case
(4b).

This completes the derivation of all state and event
time derivatives required to evaluate the sample perfor-
mance derivative in (14).

3.3. Cost Derivative

Using the definition of Ln,m(θ) in (10), note that
we can decompose (14) for each n into its NEPs and
evaluate the derivatives dLn,m(θ)/dθi. By virtue of
(17), x′n,i(t) is piecewise constant during a NEP and its
value changes only at an event point t j

n,m, j = 1, ...,Jn,m.
Therefore, we have

dLn,m(θ)

dθi
= x′n,i((ξn,m)

+)(t1
n,m−ξn,m)+ x′n,i((t

Jn,m
n,m )+)·

(ηn,m− tJn,m
n,m )+

Jn,m

∑
j=2

x′n,i((t
j
n,m)

+)(t j
n,m− t j−1

n,m )

(40)

Clearly, x′n,i at each event time is determined by (15)
which in turn depends on the event type at t j

n,m, j =
1, ...,Jn,m and is given by the corresponding expression
in (19), (20), (33), and (38)-(39). The associated event
time derivatives in these expressions are provided re-
cursively through (21), (30)-(32) and (34)-(37). Note
that dLn,m(θ)/dθi can be computed using an on-line al-
gorithm that updates τ ′k,i and x′n,i after every observed
event. More importantly, this IPA derivative depends
on: (i) the number of events in each NEP Jn,m, (ii)
the number of G2Rn events and R2Gn events, (iii) the
event times ξn,m, ηn,m and t j

n,m, and (iv) the arrival and
departure rates αn(τk), βn(τk) at an event time only.
The quantities in (i)− (iii) are easily observed through
counters and timers. The rates in (iv) may be obtained
through simple rate estimators, emphasizing that they
are only needed at a finite number of observed event
times. As already pointed out, the detailed nature of
αn(t), βn(t) is not required in (40).

4. Simulation Results

We describe how the IPA estimator derived for the
SFM can be used to improve performance and ulti-
mately determine optimal light cycles for an intersec-
tion modeled as a Discrete Event System (DES). We
apply the IPA estimator using actual data from an ob-

Figure 4: Sample cost (J) and parameter (θ) trajectories

served sample path of this DES (in this case, by simu-
lating it as a pure DES).

We assume vehicles arrive according to a Poisson
process with rate ᾱn, n = 1,2 (as already emphasized,
our results are independent of this distribution.). We
also assume vehicles depart at a fix rate βn if the road
is not empty. We constrain θi,1, i = 1,2, to take values
in [θmin,1,θmax,1], and constrain θi,2, to take values in
[θi,1,θmax,2].

For the simulated DES model, we use a brute-
force (BF) method to find an optimal θ ∗BF : we dis-
cretize all real values of θi and for combinations of
θi, i = 1, ...,4 (based on our previous definition, θ1 ≡
θ1,1,θ2 ≡ θ1,2,θ3 ≡ θ2,1,θ4 ≡ θ2,2), we run 10 sample
paths to obtain the average total cost. The value of θ ∗BF
is the one generating the least average cost, to be com-
pared to θ ∗IPA, the IPA-based method. In our simula-
tions, we estimate αn(ξn,m) through Na/tw by counting
vehicle arrivals Na over a time window tw before or after
ξn,m; βn(τk) is similarly estimated.

In all our simulations, we set θmin,1 = 10sec,
θmax,1 = 20sec, θmax,2 = 40sec, β1 = β2 = 1 and T =
2000sec. We also set the weight wi = 1 if xi < Si, and
wi = 10 if xi ≥ Si, i = 1,2, which indicates there is more
cost if the queue content exceeds the threshold. In Fig.
4, we show sample trajectories of J and θ where we
set 1/α = [1.9,3] and S = [8,8]. As we can see, the
gradient-based algorithm converges quickly with an op-
timal cost J∗IPA = 51.68 < J∗BF = 62.06 obtained by the
BF method. Extensive additional comparison results
under different traffic intensities (denoted by α) are pro-
vided in Table 1. Generally, the IPA method gives sim-
ilar performance with the BF method, which, however,
becomes impractical when there are more controllable
parameters, or when the ranges of the parameters are
large.

Of greater interest is a comparison of the quasi-
dynamic control to the one in [12], which uses a
static controller based on θ ∗ in between two adjustment
points. We use the same settings for the two models,



Table 1: IPA vs BF method with different α

1/ᾱ
BF IPA

θ ∗ J∗ θ ∗ J∗

[2.2,2.7] [10,20,10,14] 12.7 [10,15.1,11.3,11.3] 12.4
[2,3] [11,30,10,14] 12.3 [10.2,19.3,10.1,16.3] 10.9

[1.9,3] [10,30,10,18] 16.4 [18.9,25.6,13.3,17.0] 16.3
[1.8,3] [14,30,10,20] 17.6 [10.1,20.0,10.1,12.1] 15.7
[1.7,3] [12,26,10,12] 24.6 [10.1,20.1,10.6,11.9] 25.9

where we constrain θ ∈ [10,40] in [12]. In Fig. 5 we
show the cost trajectories of the two methods using the
settings as in Fig. 4 and the same initial θ0 = [20,10].
The quasi-dynamic IPA-based method converges to a
lower cost. More comparison results are shown in Fig.
6 where the x-axis denotes the five traffic intensities in
Table 1. As we can see, using quasi-dynamic control
generally results in better performance than using static
control, as expected.

Figure 5: Sample cost (J) trajectories using two static
and quasi-dynamic control

Figure 6: Optimal cost comparisons under different
traffic loads

In all simulations above, we use exponentially dis-

tributed interarrival time for the incoming traffic flow.
Thus the traffic generally does not significantly vary
due to the relatively low variance of the Poisson pro-
cess. We expect to see more drastic improvement us-
ing our method under highly variable traffic. To jus-
tify this, we randomly add a burst of traffic into road
1 and observe the resulting “adaptivity” of our method.
In Fig. 7 we compare the cost reduction under purely
exponential traffic (exp) with the one under “disturbed”
traffic (disturb). The y-axis denotes the percentage of

cost reduction:
J∗f ixed−J∗IPA

J∗f ixed
∗ 100, where J∗f ixed is the op-

timal value obtained using the IPA method in [12]. As
we can see, quasi-dynamic control exhibits higher cost
reduction under highly variable traffic.

Figure 7: Cost reduction comparisons under different
traffic loads

5. Conclusions and Future work

We have developed a SFM for a single intersec-
tion traffic light control problem, based on which we
derive an IPA gradient estimator of a cost metric with
respect to the controllable green and red cycle lengths.
The estimator is used to iteratively adjust light cycle
lengths to improve performance and, under proper con-
ditions, obtain optimal values which adapt to changing
traffic conditions. In contrast to prior work [12], we
apply quasi-dynamic cycle length control between ad-
justment points, using partial state information defined
by detecting whether a vehicle backlog is above or be-
low a certain threshold, without the need to observe an
exact vehicle count. Numerical results show that the
IPA method leads to better performance than that ob-
tained through repetitive “brute-force” simulation, and
better than using static cycle control. Future work will
focus on using IPA to solve the TLC problem for an in-
tersection with more complicated traffic (e.g., left-turn
and right-turn), modeling accelerating traffic following
a GREEN light and extending our method to solving



the TLC problem over multiple junctions. Moreover,
we will explore the use of IPA in controlling the queue
content thresholds in addition to the light cycle lengths.
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