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Physical Realizability Conditions for Mixed Bilinear-Lear Quantum
Cascades with Pure Field Coupling

Luis A. Duffaut Espinosg Z. Miad, I. R. Peterse V. Ugrinovskiif, and M. R. Jamés

Abstract— This paper aims to provide conditions under exist conditions under which linear and bilinear QSDEs
which a quantum stochastic differential equation can serve obey quantum mechanical laws, namghysical realizability
as a model for interconnection of a bilinear system evolving conditions[10], [11], [15]. Physical realizability conditions

on an operator group SU(2) and a linear quantum system id imole testabl i diti taini th
representing a quantum harmonic oscillator. To answer this provide simple testable matrix conditons containing the

question we derive algebraic conditions for the preservatin of ~ €ssentials for a system to be considered quantum. In this
canonical commutation relations (CCRs) of quantum stochas context, quantum oscillators are described by linear QSDEs

tic differential equations (QSDE) having a subset of system and two-level systems are described by bilinear QSDEs.
variables satisfying the harmonic oscillator CCRs, and the However, the the task of, for example, observing a physicall

remaining variables obeying the CCRs ofSU(2). Then, it is lizable t level ¢ ith hvsicall lizabl
shown that from the physical realizability point of view such realizable two level system with a physically realizable

QSDEs correspond to bilinear-linear quantum cascades. linear QSDE by cascading requires first of all to ensure
the physical realizability of the composite system. Such
. INTRODUCTION cascade system goes beyond the realm in which the physical

In many applications, systems are interconnected in ordgfalizability of linear and bilinear QSDEs has been studied
to form more complex systems. Open quantum systems at@ far. Therefore, it is important to consideixed physical
not the exception. For instance, non-classical propagatiﬁeal'zab'“ty conditions. That is to say, it is required attdble

electromagnetic fields, as now experimentally realizaile, condition for the physical realizability of cascade bitime
an important resource in linear optics quantum informatio"€ar Systems having a subset of system variables saigsfyi

processing [3]. They can be constructed by cascading a twie harmonic oscillator CCRs, and the remaining variables
eying the CCRs of a two level system (i.e., the CCRs of

level quantum system, as a source, with a cavity (quantuﬂp ; y s
harmonic operator system) which filters the signals from theU (2) [10], [19]). An analysis of this type also provides a

two-level system. In this case, the two-level system and trg;im_p_se of the fuI_I c_har_acterization of t_)ilinear QSDEs with
oscillator are separated by a transmission line such tlea¢ th 2dditive and multiplicative quantum noise as open quantum
is no direct interaction between their system variables [AYSt€MS.

(Figure[1). From a control perspective, such apparatusfare o

great importance. For instance, a natural question is veneth

it is possible to estimate the states of a source system via W

a simpler oscillator system, the latter playing a role of a

Luenberger observer. The answer to such question is by no Open Cavity
means obvious, and it primarily depends on how one choses Open Spin System | or Y
to describe the quantum nature of the comprising systems (Bilincar QSDE) X | Quantum Observer

and the interconnection itself.

It has been established that the framework of QSDEs
provides an alternative description for studying quantum
systems, in which it allows the translation of standard mint riq 1: Non interacting bilinear-linear quantum cascaderop
techniques into a quantum mechanical framework [1], [6kg 3 field V.

[9], [15], [17], [18], [21]-[24]. The QSDE description is in
agreement with théleisenberg picturef quantum systems ) )
[20]. Not every QSDE describes a quantum system (fo-l:he earliest work on a systematic approach to cascade

instance, CCRs are not satisfied necessarily), howeves th&uantum systems can be trace to [4], [12]. In [13], the
treatment of the quantum cascading problem was extended
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standard way of describing quantum systems via evolutiar?* 2 (27 23 ... 22)", 2T = (@#)T, ()7 denotes the

of a density operator does not allow a network methodologyanspose operation an@d)* denotes the adjoint (or the
explicitly, because the interacting channels are averagedmplex conjugate in the case of complex vectors or ma-
out and therefore the interconnection cannot be describé&ites). On a quantum mechanical framework, it is common
directly. One way to keep track of the information abouto multiply either vectors or matrices by arrays of opersitor
the coupling channels is through the Belavkin filter [1],For example, letA € C"™*™ and X € T(§)"*™, the (4, )

but this approach requires measurements such as homodgtement of the multiplication of a matrix by an operator
or heterodyne detection [22]. Using such measurements rigatrix is

precluded when the objective is coherent control, i.e.,rwhe n
the controller or observer is itself a quantum system [17]. (AX)i; = Zaikzkj € 3(H).
Still the approach in [13] starts from a purely quantum k=1

description to then using QSDESs to give the description dfPeys the usual matrix multiplication rules. These
the cascade in terms of quantum operators, which is tig@nsiderations allow to treat operators as system vasgable
opposite to what physical realizability conditions prawid Sinc€ in quantum mechanics they play the role of states,
In other words, it is desired for control applications to find@"d therefeore allow us to use state space systems notation.
conditions under which a cascaded QSDE preserves the ] )

physical realizability conditions of the composite syssemRemark The operations between complex matrices and
(quantum coherent cascades, in our case), and theref@Rerators follow the guidelines of the standamahonical
allow to identify the underlying quantum operators, whesfluantization[s], which in simple words is a recipe that
they exist, governing the dynamics of the cascade. In thRromotes the system variables from a classical mechanical
regard, the goal of this paper is twofold. First, the aim is tdramework into an operator framework in order to obtain a
obtain conditions for the preservation of physical reaiiy ~ dUantum mechanical description of the system.

of bilinear QSDEs having both additive and multiplicative

quantum noise inputs: an_d having initial condition§ syzmmj B. Open quantum systems

;nrll)(;e(:iritce: Rlse \(/2Iczystzlenrigoggﬁgee?gzesheirg:%n';g;c':lsat?or Quantum systems interacting with an external environment

provide necessary and sufficient conditions for the physic%re known asopen guantum system©bservablesin a
o o . ilbert space$y represent physical quantities that can be
realizability of the bilinear-linear cascade of QSDEs. paces rep phy d

measured, while quantum states give the current status of

. : . .. the former must satisfy certain CCRs, which lead to the
the preservation of mixed CCRs for bilinear QSDE W'thHeisenberg uncertainty principl16]. The environment

additive and multiplicative noise is developed. In Secliiin consists of a collection of oscillator systems, each with

Fhe physical rgallzablllw (.)f b|||nea_1r-l|near QSDE gasead the annihilation field operatow(t) and the creation field

is analyzed. Fma]ly, Sectlomll gives the conclusions ané’lperatorw*(t) used for annihilation and creation of quanta
future research directions to follow. at point¢, and commonly known as tH®son quantum field

(a quantum version of a Wiener process). Here it is assumed
that ¢ is a real time parameter. These operators generate
A. Notation three interacting signals in the evolution of the systene: th

Let R denote the real numbers afiche complex numbers annihilation processe#’ (¢), the creation procedd  (¢), and
with imaginary uniti. The set of real and complex- the counting procesa(t).
dimensional vectors are denot&f and C", respectively. ~ The unitary evolution of an observable € T(£) in the
The set of real and complex by m matrices are denoted Heisenberg pictures described by the operator equation
R™*™ and C"*", The n-dimensional identity matrix is X(t) = UT(t)(X ® f) U(t), (1)
denoted byI,,, and then x m dimensional zero matrix is
0. xm- A separable Hilbert space is denotedshyThe set of
operators infy is denoted byZ (), the set ofn dimensional
vectors of operators i (£)) is denoted by ($))™ and the set dU(t) = ((5 — D dA(t) + Ldw't(t) — LTS aw (1)
of n xm dimensional arrays of operators#t$) is denoted
by T($)™"*™. The operatot denotes the identity ifE(£)). 1oy .
The operatior]-, ] : T(9) x T(H) — T(H) is known as the 2(L L+iH) dt) ),
commutator, and itis defined &s y| = xy—yx. For vectors i initial condition U(0) = I. # denotes the system
x € T(H)™ andy € T(H)™ the commutator is given as Hamiltonianof the system, and, and S (unitary) determine

[z,97] £ zy” — (y2T)T e Z(H)">™, the coupling of the system to the field and the interaction

II. OPENQUANTUM SYSTEMS AND THEIR CASCADE

where U(t) is unitary for all ¢, and is the solution of the
operator stochastic differential equation



between fields, respectively. For simplicity, this papel wi where
consider only one interactiong field’. Using thequantum g 0 1
It6 formulafor X, Xo € T($) [14], i.e. -1 0 )

d(X1X3) = (dX1)Xo + X1(dX3) 4 (dX,)(dX2), (2) In self-adjoint form, by applying (10), the CCRs are

the dynamics of[{1) is expressed as (1,27 =2 (I, ® J). (11)
——
dX =(STXS — X)dA + L(X)dt + ST[X, L) dwT @) g
+ (LT, X]S dw, The Hamiltonian for this class of systems is the quadratic
where £(X) is the Lindblad operator defined as form #H, = «{ Rz, with R real symmetric, and the coupling

) 1, ) operator is considered to be linear, i.é; = I'iz;. The
LX) = —i[X, H] + 5 (LT[X, L]+ [L",X]L).  (4) general form for the QSDE having these Hamiltonian an

The output field is given by () = U(¢) W (£)U(t), which COUPIling operator is .

amount to dry = Az, dt + BdW (12a)

dY = Ldt + SdW. (5) dyy = Cay dt + dW, (12b)

The dynamics of an open quantum systems is usuaWhere A € R*3, B € R"** andC € R**™, and W =

parametrized by the triplgS, L, ). Henceforth assume that (W1 W)™

S =1. For system [(12) to have any hope of being quantum
It is often convenient to express QSDEs in terms ofechanical, it is fundamental that system](12) preserves

quadrature fields, which make all system matrices real. Thidd) over time. The next theorem gives conditions for the

is provided by the following linear transformation of thePreservation of CCRs of; over time.

interacting fields Theorem 1:(See [9], [15].) QSDE [(12a) with system
W, 11 W variables as in[{9) satisfyinfy:(0),z:(0)7] = 2i© implies
( W, ) = ( i ) ( W ) (6)  [21(t),z1(t)T] = 2i© for all t > 0 if and only if
- - T T _
where the operatord’; andW, are now self-adjoint. More- A©+ 04" +BJB" =0, (13)

over, the 1td table (see [14]) for these quadrature fields is

AW, _ _ 1 i D. Two level open quantum system
= (dWy dW, ) = . dt. (7) . : .
dW> -t 1 For an open two-level quantum system interacting with

Similarly, the quadrature form of the output fields can b@ne boson quantum field, the Hilbert spacejis= C? and
obtained from the same quadrature transformation. Thus, the vector of system variables is

(diﬁ) _ ( L+L# ) di (dV_V1> @ a2 € T($92)%, (14)
dYs i(L#* — L) dWs ) - Note that operators iff(£),) are simply matrices ifC2*2.

These operators are chosen to be self-adjoint, so that

satisfieszy, = :z:f. In particular, an operato# € T(£)2) is

spanned by the Pauli matrices [19], i.&.— %Z?:o Kioj,
The Hilbert space for this class of systemsyis= ¢?(C) Wwhererg = Tr(6), x; = Tr(60;), and

(the space of square integrable complex sequences) [9], and 1 0 0 1

the vector of system variables is g0 = ( 0 1 ) R ( 1 0 ) ’

C. Linear open quantum systems

o € (9T, ®) 0 —i 10
For instance, a single harmonic oscillator system vargble o2 = ( i 0 ) » 03 = ( 0 —1 )
in terms of the annihilator operatarand creation operator ; ; ;
ol is written in self-adjoint formz; & T(%,)° by using the de_note the Pauli maErlces. Thus, 51, k2 an_df<;3 d_etermme
X 1 1 uniquely the operatat. The product of Pauli matrices satisfy
transformation

L1 " 005 = 0513 +1i Z €ijkOks (15)

() k
and therefore its CCRs are

The CCRs fou anda' arefa,a] = [a',a'] = 0 and[a,a'] =

1. For a vector of, creation anch annihilator operators, one (03, 05] = 24 Z €ijkOk: (16)
has that _ k _
a whered;; is the Kronecker delta and,;;, denotes the Levi-
i Civita tensor. Given thaf(15) allows to write any product
- ! : ; Pauli operators as linear forms, a large class of polynomial
[xlaxl} = C(aray -anay)| = (I ®J), guantum systems can be characterized by considering linear
an, Hamiltonian and coupling operators, i.6{; = asxz> and

al Ly = T'axo, Whereal € R? andI'} e C3.



Observe that, in general, the evolutionaf is a bilinear Abusing the notation] will be omitted hereafter, and the fact
QSDEs with only multiplicative quantum noise expressed ahat g3 is either a vector of numbers or a vectors of operators
_ _ will be understood from the context. As an example, the
dry = Agdl + Awg dt + Bixy dWy + Baxa dWa,  (178)  product of Pauli operators can be expressed in a compact
dys = Cxo dt +dW, (17b)  matrix form thanks to the mappin@~—(-). That is,

where Ay € R3, A,By,B; € R33 and C e R*". Toxd = I3 +107 (13) € T($H2)373.
Conditions for CCR preservation af, are given in the next 5pserve here that the identity matri, under our con-
theorem. _ _ vention, is strictly speaking denoting a three dimensional

Theorem 2:(See [10], [11]) QSDE [(ITa) W'Tth SYS diagonal matrix of the identity operator (). Similarly,
tem variables as in[{14) satisfyingr2(0),22(0)"] = he CCRs for Pauli operators are written as
2107~ (22(0)) implies [z2(t), z2(t)T] = 210~ (x2) for all - o 43
¢ >0 if and only if [v9, 23] = 2607 (22) € T(H2)™*".

Bi+BT =B, +BY =0 (18a) (_Jonsidering the;_tackin_g operatardenotedvec, _Whosg ac-

tion on anm xn dimensional array createsnan dimensional

BiBy — BB = ©(4g) =0 (180)  column vector by stacking its columns below one another.
AT + A+ B1B," + ByBy" =0. (18c) Applying vec to ©~(B) gives vec(©~(B)) = Fp3, where
The fact that all matrices in systenfis{12) ahd (17) areregh = n = 3, F £ (F17F27F3)T, the (j, k) component of
is due to the quadrature transformatigh (6). F; is (F}) ;1 = €1, ande;jyi, is the Levi-Civita tensor. Some

properties of©o~(-) are summarized in the next lemma (see
[11] for more identities).

If the cascade connection of a two level system and a linear | emma 1:(See [10], [11].) The mappin§~(-) satisfies
quantum system is considered, the composite system lives; 0= (B)y = -0"(7)8,

in H12 = H1 ® H = £3(C) ® C?, which is the completion .. o- _ 0

of the direct product of?(C) and C2. In this construction " (8)8 =0,

the system variables im; and $» when embedded in - ©~ (07 (8)y) =[07(8), 0~ (7).

$12 commute between each other. The cascade of op@&iis properties hold wheg and~ are eitherC3 vectors or

quantum systems is described by an algebraic operation @ii$);)? vectors.

the (S, L, H) parametrization. Such operation is defined next. The explicit computation of the vector fields if] (3) and
Definition 1: (See [13].) Given two open quantum sys-(20) for z; andz is given in the next lemma.

E. Cascades of open quantum systems

tems parametrized byG; = (Si,L1,H1) and G = Lemma 2:The nonzero coefficients of equatiofi$ (3) and
(S92, Lo, H2) having the same number of field channels, théd) for the dynamics of:, z» and the cascad€’; < G are
series produciG; < G is defined as [z1,H1] = 26O Ry,

G11Gy = (5251, Lo+ Lo, [xl, Ll] = 22®F,{,

1 o (19) 21, L] = 23017,

Sincg we assume botﬁ_il and S, to be the identity opera- [thI]Ll _ —QiGFIle,
tors in the corresponding spaces, the QSDE describing the p—
cascade of systems (systendrives systeml) can then be [22,H2] = ~2i07 (ag )22,
written for 27 = (2T 27) as 22, Lo] = =210 (T3,

do=(£1(2) + Lo(w) + Lz, o] + L], 2] 3 dt 2 (w2, LY] = —2i07 (T})as,

@0 Lifw, Lo) = —2i0~(F)TL + 207 (1)O (M),

+ [, Ly + Li]dW + [L + LT, 2] dwT.
1. SOME ALGEBRAIC RELATIONS
Let B3 = (b1, 2, 33)T € C3, and define the linear mapping

[wa, LY Ly = 2607 (T])T} — 207 (T5)0 (T7)a2,
Li[z1, L] = 260011 2y,

O~ : C3 — C3*3 such that (LT, 21)Ly = —24OT{Tyzs.
_ 0 Ps  —P2 From this lemma, syster (1L2) is written as
e~B)=| B 0 B1 : !
By —B1 0 dzy = 20 (R + g(rlrl)) o1 dt
This mapping is understood for vector of operators by associ 2i0 ((=rt +17) —i (Tt +17)) awv
ating with 3 the vector of operators = (5,1, 521, 331)" € T (( 1#+ 1) ! ( 14 )) ©(21)
3 —
T($2)? such that ) ) = <.F1#+ Iy >I1 dt + AV,
0 B3l — o1 Z(Fl - Fl)
O (B)=| —fL 0 Bl | eT(H)P, where§(z) £ & (2 — z*) is the imaginary part of.
2l —pl 0



Remark We see from[(21) that a linear coupling operator In previous work ( [11], [15]), the quantum noise appear-
L, produces, infi(z1), only linear terms of the form ingin the equations was either additive or multiplicatiVhais
Mz dt with M e C?"*2" and constant noise vector fieldsmodel differs from those in what it includes both additivelan
because of the CCRs af,. Suppose now thaf; is a multiplicative noise, and the system models are such that
quadratic form, i.e.,.L; = a:lTFlzcl, then the term[LJ{,:cl] their system variables can be partitioned into two mutually
produces a bilinear term, however evaluating, for instanceommuting sets each having different CCRs. Specifically,
[Ll,xl]LI generates a term of the form,(z; ® z1) one set obeys the CCRs of harmonic oscillators, and the
with M, € C2n>(2n)*  Even more, these terms cannot beother follows the CCRs of a two-level system. That is,

embedded in a higher dimensional bilinear system since e T o7

by doing so only produces polynomials of higher order of [, 27 ] = KI?) (a1 @ )]

the oscillator system variables. This indicates that a QSDE o 0

describing a system of harmonic oscillators cannot have = ( 0 O (x2) ) (25)

terms of the formB;z,dW; when the coupling operator is

a linear form. Conversely, the imposition of these CCRs on an arbitrary

2 induces automatically a partition of in a way that one
set obeys harmonic oscillator CCRs, while the other obey

For system[(Il7), one has that the CCRs ofSU(2). Since this partition of: can always be

dry = — 20~ (T3)T} dt — 207 (af )a dt obtained via a linear transformation, one can assume withou
i (@*(FQT)G*(FE) 4 @7@%)@7@5)) 2o dt loss of generality that is always of the forme” = (z 27).
) B ; . (22) Consider now the block partition ofy, A, B; and B; as
+i0~(T) =Tz dW; — O~ (I'y + I'})ws dWa, follows
[ To+T¥ . A — <A01) A ( A Avg >
dys = (’L(F# B F2)> xo dt + dW. 0 Aga )’ Ay Aoy )
Finally, (20) for the cascade df{{17) driving{12) is B, — Bii Baz2 | 4 B, — Bix
day 0 Biz1  Bisa Bis
(d:cz) = (—21'@‘(1“T)FT) dt for i = 1,2. Recalling the fact that, is self-adjoint, one
2T i can infer that
+ Rl —4@S(F1 F2 ) T dt B -0 .
0 Ro To i2 3x1
0 0 o B This agrees with the fact that a bilinear QSDE is driving a
+ ( 0 i0-(Il —T7) ) (x2> dWw, (23) linear QSDE. In summary, the only source of additive noise
2 2 is provided by the linear QSDE. Note that the bilinear QSDE
_ ( 0 B :9 ; ) (Il) AWy system can only provide multiplicative noise to the comigosi
0 0 (I +1) T2 system. Also, the equation fatz; can only have bilinear
[ 2o ((—FI + F"ir) i (FI + FCIF)) i terms with respect ta:,. This means that
0 Bi12 = 02x2.

; - Theorem 3:Let « be a vector of operators satisfying
th R, = 20 (R+F(TIry)) and Ry = —20-(of P
Wli Tl o ( +7&( Tl 1}) . 2 (0z) + CCRs [2h), a QSDE as i (24a) preserves such CCRs for
0~ (Iz)0~(I3) +0~(I';)0e (Ezj)- all t > 0 if and only if the linear QSDE
We observe that the QSDIE_(23) contains both additive - S5 = =
and multiplicative noise terms, and its drift term is affine. N doy = Anzydt + (B Bay) dW
Two question can now be asked. The first is under wh&nd the bilinear QSDE

conditions a general QSDE of such form (see equafioh (24) 4;., — (Aoz + Agoms) dt 4+ Biogs AW + Bagaxs dWs

below) preserves the CCRs fof andx, at the same time. . .. . . .
This question is addressed in Sectlod IV. Then, it will beszt(;stf_y the conditions in Theorerfis 1 dnid 2, respectively, in
desired to know under what conditions there exi$tsL, ) addition to _
as in [I9) such thaf(20) can be written asfih (3) (Sed@bn V). (I3 ® A12)F + (Bly, ® Ba1)
— (B3s @ Bu1) = 0. (26)
IV. PRESERVATION OFCCRS )
Remark The structure showed il _(R3) appears naturally

Consider an arbitrary-dimensional bilinear QSDE inter- from the preservation of mixed CCRs (see the proof of

acting with a quadrature field. That is, Theoren{B in the appendix).

dr = Agdt + Azxdt + BixdW, + BoxdWy + BdW, (24a)

dy = Cxdt + dW, (24b) V. CASCADE PHYSICAL REALIZABILITY

where Ay € R", A,B;,B, € R™*", B £ (B; By), As mentioned in the introduction, physical realizability

By, By € R™, anddW = (dW, dW>)T. for linear and bilinear QSDESs has previously been treated



independently of each other ( [10], [11], [15]). HoweverIn which case, one can identify the matix defining the
a more natural setting for quantum systems is when lineaystem Hamiltonian and the coupling matiix as

and n-level systems are components of a larger system. 1 1 .

The objective here is to give conditions for physical real- %2 = §VeC(A —AT)'F, and T5 = 5(01 +1iCh).
izability for a bilinear QSDE driving a linear QSDE. The Similar to the case of linear QSDEs, conditidh) is
general notion of physical realizability is provided neit. identical to [I8F), howevel (IBc) is obtained form purely
basically ties QSDE'’s of arbitrary nature with &6, L, 7/) algebraic considerations.

parametrization. o _ _ C. Physical realizability of a class of cascade bilineardar
Definition 2: A QSDE is said to bephysically realizable QspE’s

i there exi;t operators{ and L, such that the QSDE can be The second main result of the paper is now presented.
written as in [B) andl{S). .._First, the definition of a physically realizable biline@ndar

In what follows a summary of the necessary and SUﬁ'C'eQ:tascade is given
conditions for linear and bilinear QSDE's is given. Then the .

d mai It of th A That i Definition 5: A QSDE is said to be physically realizable
second main resutt ot the paper 1S given. 1hat IS, NECeSSqlin a5y linear cascadsf there exist operator$/ and L as

and sufficient f:_onditions for physical reali_zability of thein (T9) such that QSDET20) can be written astih (3) 43d (5).
cascade of a bilinear QSDE followed by a linear QSDE. The characterization of the physical realizability of a
bilinear-linear cascade of QSDEs is given in the next the-
orem.

Definition 3: The system[{12) is said to be physically Theorem 6:The system[(24) is physically realizable ac-
realizable if there exis#{; and L; such that[(I2) can be cording to Definitiorib if and only if the following conditian
written as in [(B) and[{5). hold
The explicit form of matricesA, B,C; and C, in ([@2) i. The matricesdy, A, Bi, Bz, B andC' in (24) are of
is given in terms of a Hamiltonian and coupling operator  the following form

A. Physical realizability of linear QSDEs

next, and can be identified frorh_(21). The existence of an 0 Ay Ags
(S1, Ly, H1) parametrization of linear QSDEs with system 0= \Ap )’ = 0 Agy )°
variables as in[{14) is given by the next theorem. 5 s
. . 0 0 Bi1 Ba

Theorem 4:(See [9], [15].) System[{12) is physically B; = 0 By )’ B = 0 0 )

realizable if and only if ’
and C = G
i. A©O +0©A+ BJB=0, 0/

ii. B=0CT(J®1,), 7i. System
dr1 = A1 dt + (Bll Bgl) dW,
1 . 1 ) dy =Chx1 + aw
’=7 (_@‘.4 + A @) and Ty = 2 (Cr+iCy). _ is physically realizable in the sense of Definitidis 3.
Note that (@) is identical to [IB), however the latter is j;; System
enerated purely form algebraic considerations. - =

g purely g ! I I dzg = (Aga + Agoxa) dt+ Bioaxs AW + Basaxa dWo,
B. Physical realizability of bilinear QSDEs dy = Cyxa +dW

- . - - - ; is physically realizable in the sense of Definitidds 4

Definition 4: System [(I]7) is said to be physically realiz- IS P T T X '
able if there exis#{ and L such that[(I7a) can be written as Wherg G = (02,1_ C%2) is such that the following
in @) and [5). consistency condition holds:

The explicit matricesio, A, Bi, Bo, C1 andC» in terms of A1 = B11Ca1 + Ba1Cas. (27)
a Hamiltonian and coupling operator can be extracted from The followi larv i f h .
@2). The existence of afiS, Ly, Ha) parametrization of e following corollary is a consequence of the previous

' 2 72y 7h2 theorem.

bilinear QSDEs with system variables asinl(14) is given by Corollary 1: A bilinear-linear cascade physically realiz-

the next theorem.
ble QSDE 05).
Theorem 5:(See [10], [11].) The systeri (IL7) with outputal eQ preservef (25)

whereH; andT'; are uniquely identified as

equation[[(B) is physically realizable if and only if VI. CONCLUSIONS ANDFUTURE RESEARCH
, 1 ) ot Conditions for the preservation of mixed CCRs were
i. Ao =5(B1+1iB2)(C1 +iC2) developed. In particular, these conditions were obtaied f

bilinear systems having both additive and multiplicative

guantum noise inputs. It was also shown that bilinear-linea

iii. By = _ef(clT), QSDE cascades are physical realizable when the linear and

. bilinear subsystems are physically realizable and a ceonsis
T T T _

wo A+ AT+ BBy + BoBy =0, tency condition holds.

ii. B =0 (CI),



A future research direction is to consider an interactive[16]

Hamiltonian in the formalism (a hermitian operathl; =

2T Ryx2). This would allow our theory to capture some of the
commonly used models in quantum optics. For example, aqs] A. I.
atom trapped in an optical cavity is described by the Jaynes-
Cummings model, i.e. a model with a Hamiltonian of the[19]
form

wherew, andwo are the frequencies of the cavity and atom,
respectively, andy is the interaction strength. In addition,

1 1
woaz—i— —~vaot + =y*alo™ + hweala

h
H= 2 2

the conditions provided in this manuscript will potentall
allow the synthesis of coherent quantum observersnfor
level systems in the Heisenberg picture.

The authors want to thank M. Wooley for useful discus-
sions and insight on the physics relevance of the results
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APPENDIX
PROOFS OFRESULTS
it follows

T That is,

Ty = (dz)2™ + x(dz)T + (dz)(dx)T

= (A" + 2 A7) dt + (Azz” + z2” AT) dt

+ (Byza® + 22" BY) dWi + (Baaa™ + z2” BY) AW,
+ Byza BT dW,dW, + Byza” BT dW,dWs

+ Boza? BT dWodW, + Boza™ BY aW,dW,

+ (B1dWy + BodWs)(ByxdW, + BoxdWy)T

+ (BizdWy + BoxdWs)(B1dW, + BadWy)”

+ (B1dW, 4 BodWs)(B1dW, + BadWs)”

(Agz” + 2 AT) dt + (Aza™ + z2 AT dt

+ (Biza® + 22" BY) dWi + (Baaa™ + za” By ) dWs
+ Byza® Bl dt +iByxa” B dt

— iBoza” B dt + Boxa™ B3 dt

+ By BT dt +iBy2" B dt

— iBox” BT dt + Beax™ B dt

+ ByxBY dt +iByxB dt

—iBox BT dt + By BY dt

+ BBl dt —iB,BY dt

+iBy B dt + ByBY dt.

Similarly,

(d(:wcT))T
= (Agz” + zAY) dt + (A(z2™)T + (zz
+ (By(aa)T + (22T BY)
+ (Ba(zz™)T + (w2™)T'BI) dWs
+ By (zzT)T BT dt 4+ iB; (z2™)T BT at
—iBy(za®) ' BT dt + By(z2™)' B dt

YT ATy at



+ BiaB] dt +iBsx BT dt where

—iBxBY dt + ByxBY at O (dry) = O~ (Aga) dt + O~ (Apxs) dt

+ Bya" BT dt +iByx™ BY dt + (07 (Biz11) + O (Bigaxa)) dW;
—iB2" BT dt + By BY dt + (07 (Bag1z1) + O (Bazows)) dWo.

+ B,BT dt —iB,BY dt Ag1 does not play a role in the preservation of CCRs.

Therefore, without loss of generalityy; is assumed to be

iB1BY dt + B, BY dt. . ; .
LBy db+ 5Dy zero. This goes in agreement with the fact that no term of

Hence, the commutator dynamics is this type is generated by quantum systems originating from
d[z,2"] = Alz,2"] + [z,27]AT harmonic oscillators of the class considered in this paper.
+ (Bi[z, 2T) + [z, IT]BlT)dwl From [20, Proposition 27.3], one can also equate the

T 1T integrands in[{28) to zero. Recall that(0) is represented

+ (Ba[z, 27| + [, 27 | By )dWa by the complete orthonormal set. This implies that any linea

+ (Bi[z,2"1BT + By[z, 2" |BT) dt combination";_, a;x;(0) # 0 unlessa; = 0 for all i

+z‘(B1{:z:,a:T}B2T—BQ{x,:z:T}BlT) dt and a; € C. In addition, no linear combinz_;\tion of Pauli
. —7 . _ matrices generateg;. Therefore, any equatiodlzy, = b

+ 2Bz By dt + 2B12B, dt (A € C¥*3 andb € C?) implies A = 0 andb = 0. These

+2iBy1a" By dt + 2iByx” B dt facts are summarized in the following equations that have to
+4iB,BY dt —iB, BT dt. be satisfied for the preservation of CCRs.
To preserve[(25)[(2%a) has to satisfy
1 aif 0 0
d |z, }-21(0 O (dzs) ) (28)|

Bi22 By — Boaa Blyy — ©7 (Ag2) =0, (29a)
B;i210 =0, (29b)
Bi1207 (22) = 0 (29¢)
Biggg_(fﬂg) + 9_(1'2)33;2 — 9_(Bi22:v2) = O, (29d)
A11© + ©AT, +i (BB}, — Ba1B)) =0 (29e)
A129_($C2) + Bgll'gB?QQ — Blliﬂngng =0 (29f)
A21@ =0 (299)
AQQ@i(.rQ) + @7($2)A§2 + B122®7($2)B¥122 + B222®7(2r2)Bg-'22 - @7(1422172) = O (Zgh)

Relations [29a) [(29d) an@(29h) provide the preservation p. — ( 0 0 > and B = < Bu Bxn ) _
of CCRs ofz, (Theorem[R). Similarly,[[29e) assures the 0 Bz )’ 0 0

preservation of CCRs far; (Theorenll). Relation§ (2Pb), To obtain [26), first recaliec(ABC) = (CT ® A)vec(B) for
(29d) and[(290) impose a structure on the blocks in matrices, B and C' of appropriate dimensions. Then, applying the
A, Bi, By andB. That s, one has thdf (29c) providBs, =  stacking operator td_(29f) the desired consistency caoliti

0 by the linear independence on the components,0Since (28) is obtained.

© only permutes the rows and columnsAf, and multiplies

some of its components by1 then A1, = 0. The same Conversely, since the steps used above to obfain (26) are
argument provides,,; = 0. From Lemma3 in [11], (29d) reversible and the fact that the preservation of CCRscfor

is always satisfied, and allows to wrifg,; = ©~(b;) with ~ and s in Theoremgl anfll2 imply_(2Pa). (29d). (29e) and
Te(F) Bis) (298), then[(ZB) holds. This finalizes the proof. ]

b= —= :

Te(F.B, Proof of Theoreni]61f system [2#) is bilinear-linear cas-
- H(Fs Bizo) . cade physically realizable, then it can be written adid ,(23)

Therefore, by fixing the CCRs of, the matrices in[(20) and the systems formed by matricés,,, (B, Bo1), Cy)

assume naturally the following structure and(Agz, Asa, Bias, Bass, C2) can be written as ifi{21) and
A — 0 e Ar Apg (22), respectively. Thereforél, L1, H1) and(I, Ly, H2) can
07 \ A2 )’ N 0 Ay )’ be identified so that the parametrizatiofi L, ) as in [19)

holds. It is only left to prove thatl; can be written ag(27).



One has from Lemm@al 2 that O T +1I1), Bioy =i0~ (I',—T'7) andByyy = -0~ (17 +

Ars = —4OF(TITH) = 2%0ITT# — 2i0rIT,, T'}). Using Lemm41L, it then follows that
_ _ _ _ >, T RT
and that2iOIT = By, +iBs, and —26T = Byy +iBy,. By Bia
Thus, =0 + 11 lo- (1l —11)
Avz = (Biy +iBo))T¥ + (Bi1 +iBa1)ls =0 (rlTFQ ~17r# + i1, - F{r;‘*) 0~ (12),
= ?11(1—‘2 + I‘?) + Boi(T§ —T2) B 4T BT
= B110%1 + By Cos. (30) e T
On the other hand, assumin@)-(Zz) hold, then from = —iO(7 —T)22 073 +13)
Theoremd ¥ an@l5 the tripled, L1, H1) and (I, Lo, Ha) =10 (FlTFQ +rfr¥ —rir, - FJ{Ff) O~ (z2).

are uniquely identified. In particulal;; = %(Cll +iC42) Hence

andIy = %(021 + iC99). Finally, since [(2FF) hold all the B . -

steps in[[3D) are reversible, then, = —40FTTTY) as in A1207 (22) + Ba123 Bizy — Buiry By, =0,

(23). This completes the proof. B which is equivalent to[{26) after applying the stacking op-
erator and using the linear independence of the components

Proof of Corollary[1: To prove this result using Theoremgf - -

[6, only condition[(2B) of Theorefm 3 need to be establishe
Given that the cascade is physically realizable, one has tha
Ay = 20(0TTH —TI0y), By = 07T —T1), By =
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