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Physical Realizability Conditions for Mixed Bilinear-Linear Quantum
Cascades with Pure Field Coupling∗

Luis A. Duffaut Espinosa†, Z. Miao‡, I. R. Petersen†, V. Ugrinovskii†, and M. R. James§

Abstract— This paper aims to provide conditions under
which a quantum stochastic differential equation can serve
as a model for interconnection of a bilinear system evolving
on an operator group SU(2)SU(2)SU(2) and a linear quantum system
representing a quantum harmonic oscillator. To answer this
question we derive algebraic conditions for the preservation of
canonical commutation relations (CCRs) of quantum stochas-
tic differential equations (QSDE) having a subset of system
variables satisfying the harmonic oscillator CCRs, and the
remaining variables obeying the CCRs ofSU(2)SU(2)SU(2). Then, it is
shown that from the physical realizability point of view such
QSDEs correspond to bilinear-linear quantum cascades.

I. I NTRODUCTION

In many applications, systems are interconnected in order
to form more complex systems. Open quantum systems are
not the exception. For instance, non-classical propagating
electromagnetic fields, as now experimentally realizable,are
an important resource in linear optics quantum information
processing [3]. They can be constructed by cascading a two-
level quantum system, as a source, with a cavity (quantum
harmonic operator system) which filters the signals from the
two-level system. In this case, the two-level system and the
oscillator are separated by a transmission line such that there
is no direct interaction between their system variables [7]
(Figure 1). From a control perspective, such apparatus are of
great importance. For instance, a natural question is whether
it is possible to estimate the states of a source system via
a simpler oscillator system, the latter playing a role of a
Luenberger observer. The answer to such question is by no
means obvious, and it primarily depends on how one choses
to describe the quantum nature of the comprising systems
and the interconnection itself.

It has been established that the framework of QSDEs
provides an alternative description for studying quantum
systems, in which it allows the translation of standard control
techniques into a quantum mechanical framework [1], [6],
[9], [15], [17], [18], [21]–[24]. The QSDE description is in
agreement with theHeisenberg pictureof quantum systems
[20]. Not every QSDE describes a quantum system (for
instance, CCRs are not satisfied necessarily), however there
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exist conditions under which linear and bilinear QSDEs
obey quantum mechanical laws, namelyphysical realizability
conditions[10], [11], [15]. Physical realizability conditions
provide simple testable matrix conditions containing the
essentials for a system to be considered quantum. In this
context, quantum oscillators are described by linear QSDEs
and two-level systems are described by bilinear QSDEs.
However, the the task of, for example, observing a physically
realizable two level system with a physically realizable
linear QSDE by cascading requires first of all to ensure
the physical realizability of the composite system. Such
cascade system goes beyond the realm in which the physical
realizability of linear and bilinear QSDEs has been studied
so far. Therefore, it is important to considermixedphysical
realizability conditions. That is to say, it is required a testable
condition for the physical realizability of cascade bilinear-
linear systems having a subset of system variables satisfying
the harmonic oscillator CCRs, and the remaining variables
obeying the CCRs of a two level system (i.e., the CCRs of
SU(2) [10], [19]). An analysis of this type also provides a
glimpse of the full characterization of bilinear QSDEs with
additive and multiplicative quantum noise as open quantum
systems.

Open Spin System

 (Bilinear QSDE)

   Open Cavity

            or

Quantum Observer

   (Linear QSDE)

W

y

Fig. 1: Non interacting bilinear-linear quantum cascade open
to a fieldW .

The earliest work on a systematic approach to cascade
quantum systems can be trace to [4], [12]. In [13], the
treatment of the quantum cascading problem was extended
in a manner that completely characterizes the dynamics of
the composite system from a network point of view. This
setting is natural from the engineering point of view where
the decomposition of systems plays a fundamental role in
systems analysis and synthesis. This approach has been
proved valuable since it shows explicitly the interacting field
channels, and hence interconnections via those channels can
be constructed in a natural manner. In contrast, the more

http://arxiv.org/abs/1307.7483v1


standard way of describing quantum systems via evolution
of a density operator does not allow a network methodology
explicitly, because the interacting channels are averaged
out and therefore the interconnection cannot be described
directly. One way to keep track of the information about
the coupling channels is through the Belavkin filter [1],
but this approach requires measurements such as homodyne
or heterodyne detection [22]. Using such measurements is
precluded when the objective is coherent control, i.e., when
the controller or observer is itself a quantum system [17].
Still the approach in [13] starts from a purely quantum
description to then using QSDEs to give the description of
the cascade in terms of quantum operators, which is the
opposite to what physical realizability conditions provide.
In other words, it is desired for control applications to find
conditions under which a cascaded QSDE preserves the
physical realizability conditions of the composite systems
(quantum coherent cascades, in our case), and therefore
allow to identify the underlying quantum operators, when
they exist, governing the dynamics of the cascade. In this
regard, the goal of this paper is twofold. First, the aim is to
obtain conditions for the preservation of physical realizability
of bilinear QSDEs having both additive and multiplicative
quantum noise inputs, and having initial conditions satisfying
mixed CCRs (a combination between the harmonic oscillator
and finite level systems CCRs). The second goal is to
provide necessary and sufficient conditions for the physical
realizability of the bilinear-linear cascade of QSDEs.

The paper is organized as follows. Section II presents the
basic preliminaries on open quantum systems, in particular,
harmonic oscillator systems, two level systems and cascade
of systems. In Section III, the algebraic machinery is given.
This is followed by Section IV, in which the result on
the preservation of mixed CCRs for bilinear QSDE with
additive and multiplicative noise is developed. In SectionV,
the physical realizability of bilinear-linear QSDE cascades
is analyzed. Finally, Section VI gives the conclusions and
future research directions to follow.

II. OPEN QUANTUM SYSTEMS AND THEIR CASCADE

A. Notation

LetR denote the real numbers andC the complex numbers
with imaginary unit iii. The set of real and complexn-
dimensional vectors are denotedRn and Cn, respectively.
The set of real and complexn by m matrices are denoted
Rn×m and Cn×m. The n-dimensional identity matrix is
denoted byIn, and then × m dimensional zero matrix is
0n×m. A separable Hilbert space is denoted byH. The set of
operators inH is denoted byT(H), the set ofn dimensional
vectors of operators inT(H) is denoted byT(H)n and the set
of n×m dimensional arrays of operators inT(H) is denoted
by T(H)n×m. The operator̂I denotes the identity inT(H).
The operation[·, ·] : T(H)× T(H) → T(H) is known as the
commutator, and it is defined as[x, y] = xy−yx. For vectors
x ∈ T(H)n andy ∈ T(H)m the commutator is given as

[x, yT ] , xyT − (yxT )T ∈ T(H)n×m,

x# , (x∗
1 x∗

2 . . . x∗
n)

T , x† = (x#)T , (·)T denotes the
transpose operation and(·)∗ denotes the adjoint (or the
complex conjugate in the case of complex vectors or ma-
trices). On a quantum mechanical framework, it is common
to multiply either vectors or matrices by arrays of operators.
For example, letA ∈ Cm×n andX ∈ T(H)n×m, the (i, j)
element of the multiplication of a matrix by an operator
matrix is

(AX)ij =

n∑

k=1

aikxkj ∈ T(H).

obeys the usual matrix multiplication rules. These
considerations allow to treat operators as system variables
since in quantum mechanics they play the role of states,
and therefeore allow us to use state space systems notation.

Remark: The operations between complex matrices and
operators follow the guidelines of the standardcanonical
quantization [5], which in simple words is a recipe that
promotes the system variables from a classical mechanical
framework into an operator framework in order to obtain a
quantum mechanical description of the system.

B. Open quantum systems

Quantum systems interacting with an external environment
are known asopen quantum systems. Observablesin a
Hilbert spaceH represent physical quantities that can be
measured, while quantum states give the current status of
the system. Here open quantum systems are treated in the
context of quantum stochastic processes [2], [20]. The non-
commutativity of observables is a fundamental difference
between quantum systems and classical systems in which
the former must satisfy certain CCRs, which lead to the
Heisenberg uncertainty principle[16]. The environment
consists of a collection of oscillator systems, each with
the annihilation field operatorw(t) and the creation field
operatorw∗(t) used for annihilation and creation of quanta
at pointt, and commonly known as theboson quantum field
(a quantum version of a Wiener process). Here it is assumed
that t is a real time parameter. These operators generate
three interacting signals in the evolution of the system: the
annihilation processesW (t), the creation processW †(t), and
the counting processΛ(t).

The unitary evolution of an observableX ∈ T(H) in the
Heisenberg pictureis described by the operator equation

X(t) = U †(t)(X ⊗ Î)U(t), (1)

whereU(t) is unitary for all t, and is the solution of the
operator stochastic differential equation

dU(t) =

(

(S − Î) dΛ(t) + LdW †(t)− L†S dW (t)

−
1

2
(L†L+ iiiH) dt

)

U(t),

with initial condition U(0) = Î. H denotes the system
Hamiltonianof the system, andL andS (unitary) determine
the coupling of the system to the field and the interaction



between fields, respectively. For simplicity, this paper will
consider only one interactiong fieldW . Using thequantum
Itô formula for X1, X2 ∈ T(H) [14], i.e.

d(X1X2) = (dX1)X2 +X1(dX2) + (dX1)(dX2), (2)

the dynamics of (1) is expressed as

dX =(S†XS −X) dΛ + L(X) dt+ S†[X,L] dW †

+ [L†, X ]S dW,
(3)

whereL(X) is the Lindblad operator defined as

L(X) = −iii[X,H] +
1

2

(
L†[X,L] + [L†, X ]L

)
. (4)

The output field is given byY (t) = U(t)†W (t)U(t), which
amount to

dY = Ldt+ SdW. (5)

The dynamics of an open quantum systems is usually
parametrized by the triple(S,L,H). Henceforth assume that
S = Î.

It is often convenient to express QSDEs in terms of
quadrature fields, which make all system matrices real. This
is provided by the following linear transformation of the
interacting fields

(
W̄1

W̄2

)

=

(
1 1
−iii iii

)(
W

W †

)

, (6)

where the operators̄W1 andW̄2 are now self-adjoint. More-
over, the Itô table (see [14]) for these quadrature fields is

(
dW̄1

dW̄2

)
(
dW̄1 dW̄2

)
=

(
1 iii

−iii 1

)

dt. (7)

Similarly, the quadrature form of the output fields can be
obtained from the same quadrature transformation. Thus,

(
dY1

dY2

)

=

(
L+ L#

iii(L# − L)

)

dt+

(
dW̄1

dW̄2

)

. (8)

C. Linear open quantum systems

The Hilbert space for this class of systems isH1 = ℓ2(C)
(the space of square integrable complex sequences) [9], and
the vector of system variables is

x1 ∈ T(H1)
2n, (9)

For instance, a single harmonic oscillator system variables
in terms of the annihilator operatora and creation operator
a† is written in self-adjoint formx1 ∈ T(H1)

2 by using the
transformation

x1 =

(
1 1
−iii iii

)(
a

a†

)

. (10)

The CCRs fora anda† are[a, a] = [a†, a†] = 0 and[a, a†] =
1. For a vector ofn creation andn annihilator operators, one
has that

[
x1, x

T
1

]
=



















a1

a
†
1
...
an
a†n










, (a1 a
†
1 . . . an a†n)










= (In ⊗ J),

where

J =

(
0 1
−1 0

)

.

In self-adjoint form, by applying (10), the CCRs are

[x1, x
T
1 ] = 2iii (In ⊗ J)

︸ ︷︷ ︸

, Θ

. (11)

The Hamiltonian for this class of systems is the quadratic
form H1 = xT

1 Rx1 with R real symmetric, and the coupling
operator is considered to be linear, i.e.,L1 = Γ1x1. The
general form for the QSDE having these Hamiltonian an
coupling operator is

dx1 = Ax1 dt+B dW̄ (12a)

dy1 = Cx1 dt+ dW̄ , (12b)

whereA ∈ R3×3, B ∈ Rn×2 and C ∈ R2×n, and W̄ =
(W̄1 W̄2)

T .
For system (12) to have any hope of being quantum

mechanical, it is fundamental that system (12) preserves
(11) over time. The next theorem gives conditions for the
preservation of CCRs ofx1 over time.

Theorem 1:(See [9], [15].) QSDE (12a) with system
variables as in (9) satisfying[x1(0), x1(0)

T ] = 2iiiΘ implies
[x1(t), x1(t)

T ] = 2iiiΘ for all t ≥ 0 if and only if

AΘ+ΘAT +BJBT = 0, (13)

D. Two level open quantum system

For an open two-level quantum system interacting with
one boson quantum field, the Hilbert space isH2 = C2 and
the vector of system variables is

x2 ∈ T(H2)
3, (14)

Note that operators inT(H2) are simply matrices inC2×2.
These operators are chosen to be self-adjoint, so thatx2

satisfiesx2 = x
#
2 . In particular, an operator̂σ ∈ T(H2) is

spanned by the Pauli matrices [19], i.e.,σ̂ = 1
2

∑3
i=0 κiσi,

whereκ0 = Tr(σ̂), κi = Tr(σ̂σi), and

σ0 =

(
1 0
0 1

)

, σ1 =

(
0 1
1 0

)

,

σ2 =

(
0 −iii
iii 0

)

, σ3 =

(
1 0
0 −1

)

denote the Pauli matrices. Thus,κ0, κ1, κ2 andκ3 determine
uniquely the operator̂σ. The product of Pauli matrices satisfy

σiσj = δijI3 + iii
∑

k

ǫijkσk, (15)

and therefore its CCRs are

[σi, σj ] = 2iii
∑

k

ǫijkσk, (16)

whereδij is the Kronecker delta andǫijk denotes the Levi-
Civita tensor. Given that (15) allows to write any product
Pauli operators as linear forms, a large class of polynomial
quantum systems can be characterized by considering linear
Hamiltonian and coupling operators, i.e.,H2 = α2x2 and
L2 = Γ2x2, whereαT

2 ∈ R3 andΓT
2 ∈ C3.



Observe that, in general, the evolution ofx2 is a bilinear
QSDEs with only multiplicative quantum noise expressed as

dx2 = A0 dt+Ax2 dt+B1x2 dW̄1 +B2x2 dW̄2, (17a)

dy2 = Cx2 dt+ dW̄ , (17b)

where A0 ∈ R3, A,B1, B2 ∈ R3×3 and C ∈ R2×n.
Conditions for CCR preservation ofx2 are given in the next
theorem.

Theorem 2:(See [10], [11].) QSDE (17a) with sys-
tem variables as in (14) satisfying[x2(0), x2(0)

T ] =
2iiiΘ−(x2(0)) implies [x2(t), x2(t)

T ] = 2iiiΘ−(x2) for all
t ≥ 0 if and only if

B1 +BT
1 = B2 +BT

2 = 0 (18a)

B1B
T
2 −B2B

T
1 −Θ(A0) = 0 (18b)

AT +A+B1B1
T +B2B2

T = 0. (18c)
The fact that all matrices in systems (12) and (17) are real

is due to the quadrature transformation (6).

E. Cascades of open quantum systems

If the cascade connection of a two level system and a linear
quantum system is considered, the composite system lives
in H12 = H1 ⊗ H2 = ℓ2(C) ⊗ C2, which is the completion
of the direct product ofℓ2(C) andC2. In this construction
the system variables inH1 and H2 when embedded in
H12 commute between each other. The cascade of open
quantum systems is described by an algebraic operation on
the(S,L,H) parametrization. Such operation is defined next.

Definition 1: (See [13].) Given two open quantum sys-
tems parametrized byG1 = (S1, L1,H1) and G2 =
(S2, L2,H2) having the same number of field channels, the
series productG1 ⊳G2 is defined as

G1 ⊳G2 =

(

S2S1, L2 + L1,

H1 +H2 +
1

2iii

(

L
†
2S2L1 − L

†
1S

†
2L2

)) (19)

Since we assume bothS1 andS2 to be the identity opera-
tors in the corresponding spaces, the QSDE describing the
cascade of systems (system2 drives system1) can then be
written for xT = (xT

1 xT
2 ) as

dx=
(

L1(x) + L2(x) + L
†
2[x, L1] + [L†

1, x]L2

)

dt

+ [x, L2 + L1] dW + [L†
2 + L

†
1, x] dW

†.
(20)

III. SOME ALGEBRAIC RELATIONS

Let β = (β1, β2, β3)
T ∈ C3, and define the linear mapping

Θ− : C3 → C3×3 such that

Θ−(β) =





0 β3 −β2

−β3 0 β1

β2 −β1 0



 .

This mapping is understood for vector of operators by associ-
ating withβ the vector of operatorŝβ = (β1Î , β2Î , β3Î)

T ∈
T(H2)

3 such that

Θ−(β̂) =





0 β3Î −β2Î

−β3Î 0 β1Î

β2Î −β1Î 0



 ∈ T(H2)
3×3,

Abusing the notation,̂I will be omitted hereafter, and the fact
thatβ is either a vector of numbers or a vectors of operators
will be understood from the context. As an example, the
product of Pauli operators can be expressed in a compact
matrix form thanks to the mappingΘ−(·). That is,

x2x
T
2 = I3 + iiiΘ−(x2) ∈ T(H2)

3×3.

Observe here that the identity matrixI3, under our con-
vention, is strictly speaking denoting a three dimensional
diagonal matrix of the identity operator inT(H2). Similarly,
the CCRs for Pauli operators are written as

[x2, x
T
2 ] = 2iiiΘ−(x2) ∈ T(H2)

3×3.

Considering thestacking operator, denotedvec, whose ac-
tion on anm×n dimensional array creates amn dimensional
column vector by stacking its columns below one another.
Applying vec to Θ−(β) gives vec(Θ−(β)) = Fβ, where
m = n = 3, F , (F1, F2, F3)

T , the (j, k) component of
Fi is (Fi)jk = ǫijk, andǫijk is the Levi-Civita tensor. Some
properties ofΘ−(·) are summarized in the next lemma (see
[11] for more identities).

Lemma 1: (See [10], [11].) The mappingΘ−(·) satisfies
i. Θ−(β)γ = −Θ−(γ)β,

ii. Θ−(β)β = 0,

iii. Θ− (Θ−(β)γ) = [Θ−(β),Θ−(γ)].

This properties hold whenβ andγ are eitherC3 vectors or
T(H2)

3 vectors.
The explicit computation of the vector fields in (3) and

(20) for x1 andx2 is given in the next lemma.
Lemma 2:The nonzero coefficients of equations (3) and

(4) for the dynamics ofx1, x2 and the cascadeG1 ⊳ G2 are

[x1,H1] = 2iiiΘRx1,

[x1, L1] = 2iiiΘΓT
1 ,

[x1, L
†
1] = 2iiiΘΓ†

1,

L
†
1[x1, L1] = 2iiiΘΓT

1 Γ
#x1,

[x1, L
†
1]L1 = −2iiiΘΓ†

1Γx1,

[x2,H2] = −2iiiΘ−(αT
2 )x2,

[x2, L2] = −2iiiΘ−(ΓT
2 )x2,

[x2, L
†
2] = −2iiiΘ−(Γ†

2)x2,

L
†
2[x2, L2] = −2iiiΘ−(ΓT

2 )Γ
†
2 + 2Θ−(ΓT

2 )Θ
−(Γ†

2)x2,

[x2, L
†
2]L2 = 2iiiΘ−(ΓT

2 )Γ
†
2 − 2Θ−(Γ†

2)Θ
−(ΓT

2 )x2,

L
†
2[x1, L1] = 2iiiΘΓT

1 Γ
#
2 x2,

[L†
1, x1]L2 = −2iiiΘΓ†

1Γ2x2.

From this lemma, system (12) is written as

dx1 = 2Θ
(

R+ F(Γ†
1Γ1)

)

x1 dt

+ 2iiiΘ
((

−Γ†
1 + ΓT

1

)

− iii
(

Γ†
1 + ΓT

1

))

dW̄ ,

dy1 =

(
Γ1 + Γ#

1

i(Γ#
1 − Γ1)

)

x1 dt+ dW̄ ,

(21)

whereF(z) , 1
2iii (z − z∗) is the imaginary part ofz.



Remark: We see from (21) that a linear coupling operator
L1 produces, inL1(x1), only linear terms of the form
Mx1 dt with M ∈ C2n×2n, and constant noise vector fields
because of the CCRs ofx1. Suppose now thatL1 is a
quadratic form, i.e.,Li = xT

1 Γ1x1, then the term[L†
1, x1]

produces a bilinear term, however evaluating, for instance,
[L1, x1]L

†
1 generates a term of the formM1(x1 ⊗ x1)

with M1 ∈ C2n×(2n)2 . Even more, these terms cannot be
embedded in a higher dimensional bilinear system since
by doing so only produces polynomials of higher order of
the oscillator system variables. This indicates that a QSDE
describing a system ofn harmonic oscillators cannot have
terms of the formBix1dW̄i when the coupling operator is
a linear form.

For system (17), one has that

dx2 = − 2iiiΘ−(ΓT
2 )Γ

†
2 dt− 2Θ−(αT

2 )x2 dt

+
(

Θ−(ΓT
2 )Θ

−(Γ†
2) + Θ−(Γ†

2)Θ
−(ΓT

2 )
)

x2 dt

+ iiiΘ−(Γ†
2 − ΓT

2 )x dW̄1 −Θ−(ΓT
2 + Γ†

2)x2 dW̄2,

dy2 =

(
Γ2 + Γ#

2

i(Γ#
2 − Γ2)

)

x2 dt+ dW̄ .

(22)

Finally, (20) for the cascade of (17) driving (12) is
(
dx1

dx2

)

=

(
0

−2iiiΘ−(ΓT
2 )Γ

†
2

)

dt

+

(

R1 −4ΘF(ΓT
1 Γ

#
2 )

0 R2

)(
x1

x2

)

dt

+

(
0 0

0 iiiΘ−(Γ†
2 − ΓT

2 )

)(
x1

x2

)

dW̄1

−

(
0 0

0 Θ−(ΓT
2 + Γ†

2)

)(
x1

x2

)

dW̄2

+

(

2iiiΘ
((

−Γ†
1 + ΓT

1

)

− iii
(

Γ†
1 + ΓT

1

))

0

)

dW̄

(23)

with R1 = 2Θ
(

R+ F(Γ†
1Γ1)

)

and R2 = −2Θ−(αT
2 ) +

Θ−(ΓT
2 )Θ

−(Γ†
2) + Θ−(Γ†

2)Θ
−(ΓT

2 ).
We observe that the QSDE (23) contains both additive

and multiplicative noise terms, and its drift term is affine.
Two question can now be asked. The first is under what
conditions a general QSDE of such form (see equation (24)
below) preserves the CCRs forx1 andx2 at the same time.
This question is addressed in Section IV. Then, it will be
desired to know under what conditions there exists(S,L,H)
as in (19) such that (20) can be written as in (3) (Section V).

IV. PRESERVATION OFCCRS

Consider an arbitraryn-dimensional bilinear QSDE inter-
acting with a quadrature field. That is,

dx = A0dt+Axdt +B1xdW̄1 +B2xdW̄2 +BdW̄ , (24a)

dy = Cxdt + dW̄ , (24b)

where A0 ∈ Rn, A,B1, B2 ∈ Rn×n, B , (B̄1 B̄2),
B̄1, B̄2 ∈ Rn, anddW̄ = (dW̄1 dW̄2)

T .

In previous work ( [11], [15]), the quantum noise appear-
ing in the equations was either additive or multiplicative.This
model differs from those in what it includes both additive and
multiplicative noise, and the system models are such that
their system variables can be partitioned into two mutually
commuting sets each having different CCRs. Specifically,
one set obeys the CCRs of harmonic oscillators, and the
other follows the CCRs of a two-level system. That is,

[x, xT ] =

[(
x1

x2

)

, (xT
1 xT

2 )

]

=

(
Θ 0
0 Θ−(x2)

)

. (25)

Conversely, the imposition of these CCRs on an arbitrary
x induces automatically a partition ofx in a way that one
set obeys harmonic oscillator CCRs, while the other obey
the CCRs ofSU(2). Since this partition ofx can always be
obtained via a linear transformation, one can assume without
loss of generality thatx is always of the formxT = (xT

1 xT
2 ).

Consider now the block partition ofA0, A, Bi andB̄i as
follows

A0 =

(
A01

A02

)

, A =

(
A11 A12

A21 A22

)

,

Bi =

(
Bi11 Bi12

Bi21 Bi22

)

and B̄i =

(
B̄i1

B̄i2

)

for i = 1, 2. Recalling the fact thatx2 is self-adjoint, one
can infer that

B̄i2 = 03×1.

This agrees with the fact that a bilinear QSDE is driving a
linear QSDE. In summary, the only source of additive noise
is provided by the linear QSDE. Note that the bilinear QSDE
system can only provide multiplicative noise to the composite
system. Also, the equation fordx1 can only have bilinear
terms with respect tox2. This means that

Bi12 = 02×2.

Theorem 3:Let x be a vector of operators satisfying
CCRs (25), a QSDE as in (24a) preserves such CCRs for
all t ≥ 0 if and only if the linear QSDE

dx1 = A11x1 dt+ (B̄11 B̄21) dW̄

and the bilinear QSDE

dx2 = (A02 +A22x2) dt+B122x2 dW̄1 +B222x2 dW̄2

satisfy the conditions in Theorems 1 and 2, respectively, in
addition to

(I3 ⊗A12)F + (BT
122 ⊗ B̄21)

− (BT
222 ⊗ B̄11) = 0. (26)

Remark: The structure showed in (23) appears naturally
from the preservation of mixed CCRs (see the proof of
Theorem 3 in the appendix).

V. CASCADE PHYSICAL REALIZABILITY

As mentioned in the introduction, physical realizability
for linear and bilinear QSDEs has previously been treated



independently of each other ( [10], [11], [15]). However,
a more natural setting for quantum systems is when linear
and n-level systems are components of a larger system.
The objective here is to give conditions for physical real-
izability for a bilinear QSDE driving a linear QSDE. The
general notion of physical realizability is provided next.It
basically ties QSDE’s of arbitrary nature with an(S,L,H)
parametrization.

Definition 2: A QSDE is said to bephysically realizable
if there exist operatorsH andL such that the QSDE can be
written as in (3) and (5).

In what follows a summary of the necessary and sufficient
conditions for linear and bilinear QSDE’s is given. Then the
second main result of the paper is given. That is, necessary
and sufficient conditions for physical realizability of the
cascade of a bilinear QSDE followed by a linear QSDE.

A. Physical realizability of linear QSDEs

Definition 3: The system (12) is said to be physically
realizable if there existH1 and L1 such that (12) can be
written as in (3) and (5).
The explicit form of matricesA,B,C1 and C2 in (12)
is given in terms of a Hamiltonian and coupling operator
next, and can be identified from (21). The existence of an
(S1, L1,H1) parametrization of linear QSDEs with system
variables as in (14) is given by the next theorem.

Theorem 4:(See [9], [15].) System (12) is physically
realizable if and only if

i. AΘ+ΘA+BJB = 0,

ii. B = ΘCT (J ⊗ In),

whereH1 andΓ1 are uniquely identified as

R =
1

4

(
−ΘA+ATΘ

)
and Γ1 =

1

2
(C1 + iiiC2) .

Note that (i) is identical to (13), however the latter is
generated purely form algebraic considerations.

B. Physical realizability of bilinear QSDEs

Definition 4: System (17) is said to be physically realiz-
able if there existH andL such that (17a) can be written as
in (3) and (5).

The explicit matricesA0, A,B1, B2, C1 andC2 in terms of
a Hamiltonian and coupling operator can be extracted from
(22). The existence of an(S2, L2,H2) parametrization of
bilinear QSDEs with system variables as in (14) is given by
the next theorem.

Theorem 5:(See [10], [11].) The system (17) with output
equation (8) is physically realizable if and only if

i. A0 =
1

2
(B1 + iiiB2) (C1 + iiiC2)

†,

ii. B1 = Θ−(CT
2 ),

iii. B2 = −Θ−(CT
1 ),

iv. A+AT +B1B
T
1 +B2B

T
2 = 0.

In which case, one can identify the matrixα2 defining the
system Hamiltonian and the coupling matrixΓ2 as

α2 =
1

8
vec(A−AT )TF, and Γ2 =

1

2
(C1 + iiiC2).

Similar to the case of linear QSDEs, condition(iv) is
identical to (18c), however (18c) is obtained form purely
algebraic considerations.

C. Physical realizability of a class of cascade bilinear-linear
QSDE’s

The second main result of the paper is now presented.
First, the definition of a physically realizable bilinear-linear
cascade is given.

Definition 5: A QSDE is said to be aphysically realizable
bilinear-linear cascadeif there exist operatorsH andL as
in (19) such that QSDE (20) can be written as in (3) and (5).

The characterization of the physical realizability of a
bilinear-linear cascade of QSDEs is given in the next the-
orem.

Theorem 6:The system (24) is physically realizable ac-
cording to Definition 5 if and only if the following conditions
hold
i. The matricesA0, A, B1, B2, B andC in (24) are of

the following form

A0 =

(
0

A02

)

, A =

(
A11 A12

0 A22

)

,

Bi =

(
0 0
0 Bi22

)

, B =

(
B̄11 B̄21

0 0

)

,

and C =

(
C1

0

)

.

ii. System

dx1 = A11x1 dt+ (B̄11 B̄21) dW̄ ,

dy = C1x1 + dW̄

is physically realizable in the sense of Definitions 3.
iii. System

dx2 = (A02 +A22x2) dt+B122x2 dW̄1+B222x2 dW̄2,

dy = C2x2 + dW̄

is physically realizable in the sense of Definitions 4,
where CT

2 = (CT
21 CT

22) is such that the following
consistency condition holds:

A12 = B̄11C21 + B̄21C22. (27)

The following corollary is a consequence of the previous
theorem.

Corollary 1: A bilinear-linear cascade physically realiz-
able QSDE preserves (25).

VI. CONCLUSIONS ANDFUTURE RESEARCH

Conditions for the preservation of mixed CCRs were
developed. In particular, these conditions were obtained for
bilinear systems having both additive and multiplicative
quantum noise inputs. It was also shown that bilinear-linear
QSDE cascades are physical realizable when the linear and
bilinear subsystems are physically realizable and a consis-
tency condition holds.



A future research direction is to consider an interactive
Hamiltonian in the formalism (a hermitian operatorHI =
xT
1 R1x2). This would allow our theory to capture some of the

commonly used models in quantum optics. For example, an
atom trapped in an optical cavity is described by the Jaynes-
Cummings model, i.e. a model with a Hamiltonian of the
form

H =
~

2
ω0σz +

1

2
γaσ+ +

1

2
γ∗a†σ− + ~ωca

†a,

whereωc andω0 are the frequencies of the cavity and atom,
respectively, andγ is the interaction strength. In addition,
the conditions provided in this manuscript will potentially
allow the synthesis of coherent quantum observers forn-
level systems in the Heisenberg picture.
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APPENDIX

PROOFS OFRESULTS

Proof of Theorem 3:Using (2) and (7), it follows
that d[x, xT ] can be obtained by computingd(xxT ) and
(d(xxT ))T . That is,

d(xxT ) = (dx)xT + x(dx)T + (dx)(dx)T

=(A0x
T + xAT

0 ) dt+ (AxxT + xxTAT ) dt

+ (B1xx
T + xxTBT

1 ) dW̄1 + (B2xx
T + xxTBT

2 ) dW̄2

+B1xx
TBT

1 dW̄1dW̄1 +B1xx
TBT

2 dW̄1dW̄2

+B2xx
TBT

1 dW̄2dW̄1 +B2xx
TBT

2 dW̄2dW̄2

+ (B̄1dW̄1 + B̄2dW̄2)(B1xdW̄1 +B2xdW̄2)
T

+ (B1xdW̄1 +B2xdW̄2)(B̄1dW̄1 + B̄2dW̄2)
T

+ (B̄1dW̄1 + B̄2dW̄2)(B̄1dW̄1 + B̄2dW̄2)
T

=(A0x
T + xAT

0 ) dt+ (AxxT + xxTAT ) dt

+ (B1xx
T + xxTBT

1 ) dW̄1 + (B2xx
T + xxTBT

2 ) dW̄2

+B1xx
TBT

1 dt+ iiiB1xx
TBT

2 dt

− iiiB2xx
TBT

1 dt+B2xx
TBT

2 dt

+ B̄1x
TBT

1 dt+ iiiB̄1x
TBT

2 dt

− iiiB̄2x
TBT

1 dt+ B̄2x
TBT

2 dt

+B1xB̄
T
1 dt+ iiiB1xB̄

T
2 dt

− iiiB2xB̄
T
1 dt+B2xB̄

T
2 dt

+ B̄1B̄
T
1 dt− iiiB̄1B̄

T
2 dt

+ iiiB̄2B̄
T
1 dt+ B̄2B̄

T
2 dt.

Similarly,
(
d(xxT )

)T

=(A0x
T + xAT

0 ) dt+ (A(xxT )T + (xxT )TAT ) dt

+ (B1(xx
T )T + (xxT )TBT

1 ) dW̄1

+ (B2(xx
T )T + (xxT )TBT

2 ) dW̄2

+B1(xx
T )TBT

1 dt+ iiiB1(xx
T )TBT

2 dt

− iiiB2(xx
T )TBT

1 dt+B2(xx
T )TBT

2 dt



+B1xB̄
T
1 dt+ iiiB2xB̄

T
1 dt

− iiiB1xB̄
T
2 dt+B2xB̄

T
2 dt

+ B̄1x
TBT

1 dt+ iiiB̄2x
TBT

1 dt

− iiiB̄1x
TBT

2 dt+ B̄2x
TBT

2 dt

+ B̄1B̄
T
1 dt− iiiB̄2B̄

T
1 dt

+ iiiB̄1B̄
T
2 dt+ B̄2B̄

T
2 dt.

Hence, the commutator dynamics is

d
[
x, xT

]
= A[x, xT ] + [x, xT ]AT

+ (B1[x, x
T ] + [x, xT ]BT

1 )dW̄1

+ (B2[x, x
T ] + [x, xT ]BT

2 )dW̄2

+ (B1[x, x
T ]BT

1 +B2[x, x
T ]BT

2 ) dt

+ iii(B1{x, x
T }BT

2 −B2{x, x
T }BT

1 ) dt

+ 2iiiB2xB̄
T
1 dt+ 2iiiB1xB̄

T
2 dt

+ 2iiiB̄1x
TBT

2 dt+ 2iiiB̄2x
TBT

1 dt

+ iiiB̄1B̄
T
2 dt− iiiB̄2B̄

T
1 dt.

To preserve (25), (24a) has to satisfy

d
[
x, xT

]
= 2iii

(
0 0
0 Θ−(dx2)

)

, (28)

where

Θ−(dx2) = Θ− (A02) dt+Θ− (A22x2) dt

+
(
Θ− (B121x1) + Θ− (B122x2)

)
dW̄1

+
(
Θ− (B221x1) + Θ− (B222x2)

)
dW̄2.

A01 does not play a role in the preservation of CCRs.
Therefore, without loss of generalityA01 is assumed to be
zero. This goes in agreement with the fact that no term of
this type is generated by quantum systems originating from
harmonic oscillators of the class considered in this paper.

From [20, Proposition 27.3], one can also equate the
integrands in (28) to zero. Recall thatx2(0) is represented
by the complete orthonormal set. This implies that any linear
combination

∑s

k=0 aixi(0) 6= 0 unlessai = 0 for all i

and ai ∈ C. In addition, no linear combination of Pauli
matrices generatesI3. Therefore, any equationAx2 = b

(A ∈ C3×3 and b ∈ C3) implies A = 0 and b = 0. These
facts are summarized in the following equations that have to
be satisfied for the preservation of CCRs.

B122B
T
222 −B222B

T
122 −Θ−(A02) = 0, (29a)

Bi21Θ = 0, (29b)

Bi12Θ
−(x2) = 0 (29c)

Bi22Θ
−(x2) + Θ−(x2)B

T
i22 −Θ−(Bi22x2) = 0, (29d)

A11Θ+ΘAT
11 + iii

(
B̄11B̄

T
21 − B̄21B̄

T
11

)
= 0 (29e)

A12Θ
−(x2) + B̄21x

T
2 B

T
122 − B̄11x

T
2 B

T
222 = 0 (29f)

A21Θ = 0 (29g)

A22Θ
−(x2) + Θ−(x2)A

T
22 +B122Θ

−(x2)B
T
122 +B222Θ

−(x2)B
T
222 −Θ−(A22x2) = 0. (29h)

Relations (29a), (29d) and (29h) provide the preservation
of CCRs of x2 (Theorem 2). Similarly, (29e) assures the
preservation of CCRs forx1 (Theorem 1). Relations (29b),
(29c) and (29g) impose a structure on the blocks in matrices
A, B1, B2 andB. That is, one has that (29c) providesBi12 =
0 by the linear independence on the components ofx2. Since
Θ only permutes the rows and columns ofA12 and multiplies
some of its components by−1 then A12 = 0. The same
argument providesBi21 = 0. From Lemma3 in [11], (29d)
is always satisfied, and allows to writeBi22 = Θ−(bi) with

bi = −
1

n






Tr(F1Bi22)
...

Tr(FsBi22)




 .

Therefore, by fixing the CCRs ofx, the matrices in (20)
assume naturally the following structure

A0 =

(
0

A02

)

, A =

(
A11 A12

0 A22

)

,

Bi =

(
0 0
0 Bi22

)

, and B =

(
B̄11 B̄21

0 0

)

.

To obtain (26), first recallvec(ABC) = (CT ⊗A)vec(B) for
A,B andC of appropriate dimensions. Then, applying the
stacking operator to (29f) the desired consistency condition
(26) is obtained.

Conversely, since the steps used above to obtain (26) are
reversible and the fact that the preservation of CCRs forx1

andx2 in Theorems 1 and 2 imply (29a), (29d), (29e) and
(29h), then (28) holds. This finalizes the proof.

Proof of Theorem 6:If system (24) is bilinear-linear cas-
cade physically realizable, then it can be written as in (23),
and the systems formed by matrices(A11, (B̄11 B̄21), C1)
and(A02, A22, B122, B222, C2) can be written as in (21) and
(22), respectively. Therefore,(I, L1,H1) and(I, L2,H2) can
be identified so that the parametrization(S,L,H) as in (19)
holds. It is only left to prove thatA12 can be written as (27).



One has from Lemma 2 that

A12 = −4ΘF(ΓT
1 Γ

#
2 ) = 2iiiΘΓT

1 Γ
#
2 − 2iiiΘΓ†

1Γ2,

and that2iiiΘΓT
1 = B̄11 + iiiB̄21 and−2iiiΘΓ†

1 = B̄11 + iiiB̄21.
Thus,

A12 = (B̄11 + iiiB̄21)Γ
#
2 + (B̄11 + iiiB̄21)Γ2

= B̄11(Γ2 + Γ#
2 ) + B̄21iii(Γ

#
2 − Γ2)

= B̄11C21 + B̄21C22. (30)

On the other hand, assuming(i)-(iii) hold, then from
Theorems 4 and 5 the triples(I, L1,H1) and (I, L2,H2)
are uniquely identified. In particular,Γ1 = 1

2 (C11 + iiiC12)
and Γ2 = 1

2 (C21 + iiiC22). Finally, since (27) hold all the
steps in (30) are reversible, thenA12 = −4ΘF(ΓT

1 Γ
#
2 ) as in

(23). This completes the proof.

Proof of Corollary 1:To prove this result using Theorem
6, only condition (26) of Theorem 3 need to be established.
Given that the cascade is physically realizable, one has that
A12 = 2iiiΘ(ΓT

1 Γ
#
2 − Γ†

1Γ2), B̄11 = iiiΘ(ΓT
1 − Γ†

1), B̄21 =

Θ(ΓT
1 +Γ†

1), B122 = iiiΘ−(Γ†
2−ΓT

2 ) andB222 = −Θ−(ΓT
2 +

Γ†
2). Using Lemma 1, it then follows that

B̄21x
T
2 B

T
122

= iiiΘ(Γ†
1 + ΓT

1 )x
T
2 Θ

−(Γ†
2 − ΓT

2 )

= iiiΘ
(

ΓT
1 Γ2 − ΓT

1 Γ
#
2 + Γ†

1Γ2 − Γ†
1Γ

#
2

)

Θ−(x2),

B̄11x
T
2 B

T
222

= −iiiΘ(ΓT
1 − Γ†

1)x
T
2 Θ

−(ΓT
2 + Γ†

2)

= iiiΘ
(

ΓT
1 Γ2 + ΓT

1 Γ
#
2 − Γ†

1Γ2 − Γ†
1Γ

#
2

)

Θ−(x2).

Hence

A12Θ
−(x2) + B̄21x

T
2 B

T
122 − B̄11x

T
2 B

T
222 = 0,

which is equivalent to (26) after applying the stacking op-
erator and using the linear independence of the components
of x2.
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