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Sampling-based Learning Control for Quantum Systems with
Hamiltonian Uncertainties

Daoyi Dong, Chunlin Chen, Ruixing Long, Bo Qi, Ian R. Petersen

Abstract— Robust control design for quantum systems has
been recognized as a key task in the development of practical
quantum technology. In this paper, we present a systematic
numerical methodology of sampling-based learning control
(SLC) for control design of quantum systems with Hamiltonian
uncertainties. The SLC method includes two steps of “training”
and “testing and evaluation”. In the training step, an augmented
system is constructed by sampling uncertainties accordingto
possible distributions of uncertainty parameters. A gradient
flow based learning and optimization algorithm is adopted to
find the control for the augmented system. In the process of
testing and evaluation, a number of samples obtained through
sampling the uncertainties are tested to evaluate the control
performance. Numerical results demonstrate the success ofthe
SLC approach. The SLC method has potential applications for
robust control design of quantum systems.

Index Terms— Quantum control, sampling-based learning
control (SLC), Hamiltonian uncertainties, quantum robust
control.

I. I NTRODUCTION

Controlling quantum phenomena lies at the heart of quan-
tum technology and quantum control theory is drawing wide
interests from scientists and engineers [1]-[4]. In recent
years, robust control of quantum systems has been recog-
nized as a key requirement for practical quantum technology
since the existence of uncertainties is unavoidable in the
modeling and control process for real quantum systems
[5]-[7]. Several methods have been proposed for robust
control design of quantum systems. For example, James
et al. [8] have formulated and solved anH∞ controller
synthesis problem for a class of quantum linear stochastic
systems in the Heisenberg picture. Dong and Petersen [9]-
[11] have proposed a sliding mode control approach to
deal with Hamiltonian uncertainties in two-level quantum
systems. Chenet al. [12] have proposed a fuzzy estimator
based approach for robust control design in quantum systems.
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In this paper, we present a systematic numerical method-
ology for control design of quantum systems with Hamil-
tonian uncertainties. The proposed method includes two
steps: “training” and “testing and evaluation”, and we call
it sampling-based learning control (SLC). In the training
step, we sample the uncertainties according to possible
distributions of uncertainty parameters and construct an
augmented system using these samples. Then we develop
a gradient flow based learning and optimization algorithm to
find the control with desired performance for the augmented
system. In the process of testing and evaluation, we test
a number of samples of the uncertainties to evaluate the
control performance. Numerical results show that the SLC
method is useful for control design of quantum systems with
Hamiltonian uncertainties.

This paper is organized as follows. Section II formulates
the control problem. Section III presents the approach of
sampling-based learning control and introduces a gradient
flow based learning and optimization algorithm. A result on
control design in three-level quantum systems is presented
in Section IV. Concluding remarks are presented in Section
V.

II. M ODEL AND PROBLEM FORMULATION

We focus on finite-dimensional closed quantum systems.
For a finite-dimensional closed quantum system, the evolu-
tion of its state|ψ(t)〉 can be described by the following
Schrödinger equation (settinḡh= 1):

{

d
dt |ψ(t)〉=−iH (t)|ψ(t)〉
t ∈ [0,T], |ψ(0)〉= |ψ0〉.

(1)

The dynamics of the system are governed by a time-
dependent Hamiltonian of the form

H(t) = H0+Hc(t) = H0+
M

∑
m=1

um(t)Hm, (2)

where H0 is the free Hamiltonian of the system,Hc(t) =
∑M

m=1um(t)Hm is the time-dependent control Hamiltonian
that represents the interaction of the system with the external
fields um(t), and theHm are Hermitian operators through
which the controls couple to the system.

The solution of (1) is given by|ψ(t)〉=U(t)|ψ0〉, where
the propagatorU(t) satisfies

{

d
dtU(t) =−iH (t)U(t),
t ∈ [0,T], U(0) = Id.

(3)

For an ideal model, there exist no uncertainties in (2).
However, for a practical quantum system, the existence of
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uncertainties is unavoidable. In this paper, we consider that
the system Hamiltonian has the following form

Hω,θ (t) = g(ω(t))H0+
M

∑
m=1

f (θ (t))um(t)Hm. (4)

The functionsg(ω(t)) and f (θ (t)) characterize possible
Hamiltonian uncertainties. We assume that the parameters
ω(t) andθ (t) are time-dependent,ω(t)∈ [−Ω,Ω] andθ (t)∈
[−Θ,Θ]. The constantsΩ ∈ [0,1] and Θ ∈ [0,1] represent
the bounds of the uncertainty parameters. Now the objective
is to design the controls{um(t),m = 1,2, . . . ,M} to steer
the quantum system with Hamiltonian uncertainties from an
initial state |ψ0〉 to a target state|ψtarget〉 with high fidelity.
The control performance is described by aperformance
function J(u) for each control strategyu = {um(t),m =
1,2, . . . ,M}. The control problem can then be formulated
as a maximization problem as follows:

max
u

J(u) := |〈ψ(T)|ψtarget〉|2

s.t.
d
dt
|ψ(t)〉=−iHω,θ (t)|ψ(t)〉, |ψ(0)〉= |ψ0〉

Hω,θ (t) = g(ω(t))H0+
M

∑
m=1

f (θ (t))um(t)Hm,

with ω(t) ∈ [−Ω,Ω], θ (t) ∈ [−Θ,Θ], t ∈ [0,T].
(5)

Note thatJ(u) depends implicitly on the controlu through
the Schrödinger equation.

III. SAMPLING-BASED LEARNING CONTROL OF

QUANTUM SYSTEMS

Gradient-based methods [4], [13], [14] have been success-
fully applied to search for optimal solutions to a variety of
quantum control problems, including theoretical and labo-
ratory applications. In this paper, a gradient-based learning
method is employed to optimize the controls for quantum
systems with uncertainties. However, it is impossible to
directly calculate the derivative ofJ(u) since there exist
Hamiltonian uncertainties. Hence we present a systematic
numerical methodology for control design using some sam-
ples obtained through sampling the uncertainties. These sam-
ples are artificial quantum systems whose Hamiltonians are
determined according to the distribution of the uncertainty
parameters. Then the designed control law is applied to
additional samples to test and evaluate the control perfor-
mance. A similar idea has been used to design robust control
pulses for electron shuttling [15] and to design a control
law for inhomogeneous quantum ensembles [16]. In this
paper, a systematic sampling-based learning control method
is presented to design control laws for quantum systems with
Hamiltonian uncertainties. This method includes two stepsof
“training” and “testing and evaluation”.

A. Sampling-based learning control

1) Training step: In the training step, we obtainN sam-
ples through sampling uncertainties according to the distribu-
tion (e.g., uniform distribution) of the uncertainty parameters
and then construct an augmented system as follows

d
dt











|ψω1,θ1(t)〉
|ψω2,θ2(t)〉

...
|ψωN,θN(t)〉











=−i











Hω1,θ1(t)|ψω1,θ1(t)〉
Hω2,θ2(t)|ψω2,θ2(t)〉

...
HωN,θN(t)|ψωN,θN(t)〉











,

(6)
where Hωn,θn = g(ωn)H0 + ∑m f (θn)um(t)Hm with n =
1,2, . . . ,N. The performance function for the augmented
system is defined by

JN(u) :=
1
N

N

∑
n=1

Jωn,θn(u) =
1
N

N

∑
n=1

|〈ψωn,θn(T)|ψtarget〉|2. (7)

The task in the training step is to find a control strategyu∗

that maximizes the performance function defined in Eq. (7).
Assume that the performance function isJN(u0) with

an initial control strategyu0 = {u0
m(t)}. We can apply the

gradient flow method to approximate an optimal control
strategyu∗ = {u∗m(t)}. The detailed gradient flow algorithm
will be presented in Subsection III-B.

As for the issue of choosingN samples, we generally
choose them according to possible distributions of the un-
certain parametersω(t) ∈ [−Ω,Ω] and θ (t) ∈ [−Θ,Θ]. It is
clear that the basic motivation of the proposed sampling-
based approach is to design the control law using only a few
samples instead of unknown uncertainties. Therefore, it is
necessary to choose the set of samples that are representative
for these uncertainties.

For example, if the distributions of bothω(t) andθ (t) are
uniform, we may choose some equally spaced samples in the
ω−θ space. For example, the intervals[−Ω,Ω] and[−Θ,Θ]
are divided intoNΩ+1 andNΘ+1 subintervals, respectively,
whereNΩ and NΘ are usually positive odd numbers. Then
the number of samplesN = NΩNΘ, whereωn andθn can be
chosen from the combination of(ωnΩ ,θnΘ) as follows

{

ωn ∈ {ωnΩ = 1−Ω+ (2nΩ−1)Ω
NΩ

, nΩ = 1,2, . . . ,NΩ},
θn ∈ {θnΘ = 1−Θ+ (2nΘ−1)Θ

NΘ
, nΘ = 1,2, . . . ,NΘ}.

(8)
In practical applications, the numbers ofNΩ and NΘ can
be chosen by experience or tried through numerical com-
putation. As long as the augmented system can model the
quantum system with uncertainties and is effective to find
the optimal control strategy, we prefer smaller numbers of
NΩ andNΘ to speed up the training process and simplify the
augmented system.

2) Evaluation step:In the step of testing and evaluation,
we apply the optimized controlu∗ obtained in the training
step to a large number of samples through randomly sam-
pling the uncertainties and evaluate for each sample the con-
trol performance in terms of the fidelityF(|ψ(T)〉, |ψtarget〉)
between the final state|ψ(T)〉 and the target state|ψtarget〉



defined as follows [17]

F(|ψ(T)〉, |ψtarget〉) = |〈ψ(T)|ψtarget〉|. (9)

If the average fidelity for all the tested samples are satisfac-
tory, we accept the designed control law and end the control
design process. Otherwise, we should go back to the training
step and generate another optimized control strategy (e.g.,
restarting the training step with a new initial control strategy
or a new set of samples).

B. Gradient flow based learning and optimization algorithm

To get an optimal control strategyu∗ = {u∗m(t),(t ∈
[0,T]),m= 1,2, . . . ,M} for the augmented system (6), a good
choice is to follow the direction of the gradient ofJN(u) as an
ascent direction. For ease of notation, we present the method
for M = 1. We introduce a time-like variables to characterize
different control strategiesu(s)(t). Then a gradient flow in the
control space can be defined as

du(s)

ds
= ∇JN(u

(s)), (10)

where∇JN(u) denotes the gradient ofJN with respect to the
control u. It is easy to show that ifu(s) is the solution of
(10) starting from an arbitrary initial conditionu(0), then the
value of JN is increasing alongu(s), i.e., d

dsJN(u(s)) ≥ 0. In
other words, starting from an initial guessu0, we solve the
following initial value problem







du(s)

ds
= ∇JN(u

(s))

u(0) = u0
(11)

in order to find a control strategy which maximizesJN. This
initial value problem can be solved numerically by using a
forward Euler method over thes-domain, i.e.,

u(s+△s, t) = u(s, t)+△s∇JN(u
(s)). (12)

As for practical applications, we present its iterative ap-
proximation version to find the optimal controlsu∗(t) in
an iterative learning way, where we usek as an index of
iterations instead of the variables and denote the controls at
iteration stepk asuk(t). Equation (12) can be rewritten as

uk+1(t) = uk(t)+ηk∇JN(u
k), (13)

where ηk is the updating step (learning rate in computer
science) for thekth iteration. By (7), we also obtain that

∇JN(u) =
1
N

N

∑
n=1

∇Jωn,θn(u). (14)

Recall thatJω,θ (u) = |〈ψω,θ (T)|ψtarget〉|2 and |ψω,θ (·)〉 sat-
isfies

d
dt
|ψω,θ 〉=−iHω,θ (t)|ψω,θ 〉, |ψω,θ (0)〉= |ψ0〉. (15)

For ease of notation, we consider the case where only one
control is involved, i.e.,Hω,θ (t) = g(ω)H0+u(t) f (θ )H1. We
now derive an expression for the gradient ofJω,θ (u) with
respect to the controlu by using a first order perturbation.

Let δψ(t) be the modification of|ψ(t)〉 induced by a
perturbation of the control fromu(t) to u(t) + δu(t). By
keeping only the first order terms, we obtain the equation
satisfied byδψ :

d
dt

δψ =−i (g(ω)H0+u(t) f (θ )H1)δψ

−iδu(t) f (θ )H1|ψω,θ (t)〉,
δψ(0) = 0.

Let Uω,θ (t) be the propagator corresponding to (15). Then,
Uω,θ (t) satisfies

d
dt

Uω,θ (t) =−iHω,θ (t)Uω,θ (t), U(0) = Id.

Therefore,

δψ(T) =−iUω,θ (T)
∫ T

0
δu(t)U†

ω,θ (t) f (θ )H1|ψω,θ (t)〉dt

=−iUω,θ (T)
∫ T

0
U†

ω,θ (t) f (θ )H1Uω,θ (t)δu(t)dt |ψ0〉. (16)

Using (16), we computeJω,θ (u+ δu) as follows

Jω,θ (u+ δu)− Jω,θ(u)

≈ 2ℜ
(

〈ψω,θ (T)|ψtarget〉〈ψtarget|δψ(T)
)

= 2ℜ
(

−i〈ψω,θ (T)|ψtarget〉〈ψtarget|
∫ T

0 V(t)δu(t)dt |ψ0〉
)

=
∫ T

0 2ℑ
(

〈ψω,θ (T)|ψtarget〉〈ψtarget|V(t)|ψ0〉
)

δu(t)dt, (17)

where ℜ(·) and ℑ(·) denote, respectively, the real and
imaginary parts of a complex number, andV(t) =
Uω,θ (T)U

†
ω,θ (t) f (θ )H1Uω,θ (t).

Recall also that the definition of the gradient implies that

Jω,θ (u+ δu)− Jω,θ(u)

= 〈∇Jω,θ (u),δu〉L2([0,T])+o(‖δu‖)
=

∫ T
0 ∇Jω,θ (u)δu(t)dt+o(‖δu‖). (18)

Therefore, by identifying (17) with (18), we obtain

∇Jω,θ (u) = 2ℑ
(

〈ψω,θ (T)|ψtarget〉〈ψtarget|V(t)|ψ0〉
)

. (19)

The gradient flow method can be generalized to the case with
M > 1 as shown inAlgorithm 1.

Remark 1:The numerical solution of the control design
using Algorithm 1 is always difficult with a time varying
continuous control strategyu(t). In a practical implementa-
tion, we usually divide the time interval[0,T] equally into
a number of time slices△t and assume that the controls
are constant within each time slice. Instead oft ∈ [0,T]
the time index will betq = qT/Q, where Q = T/△t and
q= 1,2, . . . ,Q.

IV. SLC FOR THREE-LEVEL QUANTUM SYSTEMS WITH

UNCERTAINTIES

In this section, we demonstrate the application of the
proposed SLC method to aV-type three-level quantum
systems with Hamiltonian uncertainties.



Algorithm 1. Gradient flow based iterative learning

1: Set the index of iterationsk= 0
2: Choose a set of arbitrary controlsuk=0 = {u0

m(t), m=
1,2, . . . ,M}, t ∈ [0,T]

3: repeat (for each iterative process)
4: repeat (for each training samplesn= 1,2, . . . ,N)
5: Compute the propagatorUk

n(t) with the control
strategyuk(t)

6: until n= N
7: repeat (for each controlum(m= 1,2, . . . ,M) of the

control vectoru)
8: δ k

m(t) = 2ℑ
(

〈ψωn,θn(T)|ρtargetVωn,θn(t)|ψ0〉
)

where Vωn,θn(t) = Uωn,θn(T)U
†
ωn,θn

(t) f (θn)HmUωn,θn(t)
andρtarget= |ψtarget〉〈ψtarget|

9: uk+1
m (t) = uk

m(t)+ηkδ k
m(t)

10: until m= M
11: k= k+1
12: until the learning process ends
13: The optimal control strategyu∗ = {u∗m} = {uk

m}, m=
1,2, . . . ,M

A. Control of a V-type quantum system

We consider aV-type quantum system and demonstrate the
SLC design process. Assume that the initial state is|ψ(t)〉=
c1(t)|1〉+ c2(t)|2〉+ c3(t)|3〉. Let C(t) = (c1(t),c2(t),c3(t))
where theci(t)’s are complex numbers. We have

iĊ(t) = (g(ω(t))H0+ f (θ (t))Hu(t))C(t). (20)

We takeH0 = diag(1.5,1,0) and chooseH1, H2, H3 andH4

as follows [18]:

H1 =





0 1 0
1 0 0
0 0 0



 , H2 =





0 −i 0
i 0 0
0 0 0



 ,

H3 =





0 0 1
0 0 0
1 0 0



 , H4 =





0 0 −i
0 0 0
i 0 0



 . (21)

After we sample the uncertainties, every sample can be
described as follows:




ċ1(t)
ċ2(t)
ċ3(t)



=





−1.5g(ω)i F1(θ ) F2(θ )
F∗

1 (θ ) −g(ω)i 0
F∗

2 (θ ) 0 0









c1(t)
c2(t)
c3(t)





(22)
where F1(θ ) = f (θ )[u2(t)− iu1(t)], F2(θ ) = f (θ )[u4(t)−
iu3(t)], ω ∈ [−Ω,Ω] and θ ∈ [−Θ,Θ]. Ω ∈ [0,1] and Θ ∈
[0,1] are given constants.

To construct an augmented system for the training step
of the SLC design, we chooseN training samples (denoted
as n = 1,2, . . . ,N) through sampling the uncertainties as
follows:





ċ1,n(t)
ċ2,n(t)
ċ3,n(t)



= Bn(t)





c1,n(t)
c2,n(t)
c3,n(t)



 , (23)

Bn(t) =





−1.5g(ωn)i F1(θn) F2(θn)
F∗

1 (θn) −g(ωn)i 0
F∗

2 (θn) 0 0



 ,

whereF1(θn) = f (θn)[u2(t)− iu1(t)], F2(θn) = f (θn)[u4(t)−
iu3(t)]. We assume thatωn ∈ [−Ω,Ω] and θn ∈ [−Θ,Θ]
have uniform distributions. Now the objective is to find a
robust control strategyu(t) = {um(t),m= 1,2,3,4} to drive
the quantum system from|ψ0〉 = 1√

3
(|1〉+ |2〉+ |3〉) (i.e.,

C0 = ( 1√
3
, 1√

3
, 1√

3
)) to |ψtarget〉= |3〉 (i.e., Ctarget= (0,0,1)).

If write (23) as Ċn(t) = Bn(t)Cn(t) (n = 1,2, . . . ,N), we
can construct the following augmented equation










Ċ1(t)
Ċ2(t)

...
ĊN(t)











=











B1(t) 0 · · · 0
0 B2(t) · · · 0
...

...
.. .

...
0 0 · · · BN(t)





















C1(t)
C2(t)

...
CN(t)











.

(24)
For this augmented equation, we use the training step to learn
an optimal control strategyu(t) to maximize the following
performance function

J(u) =
1
N

N

∑
n=1

|〈Cn(T)|Ctarget〉|2. (25)

Now we employAlgorithm 1 to find the optimal control
strategyu∗(t) = {u∗m(t),m = 1,2,3,4} for this augmented
system. Then we apply the optimal control strategy to other
samples to evaluate its performance.

B. Numerical example

For the numerical experiments on aV-type quantum sys-
tem [19], we use the parameter settings listed as follows: the
initial stateC0 = ( 1√

3
, 1√

3
, 1√

3
), and the target stateCtarget=

(0,0,1); The end time isT = 5 and the total time interval
[0,T] is equally discretized intoQ = 200 time slices with
each time slice∆t =(tq−tq−1)|q=1,2,...,Q =T/Q= 0.025; The
learning rate isηk = 0.2; The control strategy is initialized
with uk=0(t) = {u0

m(t) = sint,m= 1,2,3,4}.
First, we assume that there exist only uncertaintyg(ω(t))

(i.e., f (θ (t)) ≡ 1), g(ω(t)) = 1−ω cost, Ω = 0.28 andω
has a uniform distribution in the interval[−0.28,0.28]. To
construct an augmented system for the training step, we
have the training samples for thisV-type quantum system
as follows







g(ωn) = 1−0.28+
0.28(2n−1)

7
,

f (θn) = 1,
(26)

wheren= 1,2, . . . ,7. The training performance for this aug-
mented system is shown in Fig. 1. It is clear that the learning
process converges to a quite satisfying stage with only about
300 iterations. The optimal control strategy is demonstrated
in Fig. 2, which is compared with the initial one. To test the
optimal control strategy obtained from the training step using
the augmented system, we randomly choose 200 samples
through sampling the uncertaintyg(ω(t)) and demonstrate
the control performance in Fig. 3. The average fidelity is
0.9989.
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Fig. 3. The testing performance (with respect to fidelity) ofthe learned optimal control strategy for theV-type quantum system with only uncertainty
g(ω(t)) whereω(t) ∈ [−0.28,0.28]. For the 200 testing samples, the mean fidelity is 0.9989.
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Fig. 1. Training performance to find the optimal control strategy by
maximizing J(u) for the V-type quantum system with only uncertainty
g(ω(t)) whereω(t) ∈ [−0.28,0.28].
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Fig. 2. The learned optimal control strategy with maximizedJ(u) for
the V-type quantum system with only uncertaintyg(ω(t)) where ω(t) ∈
[−0.28,0.28].

Now we consider the more general case that there exist
uncertaintiesg(ω(t)) and f (θ (t)). AssumeΩ = Θ = 0.28,
g(ω(t)) = 1−ω cost, f (θ (t)) = 1−θ cost and bothω and
θ have uniform distributions in the interval[−0.28,0.28]. To
construct an augmented system for the training step, we have
the training samples as follows











g(ωn) = 1−0.28+
0.28(2fix(n/7)−1)

7
,

f (θn) = 1−0.28+
0.28(2mod(n,7)−1)

7
,

(27)

where n = 1,2, . . . ,49, fix(x) = max{z ∈ Z|z ≤ x},
mod(n,7) = n− 7z(z∈ Z and n

7 − 1 < z≤ n
7) andZ is the

set of integers. The training performance for this augmented
system is shown in Fig. 4. The optimal control strategy
is presented in Fig. 5. To test the optimal control strategy
obtained from the training step using the augmented system,
we randomly choose 200 samples through sampling the un-
certaintiesg(ω(t)) and f (θ (t)) whose control performance
is presented in Fig. 6. The average fidelity is 0.9901. These
numerical results show that the proposed SLC method using
an augmented system for training is effective for control
design of quantum systems with Hamiltonian uncertainties.

V. CONCLUSION

In this paper, we presented a systematic numerical method-
ology for control design of quantum systems with Hamil-
tonian uncertainties. The proposed sampling-based learning
control method includes two steps of “training” and “testing
and evaluation”. In the training step, the control is learned
using a gradient flow based learning and optimization algo-
rithm for an augmented system constructed from samples. In
the process of testing and evaluation, the control obtainedin
the first step is evaluated for additional samples. The results
show the effectiveness of the SLC method for control design
of quantum systems with Hamiltonian uncertainties.
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maximizingJ(u) for theV-type quantum system with uncertaintiesg(ω(t))
and f (θ (t)) whereω(t)∈ [−0.28,0.28] and θ (t) ∈ [−0.28,0.28].
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Fig. 5. The learned optimal control strategy with maximizedJ(u) for
the V-type quantum system with uncertaintiesg(ω(t)) and f (θ (t)) where
ω(t) ∈ [−0.28,0.28] and θ (t) ∈ [−0.28,0.28].
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