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Opinion dynamics and stubbornness through mean-field games

Leonardo Stella, Fabio Bagagiolo, Dario Bauso, Giacomo Como.

Abstract— This paper provides a mean field game theo-
retic interpretation of opinion dynamics and stubbornness.
The model describes a crowd-seeking homogeneous population
of agents, under the influence of one stubborn agent. The
game takes on the form of two partial differential equations,
the Hamilton-Jacobi-Bellman equation and the Kolmogorov-
Fokker-Planck equation for the individual optimal response and
the population evolution, respectively. For the game of interest,
we establish a mean field equilibrium where all agents reach
ε-consensus in a neighborhood of the stubborn agent’s opinion.

I. INTRODUCTION

Over the past few years there has been an increasing inter-

est in the field of opinion dynamics. These describe the time

evolution of the beliefs of a typically very large population of

agents in response to repeated interactions among themselves

over a social network (see, e.g., [6, Sect. III] and [1]). In

continuous opinion dynamics, beliefs (hereafter opinions or

beliefs are used interchangeably) are represented as scalars

or vectors, each moving towards a convex combinations of

(a subset of) other agents’ current beliefs, thus modeling the

attractive nature of social influence. Standard models predict,

provided that the underlying social network is connected, that

a consensus among the agents is achieved asymptotically

in time. Exceptions are provided by bounded confidence

models [11], whereby agents do not take into account the

influence of other agents whose beliefs are too different

from theirs, as well as models with competing stubborn

agents [2] who do not change their opinions but are able

to influence the ones of the rest of the population. Such

stubborn agents might represent leaders, political parties or

media sources attempting to influence the beliefs in the

rest of the population. Scaling limits results (see, e.g., [7])

show that, if the agents’ population is homogeneous, the

empirical belief distribution converges, as the population size

grows large, towards the solution of a certain deterministic

mean-field differential equation in the space of probability

This work was supported by the 2012 “Research Fellow” Program of the
Dipartimento di Matematica, Università di Trento and by PRIN “Robust
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di Trento, Via Sommarive 14, 38050 Povo-Trento, Italy
bagagiol@science.unitn.it

G. Como is with Department of Automatic Control,
Lund University, BOX 118, SE-221 00 Lund, Sweden
giacomo.como@control.lth.se

D. Bauso is with DICGIM, Università di Palermo, V.le delle Scienze,
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measures. Such results are in the spirit of the propagation of

chaos [8] in interacting particle systems.

As a matter of fact, interactions among particles is a main

element in the theory of mean field games initiated by Lasry

and Lions in [13], [4]. The underlying idea is that a large

number of indistinguishable players (the particles) interact

so that the strategies of a single player is influenced by

the distribution of the other players. Such a model has been

shown to be useful in several application domains such as

economics, physics, biology, and network engineering (see

[3], [5], [9], [10], [12], [15], [17]).

Main contribution. In this paper we propose an approach

to opinion dynamics within the framework of mean-field

games. We focus on a stochastic model with time-continuous

beliefs comprising a homogeneous population of agents, plus

one stubborn agent trying to influence them.

The main contribution of this paper is to provide a

mean field game theoretic interpretation of opinion dynamics

and stubbornness. The game takes the form of two partial

differential equations (PDEs), which is the classical structure

of a mean field game. The first PDE is the Hamilton-

Jacobi-Bellman equation which has to be solved backward

in time once we fix a penalty on the final deviation of the

individual’s opinion from the mainstream opinion (this is

true for a finite horizon formulation). The second PDE is

the Kolmogorov-Fokker-Planck equation which describes the

density evolution of the players’ opinions in response to the

individuals’ optimal behaviors as returned by the first PDE.

[13], [16].

For the game of interest, we also establish a mean

field equilibrium where all agents reach ε-consensus in a

neighborhood of the stubborn agent’s opinion. Mean field

equilibrium strategies are shown to be state-feedback linear

control policies. In addition to this, the tolerance ε appears

to essentially depend on the Brownian Motion, and decrease

on the number of players. We illustrate the theoretical results

on numerical examples.

This paper is organized as follows. In Section II, we set up

the problem and related model. In Section III, we analyze

the system microscopic behavior, and study equilibria and

stability. In Section IV, we provide numerical results. Finally,

in Section V, we provide conclusions.

Notation We denote by (Ω,F ,P) a complete probability

space. We let B be a finite-dimensional standard Brownian

motion process defined on this probability space. We define

F = (Ft)t≥0, its natural filtration augmented by all the

P−null sets (sets of measure-zero with the respect P). We

write ∂x and ∂2
xx to stand respectively for the first and second

derivatives with respect to x.



II. MODEL AND PROBLEM SET-UP

Consider a population of homogeneous agents (players),

each one characterized by an opinion X(t) ∈ R at time 0 ≤
t ≤ T , where [0, T ] is the time horizon window. The control

variable is a measurable function of time u1(·), defined

from [0, T ] to R and establishes the rate of variation of an

agent’s opinion. A stubborn agent tries to disturb the agents’

opinions in a way that is proportional to his advertisement

efforts u2(·), a measurable function from [0, T ] to R, which

is the control of the stubborn agent.

It turns out that the opinion dynamics can be written in

the form X ′ = f(X,u1, u2)+σdB with f : R×R×R → R

constant in X and linear in the controls:
{

dX(s) = (u1(s) + u2(s))ds+ σdB(s), s > t

X(t) = x,
(1)

where σ > 0 is a weighting coefficient and dB(t) is a

Brownian motion.

Consider a probability density function m : R×[0,+∞[→
R, (x, t) 7→ m[x](t), representing the percentage of agents

in state x at time t, which satisfies
∫

R
m[x](t)dx = 1 for

every t. Let us also define the mean opinion at time t as

m(t) :=
∫

R
xm[x](t)dx.

The objective of the agent is to adjust his opinion based

on the average opinion of all agents. This reflects a typical

crowd-seeking behavior in that emulating others brings some

benefits and makes an agent more comfortable and at ease.

Then, for the agents, consider a running cost g1 : R×R×
R → [0,+∞[, (x,m, u1) 7→ g1(x,m, u1) of the form:

g1(x,m, u1) =
1

2

(

a1

(

m− x
)2

+ c1u
2
1

)

. (2)

Also consider a final cost Ψ1 : R×R → [0,+∞[, (m,x) 7→
Ψ1(m,x) of the form

Ψ1(m,x) =
1

2
S1

(

m− x
)2

.

We suppose that the stubborn agent wants to attract the

agent’s opinions towards his opinion itself, and that such an

opinion correspond to x = 0. Hence, for the stubborn agent,

we consider a running cost (one per every opinion evolution)

g2 : R× R → [0,+∞[, (x, u2) 7→ g2(x, u2) of the form:

g2(x, u2) =
1

2

(
a2x

2 + c2u
2
2

)
. (3)

We also consider a final cost Ψ2 : R → [0,+∞[, of the form

Ψ2(x) =
1

2
S2x

2.

The parameters a1, c1, S1, a2, c2, S2 are positive and fixed.

Problem 1: The problem is the following: given an initial

distribution of opinions m0 and the corresponding mean m0 :
R → R, for every (x, t) ∈ R × [0, T ], minimize over all

measurable control u1(·) and over all measurable controls

u2(·), the following two cost functionals, respectively

min
u1(.)

E

(
∫ T

t

g1(X(s),m(s), u1(s))ds+Ψ1(m(T ), X(T ))

)

,

min
u2(.)

E

(
∫ T

t

g2(X(s), u2(s))ds+Ψ2(X(T ))

)

,

where X(·) is the trajectory of the stochastic controlled

equation starting from the single opinion x, and m(·) is the

evolution of the mean distribution of the opinions if every

one of the agents behaves optimally.

The problem has then a differential game feature. We have

a family of differential games, one per every initial opinion

x, where the players are all the (homogeneous) agents with

that initial opinion and the stubborn agent. The dynamics

depends on both controls, and the dynamics of the opinion

also depends on the mean opinion evolution (and so, inside

the family, the differential games are mutually influenced).

Being a differential game, we are interested in possible

Nash equilibria. A pair of controls (u∗
1(·), u∗

2(·)) is a Nash

equilibrium if, denoting by v1 (resp. v2) the value function

of the first (resp. second) player when the second (resp. first)

one implements u∗
2 (resp. u∗

1), then v1 (resp. v2) is obtained

exactly when the first (resp. second) player implements u∗
1

(resp. u∗
2).

The problem then results in the following mean field game

system for the unknown scalar functions v1(x, t), v2(x, t),
and m(x, t)






−∂tv1(x, t)−
σ2

2
∂2
xxv1(x, t) + {−f(x, u∗

1, u
∗
2)∂xv1(x, t)

−g1(x,m(t), u1)} = 0 in R× [0, T [,
v1(x, T ) = Ψ1(x) in R,

−∂tv2(x, t)−
σ2

2
∂2
xxv2(x, t) + {−f(x, u∗

1, u
∗
2)∂xv2(x, t)

−g2(x,m(t), u2(x, t))} = 0 in R× [0, T [,
v2(x, T ) = Ψ2(x) in R,

∂tm(x, t) + ∂x(m(x, t)f(X,u∗
1, u

∗
2))

−σ2

2 ∂2
xxm(x, t) = 0, in R× [0, T [,

m(x, 0) = m0(x) in R.

Now, it is reasonable, to consider v1 and v2 have a quadratic

form:

v1(x, t) =
q1(t)

2
(x−m(t))2, v2(x, t) =

q2(t)

2
x2,

and so, searching the optimal time-varying state-feedback

controls as






u∗
1(x, t) = argmaxu1∈R

{−f(x, u1, u
∗
2)∂xv1(x, t)

−g1(x,m(t), u1)},

u∗
2(x, t) = argmaxu2∈R

{−f(x, u∗
1, u2)∂xv2(x, t)

−g2(x,m(t), u2)},

(4)

we get

u∗
1(x, t) = −q1(t)

c1
(x−m(t)), u∗

2(x, t) = −q1(t)

c2
x.



Here, q1(·) and q2(·) are solutions of the corresponding

Riccati equations.

III. MICROSCOPIC MODEL

Let a finite set of players {1, . . . , n} be given and let Yi(t)
for all i = 1, . . . , n be the corresponding state. Let us collect

all states in a state vector Y (t) = [Y1(t), . . . , Yn(t)]
T . Given

the optimal controls u∗
1(x, t) and u∗

2(x, t) as computed above

the evolution of the state vector is captured by the Stochastic

Differential Equation (SDE)

dY (t) =

[
q1

c1
(m1− Y (t))− q2

c2
Y (t)

]

dt+ σdB(t). (5)

For future purposes it is convenient to rewrite (5) making

use of a stochastic matrix. To do this, let us introduce W =
− q1

c1
L + I , where L is the Laplacian of a fully connected

network. Observe that

W = WT W1 = 1. (6)

Then, we can rewrite (5) as

dY (t) =

[

(W − I)Y (t)− q2

c2
Y (t)

]

dt+ σdB(t) (7)

The above equation is useful as it allows us to analyze the

evolution of the stochastic properties of the mean opinion

m(t). Indeed, observe that m(t) is a stochastic process with

first-order moment satisfying

Edm(t) = −q2

c2
Em(t)dt.

Then, we can infer that the first-order moment converges

exponentially to zero according to

Em(t) = e
−

q2

c2
t
Em(t)

and therefore Em(t) → 0.

Definition 1 (asymptotic ε-stability): We say that a

stochastic process ξ(t), t ≥ 0 is asymptotically ε-stable if

limt→∞ sup ‖ξ‖ ≤ ε.

The next theorem establishes that the mean opinion con-

verges to a neighborhood of zero almost surely.

Theorem 1: There exists ε > 0 such that the mean opinion

is ε-stable w.p.1,

lim
t→∞

‖m(t)‖ ≤ ε, w.p.1.

Furthermore, the smallest ε for which the above holds is

ε =

√

1

2

c2

q2

σ2

n2
. (8)

Proof: This proof is within the framework of Lyapunov

stochastic stability theory (cfg. [14], system (64.51)). We

start by observing that

dm(t) = 1
n
1
T dY (t)

= 1
n
1
T
[

(W − I)Y (t)− q2
c2
Y (t)

]

dt+ 1
n
1
TσdB(t)

= − 1
n
1
T q2

c2
Y (t)dt+ 1

n
1
TσdB(t)

= − q2
c2
m(t)dt+ 1

n
1
TσdB(t).

(9)

The above SDE is linear and the corresponding stochas-

tic process can be studied in the framework of stochastic

stability theory [14]. To do this, consider the infinitesimal

generator

L =
1

2
σ2 d2

dm2 − q2

c2
m(t)

d

dm(t)
. (10)

The above equation is obtained from

1

2
E

(

dm2 d2

dm2

)

+ E

(

dm
d

dm

)

=
1

2

[

E

(

(−q2

c2
)2m(t)2dt2

)

+ E
(
σ2dB(t)2

)

+E

(

2(−q2

c2
)m(t)dtσdB(t)

)]
d2

dm(t)2

+

[

E

(

(−q2

c2
)m(t)dt

)

+ E (σdB(t))
]

d

dm(t)
.

Now, recalling that for a Brownian motion it holds EdB(t) =
0 and EdB(t)2 → 0 and ignoring the second-order terms (in

dt2 or dtdB(t)) we obtain (10).

Consider a candidate Lyapunov function V (m) = 1
2m(t)2.

The idea is to show that there exists a finite scalar κ and a

neighborhood of zero of size κ, denoted by Nκ = {m ∈
R|V (m) ≤ κ}, such that the stochastic derivative of V (m)
is negative, i.e.

LV (m(t)) := limdt→0
EV (m(t+dt))−V (m(t))

dt
< 0,

for all m(t) 6∈ Nκ.
(11)

Given the above set, we also need to show that once m(t) ∈
Nκ then m(t)+dm(t) ∈ Nκ. Actually, the theory establishes

that if the former condition holds true, which is LV (m(t)) <
0, then V (m(t)) is a supermartingale whenever m(t) is not

in Nκ and therefore by the martingale convergence theorem

∃ t such that V (m(t)) ≤ κ. Combining this with the property

m(t) + dm(t) ∈ Nκ for every m(t) ∈ Nκ we obtain

limt→∞ V (m(t)) ≤ κ w.p.1 (almost surely), which in turn

implies limt→∞ ‖m(t)‖ ≤ ε =
√
2κ w.p.1.

To see that LV (m(t)) < 0 is true, observe that from (9)

we have

LV (m) = −q2

c2
m2 +

1

2

σ2

n2
.

Now, consider the level sets Nκ = {m(t) ∈ R|V (m(t)) ≤
κ} and observe that there always exists a κ̂ big enough and

finite such that for every m(t) 6∈ Nκ̂, i.e., 1
2m(t)2 > κ̂, we

have q2
c2
m2 > 1

2
σ2

n2 . The latter implies LV (m(t)) < 0 for

all m(t) 6∈ Nκ̂, which proves that every level set Nκ where

κ ≥ κ̂ is contractive.

In other words, for every m(t) ∈ ∂Nκ̂, m(t+ dt) ∈ Nκ̂.

The same reasoning proves that every level set Nκ where

κ ≥ κ̂ is contractive. Thus, we can conclude that for every

κ ≥ κ̂ there exists an ε =
√
2κ for which the level set

{m ∈ R| ‖m‖ ≤ ε} is contractive. A value for k̂ is

{

k̂ := min k

{m|V (m) ≤ k} ⊃
{

m| q2
c2
m2 > 1

2
σ2

n2

}

.
(12)



which returns

k̂ =
1

4

c2

q2

σ2

n2
.

It is apparent that Nκ̂ is also control invariant, which

means that for every m ∈ Nκ̂, m+ dm ∈ Nκ̂.

To prove (8), let us substitute k̂ = 1
4
c2
q2

σ2

n2 into ε =
√
2κ

and then we obtain ε =
√

1
2
c2
q2

σ2

n2 .

A direct consequence of the above result is that the

bounding set Nκ̂ shrinks for increasing number of players

and collapses asymptotically to the origin for n tending to

infinity.

Corollary 1: For n → ∞ the mean opinion converges

asymptotically to zero,

lim
t→∞

m(t) = 0.

Now, our aim is to analyze convergence of the agents to

their average. To this purpose, define the averaging matrix

M = 1
n
1 ⊗ 1. Then for a given vector Y (t) we have

MY (t) = ( 1
n
1 ⊗ 1)Y (t) = 1

n
11

TY (t) = m(t)1. In other

words MY (t) is the vector all of whose components are the

average of the entries of Y (t). The averaging matrix is useful

to introduce the error vector e(t) describing the deviations

of the components of Y (t) from their average. For the error

vector we can write the expression below, which relates e(t)
to Y (t):

e(t) = Y (t)− 1

n
1⊗ 1

TY (t)

= Y (t)−m(t)1

= (I −M)Y (t).

The next result establishes that the error vector converges

to zero which implies that all opinions converge to the mean

opinion.

Theorem 2: For each π > 0 there exists an ε(π) > 0 such

that

P(‖e(t)‖∞ ≤ ε(π)) > 1− π. (13)

Proof: The time evolution of the error vector is repre-

sented by the SDE

de(t) = (I −M)

[

(W − I)Y (t)− q2

c2
Y (t)

]

dt

+(I −M)σdB(t)
= (W −M)(I −M)Y (t)dt− e(t)dt

−(I −M)
q2

c2
Y (t)dt+ (I −M)σdB(t)

=

(

W −M− I − q2

c2
I

)

︸ ︷︷ ︸

A

e(t)dt+ (I −M)σdB(t).

The above SDE is linear and the corresponding stochas-

tic process can be studied in the framework of stochastic

stability theory [14]. To do this, consider the infinitesimal

generator

L =
1

2
σ2(I −M)T (I −M)

d2

de(t)2
+Ae(t)

d

de(t)
. (14)

Now, recalling that for a Brownian motion it holds EdB(t) =
0 and EdB(t)2 → 0 and ignoring the second-order terms (in

dt2 or dtdB(t)) we obtain (14).

Observe that from (6) we have that ‖W −M‖ < 1 which

in turn implies that A is negative definite, i.e., ξTAξ < 0
for all ξ ∈ R

n. We use this fact to study the infinitesimal

generator of the Lyapunov function V (e) = 1
2e

T e.

We aim to prove that there exists a finite scalar κ and

a neighborhood of zero of size κ, denoted by Nκ = {e ∈
R

n|V (e) ≤ κ}, such that LV (e(t)) < 0 for all e(t) 6∈ Nκ,

where L is the infinitesimal generator of the process e(t).
Again we recall that if the former condition holds true,

which is LV (e(t)) < 0, then V (e(t)) is a supermartingale

whenever e(t) is not in Nκ and therefore by the martingale

convergence theorem ∃ t such that V (e(t)) ≤ κ.

Let us first consider the SDE for the error vector de(t) =
Ae(t)dt + (I − M)σdB(t) and rewrite (I − M)σdB(t) =
∑

bidBi(t) where

bi = σ











− 1
n

...

1− 1
n

...

− 1
n











ith row. (15)

Then, for the infinitesimal generator of the Lyapunov func-

tion it holds

LV (e) = e(t)TAe(t) +
1

2

n∑

i=1

Σii

= e(t)TAe(t) +
1

2
nσ2[(n− 1)

1

n2
+ (1− 1

n
)2],

where Σ =
∑n

k=1 bkb
T
k ∈ R

n×n whose elements in the

principal diagonal are Σii = σ2[(n− 1) 1
n2 + (1− 1

n
)2].

Now, consider the level sets Nκ = {e(t) ∈ R
n|V (e(t)) ≤

κ} and observe that there always exists a κ̂ big enough and

finite such that for every e(t) 6∈ Nκ̂, i.e., 1
2e(t)

T e(t) > κ̂,

we have e(t)TAe(t)+ 1
2nσ

2[(n−1) 1
n2 +(1− 1

n
)2] < 0. The

latter means LV (e(t)) < 0 for all e(t) 6∈ Nκ̂, which proves

that every level set Nκ where κ ≥ κ̂ is contractive.

In other words, for every e(t) ∈ ∂Nκ̂, e(t + dt) ∈ Nκ̂.

The same reasoning proves that every level set Nκ where

κ ≥ κ̂ is contractive. Thus, we can conclude that for every

κ ≥ κ̂ there exists an ε =
√
2κ for which the level set

{m ∈ R| ‖m‖ ≤ ε} is contractive. A value for k̂ can be

obtained solving the optimization problem






k̂ := min k
{e|V (e) ≤ k} ⊃

{
e| e(t)TAe(t)

+ 1
2nσ

2[(n− 1) 1
n2 + (1− 1

n
)2] < 0

}
.

(16)

IV. NUMERICAL STUDIES

Numerical studies include three main sets of simulations

as summarized in Figg. 1-3. The first set highlights the

relation between the system response and the coefficient

of attraction q1 among the opinions: the mean distribution



n xmin xmax c1 c2 T m0 std(m0)

103 0 1 1 1 10 0.8 0.05

TABLE I

CONSTANT SIMULATION PARAMETERS.

q1 q2 σ

I {1, 2, 3} 1.5 0.001

II 1 {1.5, 2.5, 3} 0.001

III 1 1.5 {0.001, 0.01, 0.05}

TABLE II

VARYING SIMULATION PARAMETERS WITH DIFFERENT SIMULATION

SETS.

m(t) fluctuates while decreasing and the standard deviation

std(m(t)) decays gradually to zero. The second set

emphasizes how the system evolves in response to a higher

coefficient of attraction q2 to zero, which corresponds to

increasing the stubborn agent’s attraction force: both the

mean distribution m(t) and the standard deviation std(m(t))
decrease monotonically, similarly to the evolutions shown

in the first set of simulations. The third set simulates the

system under various effects of the Brownian motion: the

mean distribution m(t) first increases, and then decreases

linearly and the standard deviation std(m(t)) first increases

until it hits a peak, and then fluctuates.

Simulations of numerical examples have been done using

the algorithm below and the following parameters, also

shown in Tables I-II. The number of agents is set to n =
103. The set of states is a discretization of the interval

[0, 1[ with step size dx = 10−4, i.e. X = {xmin, xmin +
0.001, . . . , xmax}. The horizon length is T = 10, large

enough to show convergence of the population plots. As

regards the initial distribution, we assume m0 to be gaussian

with mean m̄0 = 0.8 and standard deviation std(m0) =
0.05. Parameter σ is set to a value between 0.001 and 0.05.

First set of simulations. The first set of simulations

highlights how the coefficient that regulates the aggregation

forces among the opinions, q1, is a factor in reducing the

sparsity of the opinions, which is measured by the standard

deviation std(m(t)). From top-left to bottom-left, Figure

1 shows the distribution evolution m(t) vs. the state x(t)
at different times. The initial distribution is modeled as

a gaussian with mean m0 = 0.8 and standard deviation

std(m0) = 0.05. Parameter q1 varies from q1 = 1 (top),

q1 = 2 (middle) and q1 = 3 (bottom). The graphics on the

right display the time plot m(t) (solid line and y-axis labels

on the left) and the evolution of the standard deviation

std(m(t)) (dashed line and y-axis labels on the right). It is

worth noting that the standard deviation tends to zero faster

and faster as long as the attraction among the opinions

grows: as it can be seen from the graphics, the distributions

at a same time instant get sharper with higher values of q1.

Algorithm

Input: Set of parameters as in Tables I-II

Output: Distribution function m(t), mean m(t) and

standard deviation std(m(t)).
1 : Initialize. Generate x0 from Gaussian distribution

with mean m̄0 and standard deviation std(m0),
2 : for time t = 0, 1, . . . , T − 1 do

3 : if t > 0, then compute m(t), m(t),
and std(mt),

4 : end if

5 : for player i = 1, 2, . . . , n do

6 : compute X(t+ 1) by executing (1),

7 : end for

8 : end for

9 : STOP
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Fig. 1. First set of simulations: the sparsity of the distribution evolution
becomes smaller as the coefficient q1 grows. The standard deviation
std(m(t)) goes to zero faster, from top to bottom.

Second set of simulations. The second set of simulation

shows the connection between the coefficient q2, which

describes the attracting force exhibited by the stubborn agent,

and the convergence speed of the distribution toward zero.

The graphics on the left show this effect. In particular, the

graphics plot the distribution evolution m(t) with respect to

the state x(t) at different times. The initial distribution is

the same as in the first set of simulations, with identical

mean and standard deviation, while q2 varies from q2 = 1.5
(top), q2 = 2.5 (middle) and q2 = 3 (bottom). The opinions

approach zero with a speed that increases with q3. The

graphics on the right display the time plot m̄(t) (solid line

and y-axis labels on the left) and the evolution of the standard

deviation std(mt) (dashed line and y-axis labels on the

right), pointing out that the mean tends to zero faster with

higher values of the coefficient.

Third set of simulations. The last set of simulations shows
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Fig. 2. Second set of simulations: the distribution evolution goes faster
toward zero as q2 grows. The mean m̄(t) goes to zero faster, from top to
bottom.

the effects of the Brownian motion. The initial conditions

are identical to the ones of the previous simulations, and

the only varying parameter is σ from σ = 0.001 (top),

σ = 0.01 (middle) and σ = 0.05 (bottom). The graphics on

the left show this effect, by plotting the distribution evolution

m(t) as function of the state x(t) at different times. With

higher values of σ the evolution reacts in two ways: for σ

moderately small (second graphics from top to bottom on the

left column), opinions manage to gather around a mean, thus

letting the standard deviation slowly decrease to zero; when

σ becomes bigger, the attraction among the opinions and the

force in zero are too weak to let them gather (for q1 = 1 and

q2 = 1.5). The only way to compensate this is to increase

those two coefficients. The graphics on the right display the

time plot m(t) (solid line and y-axis labeling on the left) and

the evolution of the standard deviation std(m(t)) (dashed

line and y-axis labeling on the right). In the last graph,

the only way to incentivize the convergence of the standard

deviation std(m(t)) to zero is by increasing the coefficients

q1 and q2.

V. CONCLUSIONS

We have studied a scenario where all agents reach ε-

consensus almost surely in a neighborhood of the stubborn

agent’s opinion. We have shown that such a scenario is mean

field equilibrium for the game of interest. Future research

will address local interactions among the players and provide

a game theoretic understanding for the formation of clusters.
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