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Randomized Consensus with Attractive and Repulsive Links

Guodong Shi, Alexandre Proutiere, Mikael Johansson, antiHKkalohansson

Abstract— We study convergence properties of a randomized
consensus algorithm over a graph with both attractive and
repulsive links. At each time instant, a node is randomly selcted
to interact with a random neighbor. Depending on if the link
between the two nodes belongs to a given subgraph of attraeé
or repulsive links, the node update follows a standard attrative
weighted average or a repulsive weighted average, respectly.
The repulsive update has the opposite sign of the standard

consensus update. In this way, it counteracts the consensus

formation and can be seen as a model of link faults or maliciosl
attacks in a communication network, or the impact of trust and
antagonism in a social network. Various probabilistic coner-
gence and divergence conditions are established. A threddo
condition for the strength of the repulsive action is given ér
convergence in expectation: when the repulsive weight cress
this threshold value, the algorithm transits from convergeice
to divergence. An explicit value of the threshold is derivedor
classes of attractive and repulsive graphs. The results sho
that a single repulsive link can sometimes drastically chage
the behavior of the consensus algorithm. They also explidjt

show how the robustness of the consensus algorithm depends

on the size and other properties of the graphs.

Few works have discussed the influence of “repulsive”
links in the network on the consensus formation despite the
many motivations for doing so. In social networks, signed
graphs were introduced for formulating the tensions and con
flicts between individuals. Links representing interpeido
connection were associated with a sign which indicates if
the mutual relationship is friendship or hostility [44]6}

In sensor networks, the communication links can be taken by
attackers so that data can be injected to oppose consensus
[42]. In collaborative networks, malicious users may exist
whose objective is to damage the network and increase the
cost incurred by the legitimate users [43].

In [47], a class of antagonistic interactions modeled as
negative weights in the update law were studied in a
continuous-time setting, and necessary and sufficienticond
tions were derived for consensus over the network in absolut
value. In [48], a randomized model was formulated where
each node executes an attraction, repulsion or neglecteipda
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siping, sensor networks, opinion dynamics, social net&ork

|. INTRODUCTION

Distributed consensus algorithms have been serving

In this paper, we study a random consensus model with
both attractive and repulsive links in the underlying commu
nication network. Contrary to the model in [48], where attra
tive and repulsive updates are selected at random, the model
@b this paper allows the update type to be selected based

basic models of information dissemination and aggregatiadh predetermined inter-node relations. We use a gossiping
over complex networks throughout a wide area of sciencgfiodel to define how nodes are selected for updating [38]—
including social sciences, engineering, and biology, ,e.g41]. In each time slot, a random node is selected to interact
opinion dynamics over social networks [7]-[11], parallelyith a random neighbor. The node updates its state following
computation and data fusion for sensor networks [12]-[15tandard attractive weighted average or repulsive weighte

formation control in robotic networks [16]-[19], and flookj

average, determined by whether the link is attractive or

of animal groups [20], [21].
In a typical consensus algorithm, a node collects informa-
tion from a subset of nodes in the network called neighbors *

and updates its state following an “attractive” rule, a @av
combination of its own and the neighbors’ previous states.
The neighbor relations and communication are often random,
which lead to random consensus algorithms. The conver-
gence of random consensus algorithms have been extensively
studied in the literature [22]- [37]. A great advantage for
distributed consensus seeking lies in the fact that it isisbb
with respect to link failures and communication noise [30],
[32]-[35]. Moreover, due to the attractive update, diffare
probabilistic convergence concepts often coincide fodoam
consensus algorithms [28].
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repulsive. Our main contributions are the following.

We establish various conditions for convergence or
divergence in expectation, in mean square, and almost
surely. In contrast to the standard consensus model with-
out repulsive updates, some fundamental differences
show up in these probabilistic modes.

We show that under mild assumptions there is a thresh-
old value for the strength of the repulsive action for
which the convergence in expectation changes: when
the repulsive weight crosses this threshold, the random-
ized consensus algorithm transits from convergence to
divergence. The explicit value of the threshold is derived
for classes of attractive and repulsive graphs.

We establish a no-survivor theorem for almost sure
divergence, which indicates that a single repulsive link
can drastically change the behavior of the overall net-
work.

The paper is organized as follows. Section Il introduces
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the network model and defines the problem of interest. Senaturally written asP = P, + Prep, for which G is the
tion Ill discusses convergence and divergence in expectatiinduced graph of.:¢, andg.., is the induced graph ;..
and shows that there is a threshold value for phase tramsitio Suppose ar¢j, ) is selected at timé&. Nodej keeps its
Example graphs are studied and explicit threshold values gprevious state, and nodeipdates its state following the rule:
derived. Sections IV and V present mean-square and almogi) (Attraction)If (j,7) € E.t, nodei updates as a weighted
sure convergence and divergence conditions, respectively average withy:

Finally concluding remarks are given in Section VI. 2k +1) = (1 — ag)zs(k) + apa; (k) (1)

II. PROBLEM DEFINITION where0 < ay < 1.

In this section, we present the considered network modéli) (Repulsion)If (j,i) € &.p, Node i updates as a
and define the problem of interest. We first recall some basic weighted average witly, but with a negative coefficient:

definitions from graph theory [3] and stochastic matricds [1 . 0= (1 N . 2
A directed graph (digraphy = (V,€) consists of a finite itk + 1) = (L+ By)zi(k) = B (k), )
setV = {1,...,n} of nodes and an arc s€&tC V x V. An where 3, > 0.

elemente = (i,j) € £ is anarc from nodei € Vto j € V. . Problem of Interest
A digraphg is bidirectional if for every two nodesand j,
(i,7) € € if and only if (j,4) € £. A finite square matrix
M = [m;;] € R"*" is calledstochastidf m,; > 0 forall 4, j
and)_;m;; = 1 for all i. A stochastic matrix\/ is doubly
stochasticif also M7 is stochastic. Let” = [p;;] € R™*"

We introduce the following definition.

Definition 2: (i) Consensus convergence for initial value
2% € R™ is achieved

« in expectationif limy_,o |E[z;(k) — z;(k)]| = 0 for

R : . . all 7 and y;
be a matrix with nonnegative entries. We can associate a . - 2
. . . e in mean squaref 1 oo Elx;(k) —x;(k)|” =0 for
unique digraphgp = (V,Ep) with P on node se®’ such all i andj'q Htlh L3 (k) = 5 (k)]

that (j,7) € &p if and only if p;; > 0. We call Gp the

induced graphof P o almost surelyif P (limj_,oo |zi(k) — z;(k)| = 0) =1

for all 7 and .
A. Node Pair Selection (i) Consensus divergence for initial valug® < R™ is

Consider a network with node set= {1,...,n}, n > achieved o
3. Let the digraphGy = (V,&) denote theunderlying ~ * in expectation if limsup, , max;; [B[zi(k) —
graph of the considered network. The underlying graph fﬂj(k)” = 00, o
indicates potential interactions between nodes. We use the® N mezan squareif limsup, . max; ; E[z;(k)
asynchronous time model introduced in [40] to describe node wj(k)} = 00;
interactions. Each node meets other nodes at independen¢ almost surely if for all M > 0,
time instances defined by a rate-one Poisson process. This P (limsup,_, . max; ; |2;(k) — z;(k)] > M) = 1.
is to say, the inter-meeting times at each node follows a Global consensus convergence in expectation, in mean
rate-one exponential distribution. Without loss of gefigra square, and almost surely are defined when the convergence
we can assume that at most one node is active at any giveelds for allz° in each of the three cases.

instance. Letr;(k) € R denote the state (value) of nodat |||, ConvERGENCE vS DIVERGENCE IN EXPECTATION

the k't meetmg_slot among all the_ nodes. . The considered randomized algorithm can be expressed as
Node interactions are characterized by arx n matrix

P = [pi;], wherep;; >0 foralli,j=1,...,n andp;; >0 z(k+1) = W(k)x(k), (3)

if and only if (j,7) € £&. We assumeP to be a stochastic where W (k) is the random matrix satisfying

matrix. Without loss of generality we supposg = 0 for all

i. In other words, the underlying gragh the induced graph | P(W (k) = I — axei(e; — €j)T) =P (4,) € Eats

of the matrixP. The meeting process is defined as follows. )} p W(k) =1 + Brei(ei — e-)T) — P (i) eE
Definition 1 (Node Pair Selection)ndependent of time e n e

and node state, at time> 0, )

() Anodei €V is drawn with probabilityl /n; with e, = (0...010...0)T denoting then x 1 unit vector
(i) Node i picks nodej with probability p;;. whosem'th component isl. .

In this way, we say ar¢j, i) is selected. Denote Dy = diag(dy ... dn) With d; = 327, [Pascij-

Denote also D,., = diag(di...d,) with d; =

B. Attractive and Repulsive Graphs > [Preplij. Define Layy = Dagy — Pagy @nd Lyep =

We assign a partition of the underlying graghy into  Drep — Prep- Then Ly, and Ly, represent the (weighted)
two disjoint subgraphsja.; andg,.,, namely, the attractive Laplacian matrlces_ of the attractive gra@t}t and rep_ulswe
graph and the repulsive graph. To be preditg, = (V, Eatt) graphg..,, respective. After some simple algebra it can be
and Grep = (V,&.p) are two graphs over node set shown that
satisfying att N Erep = 0 and Eagy U Erep = Eo. Under E %k Be; @
this graph partition the node pair selection matfhcan be W (k) = g et O Lrep = Wi ©)



A. General Conditions whereW =1 — & Lagt + gLrep. Consequently, letting(A)
Introducey; (k) = a;(k) — 1 S0 ;(k). Theny(k) = represent the spectral radius for a matfxi.e., the largest
(k) . yn ()T = a(k) — ﬁx(k) with 1 = (1...1)T elgenvalu.e- in magnitude, we have the following result.
denoting then x 1 vector eagh component of which is Proposition 3: Assume that there are two constafnts<
Then it is straightforward to see that consensus conveegerfé < 1» # = 0 such thatay, = e and fj, = 5 for all k.~
in expectation is achieved if and onlylifny,_,c Ey(k) = 0, (|)_. qubal consensus  convergence in expectation is
and consensus divergence in expectation is achieved if afghieved if and only ifo((1 — %)W) <l _
only if limsup;,_, . [Ey(k)| = co. (if). Consensus divergence in expectation Is achieved for
Let Amax(A) denote the largest eigenvalue for a symmetri@imost all initial values if and only ip((1 — L=)W) > 1.
matrix A. We have the following result. N
Proposition 1: Global consensus convergence in expectd- Phase Transition

tion is achieved iff T, ) Amax (W (I — #)Wk) =0. Define f(a,8) £ p((I — %)W). We present the
Proof. SinceEW (k) is a stochastic matrix and the node pairfollowing result.
selection is independent of the node states, we obtain Proposition 4: SupposeJ.:: has a spanning tree agl.,,

contains at least one link. Also assume that either of the

Ey(k +1) = (I — 117 /n)W,Ex(k
ylk+1) = /n)WiBa(k) following two conditions holds:

_ T T T T T

N (I B 11T/n)V,VkEy(k) * (I B 11T/N)WkT11 /nEm(k) (I) LattLrep = LrEpLatt;

= —-11"/n)WyEy(k) + (I — 11" /n)11" /nEx(k) (i) Paye and P, are symmetric.

= (I - 117 /n)W,Ey(k). (6) Then for any fixeda € (0, 1], there exists a threshold

value 3, («) > 0 such that

o Global consensus convergence in expectation, i.e.,
[Ey(k + 1)| = |(I — 117 /n) W Ey(k)| f(a, B) <1, is achieved if0 < 8 < Bi;
< o Consensus divergence in expectation for almost all
< |1 =117 /n) Wy |2 | By (k 9 P
= I /) kHQ’Ty( )‘ initial values, i.e.,f(«, 8) > 1, is achieved ifg > f,.
_ \/)\max(WkT(I 1 JWi)[By(k)|, (7)  When bothPy, and P, are symmetric, it turns out that
n some monotonicity can be established for
where||-||» denotes the spectral norm. The desired conclusion Proposition 5: Suppose bott#,:; and P, are symmetric.
follows. O Thenf(«,-) is non-increasing irv for o € [0,1]; (-, B) is
When P,,; and P, are symmetric, an upper bound fornon-decreasing it for 5 € [0, 00).
Amax (W (I — LL2)177,) can be easily computed with the The proofs of Propositiong]4 arld 5 can be found in

help of Weyl's inequality. We propose the following result, 2PPendix.
Proposition 2: Suppose botl®,;; andP,.,, are symmetric.
p PP " b y (]‘f Examples: Threshold Value

Global consensus convergence in expectation is achieved
We first consider the case when the underlying grépis

Thus, noticing that7 — #)2 = (I - 1) we have

n

H (1 — %)\Q(Lm) + &)\lnaX(Lrep)) =0 the complete grapli’,, and each link is selected with equal

k=0 " " probability at any time step. We have the following results.
where;(Lay:) is the second largest eigenvalue lof;.. Proposition 6: Suppose P = ﬁ(lllT —1I). Let
Proof. We have (Gatt» Grep) be a given bidirectional attraction-repulsion par-

tition. Then we have
A (W (1 = B, n
max( [ *T) "«) ﬂ*:max{( 71)04,0}.
T n— _1))\max (Lre ) . .
_ )\max(wk _ i) The proof of Propositiof]6 can be obtained straightfor-

K wardly from the following key lemma which indicates that
< A (I — 11" %Latt) + Amax(Lrep) th_e Laplacian matrix of_ the cpmplete graphi, commutes
n n with that of any other bidirectional graph.
—1_ %)\Q(Latt) + &)\max@rep), 8) _L.emma 1:Let K,, be the complete graph ar@ be any
n n bidirectional graph. Then there always holdsc Lo =
where the inequality holds from Weyl's inequality. TheLs Lk, , whereLg, and Lg are the Laplacian matrices of
desired conclusion follows directly from Propositioh 1.J K, andG, respectively.

When «y and 3 are time invariant, i.e., there are two When the repulsive graph., is formed by the undirected
constants) < o < 1, 3 > 0 such thatay, = o and Erdds-Rényi random gragh(n, p) in the sense that for every
B = j for all k, based on[{6), the consensus convergence imordered paifi, j}, (i,7) and(j,) are repulsive links with
expectation is equivalent with the stability of the follogi probability p. This gives us a sequence of random variables

LTI system:
Y 117

Ey(k + 1) = (I — 117 /n)WEy(k) G =p((I===)W), n=123,..



Note that induced by{¢,, }5°, the consensus convergence or We present the following result.
divergence forms a well-defined random sequence indexedProposition 9: (i) Global consensus convergence in mean

by n. We propose the following result. square is achieved [~ ;) Amax (E[W[( —%)Wk]) =0.
Proposition 7: SupposeP = 15 (117 —I). Fix ay, = (ii) Consensus divergence in mean square is achieved for
a € (0,1] and By, = B € (0,00). Let Gre, be formed by the  aimost all initial values i [}, Ao (E[W[ (I-25)W,]) =
undirected Erdos-Rényi random gragfn, p). Then 0o, where ), is the second largest eigenvalue.
Dy = « Proof. Noticing thatlV}, is a stochastic matrix for all possible
a+p samples, we obtain
is a threshold value regarding the consensus convergence or 9
divergence. To be precise, we have, E(|y(’€ +1)] ’y(k))
a) Whenp < p,, global consensus convergence in expec- 117
tation is achieved in probability, i.elim,, ., P(&, < - E(y(k)TWkT(I_ T)ka(k)‘y(k))
1)=1 e 117
b) Whenp > p,, consensus divergence in expectation for = E(y(k) E(Wk (- T)Wk)y(k)‘y(k’))
almost all initial values is achieved in probability, i.e., 117
limy, o0 P(&, > 1) = 1. < Amax (B[W) (I = —=)Wi] ) ly(k) [, (12)

The result follows directly from the following lemma. . )
Lemma 2: [6] Let A, be the Laplacian of the Erdds- where the second equality holds from the fact thidt is

Réenyi random grap(n, p). Then Mmax(An) o 1 in proba- independent of time and the node states, and the inequality

bility. ’ pn holds from the Rayleigh-Ritz theorem. Similarly we have

Next, we discuss the other extreme case when the un- 5 . 117 )
derlying communication graph is the ring gragh,, which E(’?J(k’ +1)| ‘y(k)) > Ao (E[Wi (I - T)kay(kﬂc

is nearly the mossparseconnected graph. We present the 117
. T 2
following result. = X2 (E[W, (I - T)kay(k” ;
Proposition 8: Denote A, as the adjacency matrix of _ _
R,. SupposeP — Ag, /2. Let (Gui.Gucp) be a given WhereC={y:y; = ... =y}, and the equality holds from
bidirectional attraction-repulsion partition witf,., # (. the fact thatl”y(k) = 0 for all k. The desired conclusion
Thenj, < « for all n. follows immediately. O

Proof. It is well known that L, has eigenvalue® —

2 cos(2rk/n),0 < k < n/2. On the other hand, we have V. ALMOST SURE CONVERGENCE VS DIVERGENCE

Amax(Lrep) = 1. Based on Weyl's inequality, we obtain We move to the discussion on almost sure consensus
117 convergence and divergence in this subsection. First vay stu
p(([ — —)W) a special case whem; = 1. The following result holds.

" o 117 a+p Proposition 10: Supposey;, = 1 andG,; has a spanning
> A\nin (I - Q—LRn - —) + — Amax(Lrep) tree. Then for any sequence 8 }5°, global consensus is
L a(1 — cos(2m 2 |/n) Lo B achieved almost surely in finite time, i.e.,

n n P(EIK,s.t.,zi(k):zj(k),i,jEV,kZK) — 1.
b —a
> 14 . 9) .
n Denoting Ty = infy, {z;(k) = z;(k),i,j € V} as the
This means tha;‘o((l _ ﬁ)v’y) > 1 whenever3 > «, Initial time V\then consensus is reached, we h#/g, <
which proves the desired conclusion. O (-1(F)"  wherep, = min{p;; : p;; > 0}.

Proof. Introduce
IV. CONVERGENCE VS DIVERGENCE INMEAN SQUARE

This subsection discusses the mean square convergence  m(k) = minz;(k);  M(k) = maxa;(k).
and divergence for the considered algorithm. With Cauchy-

Schwarz inequality, it holds that We defineM (k) = M (k) —m(k). Following the considered
L 2 algorithm M (k) is a Markov chain with nonnegative states.
5 o 1 e ; : :
lyil” = ﬁ’ Z;(:EZ zj)| < " ; ‘mz ;CJ’ . (10) The structure of the randomized algorithm gives

Moreover, we also have P<M(S) =052 k‘/\/l(k) - 0) =1
|z — xjf = |y — yj‘Q <2(|lyil* +|y;I?).  (11) Thus, zero is an absorbing state fot (k).
. Since G, has a spanning tree, we can select a ngde

Therefore, consensus convergence in mean square is. , . . )
9 q Wﬁlch is a root node iG,:;. With o, = 1, we have

achieved if and only iflimg_, Ely(k)[? = 0, and con-
i i i i i i n—1
sensus divergence in mean square is achieved if and only if P(wi(kz 1) =ay (), i€ V) > (&) L))

lim supy._,o, Ely(k)[2 = .



which implies For the other case witt;, (ko) > 2m(ko) + M (ko), we
payn-1 can apply t_he same analysis ey(k) with z;(k) = —z;(k)
P(M(kz Yn-1)= o]M(k) > 0) > (—) . (14) and [20) still holds.
" On the other hand, the structure of the algorithm ensures

The Borel-Cantelli Lemma ensures that that
ko+n—1
P(3 -1)) = =1
( k, M(k(n — 1)) O‘M(O) > 0) : P(M(kzo+n— n< I o +Bk)/\/l(ko)) 1 (19)
which proves the almost sure finite-time consensus. k=ko

With (@4), the upper boun¢h — 1)(1)%)"71 of ETy can In light of (I8) and [(IB), we obtain
be obtained by direct calculation of the expected value ef th
initial success time for a sequence of i.i.d. Bernoullilgria E<M(k0 tn- 1)‘M(k0)) < [1— @y [M(ko).  (20)
with success probabilitf%)nil. The proof is finished.d We invoke the supermartingale convergence theorem to
Clearly if {5r}5° is sufficiently large, both consensuscomplete the final piece of the proof.
divergence in expectation and in the mean square are pessibl Lemma 3: [4] Let Vi, k > 0 be a sequence of nonnega-
whenqa;, = 1. Hence with repulsive links, the various notionstive random variables witl£V, < oo. If
of convergence are not equivalent, which contrasts with the
case where all links are attractive. E(‘/’““‘VO’ o V"”’) < (—e)Vi

Proposition 11: Suppos&J..; has a spanning tree. Global with ¢, ¢ [0,1] and Y72 ) cx = oo, thenlimy_,o Vi = 0

consensus convergence is achieved almost surely if almost surely.

(i) there exists3” > 0 such that3, < j3* for all k, With Lemma3 and{20), we havian, .. M ((n—1)k) =
(i) 0 < Py < 1 WIIEAZZO:O ®rn-1) = 00, 0 almost surely if0 < @y,—1) < 1 and 3277 Pyip1) =
where &, = 1 — (1 — w)(&)"—l — (1 — oo. Noticing the boundedness @, the desired conclusion

n=1Y prstn— " follows immediately. O
%*) kis ' (1 + ﬂk)' y

For almost sure divergence, we first present the following

Proof. The protg)f Is based ((j)n a Slmllarkmartmgale argument.q it which indicates that as long as almost sure divergenc
as [31]. Letio e a root noae a1t Takeko = 0. ASSUME ¢ 5 hieved, then no node can “survive” if the attractivephra
thatxilo (ko) < §m(ko) + 3M (ko). Sinceiy is a root node, g strongly connected.

therg |s.no_del different frqmzo such that(io, i1) € Eags- If Proposition 12: Supposeg..: is strongly connected and
arc (io, 1) is selected at timéo, we have consensus divergence is achieved almost surely. Supsuse al

1 1 there existsy, > 0 such thato, > «, for all k. Then

Ty (k() + 1) S (1 — OLkO)M(kQ) + Ao (§m(ko) + iM(k()))
P(limsup |zi(k) — x;(k)| > M*) =1 (21)
k—o0

ako

= m(ko) + (1 —

ako

5 )M (ko). (15)

for all 4, j, and M, > 0.
Similarly, there is node,, different fromio andi,, such that  pyoof. Suppose consensus divergence is achieved almost
at least one ofiio,i2) € e and (i1, iz) € Eare holds. If  syrely. Fix Az, > 0. Then we can find two nodes and .,
(0, 1) is selected at timéo, and either(io, i2) or (i1,i2) €  such that almost surely, there exist a sequénce ks < ...
Eatt IS selected at timé, + 1, we have satisfying z;, (kn) = m(km), x;, (km) = M(k,), and
i, (k) — x4, (k)| = M(kpy) > M, forallm=1,2,....
iy (ko +2) < (1= ag1)i, (ko + 1) | N(ow )takej t\(/vo )rlodes'*( an)d J*. Since Gayt is strongly

+ kg1 max{w;, (ko + 1), 24, (ko + 1)} connected, there are directed pathgi;...i,3* and
- Mm(ko) +(1- M)M(/{O). (16)  Jxd1---Jrd* IN Gaw, Where0 < 7,1 < n — 2. We
2 2 impose a recursive argument to establish an upper bound

The process can be continued sitke, has a spanning tree, for ;- (k,, + (1 + 1)do). Take uo € (0,1) and define
and with a proper choice of arcs 8¢t for ko +2,...,ko+ do = inf{d: (1 — a.)? < po}.

n — 2, we havem (ko +n — 1) = m(ko) and Suppos€i., i1) is selected at time stegs,, . . ., kny+do—
kodn—1 1, (i1,12) is selected at time steps, +do, . . . , km +2do—1,
zilko+n—1) < k:k; O‘km(ko) etc. We can obtain by recursive calculation that
et o 2ie (b + (71 + 1)do) < (1= pi0) ™ (kim)
- =ko . T1+1
+ (1 0 VM (ko), i €V, (17) n (1 1)t )M(km)_ (22)
which yield A lower bound forz;« (kn, + (11 + 72 + 2)dy) can be
Hko-i-n—l an established using the same argument as

P(Mlko+n—1) < (1 = =) M(ko)) - (ko + (1 + 72+ 2)do) > (1= p0) ™™ M (ki)

> (&)”*1. (18) (1= (1= o)™ Y mlh) 23)

n



for a proper selection of arcs during time stéps+ (71 + must be two nodesg and j with (i,j) € &.p such that
do, ..., km + (11 + 72 + 2)do — 1. i (k) — a; (k)| > 2% Thus, if such(i, j) is selected for
We can compute the probability of such selection ofime &,k + 1,k + Z — 1, we have
sequence of arcs in the previous recursive estimate, and we
> [ — .
conclude from[(2R) and(23) that Mk +2) 2 ‘xl(k +2) =ik + Z)‘

_— M(k) T
P(l’j* (km + DO) — Tj* (k/’m + Do) > [(1 - /,LO) > m H (1 + ﬂk+5)' (28)
s=0
T1+1 To+1
+ (1 _MO) - 1]M(k/’m) = [(1 _NO) Now we define a new sequence of random variables
. N (r14+72+2)d i i B . _
n (1 _ Mo) 1 1]M*) > (p_) 1472+2)do (24) associated with the node pair selection procass, m
n 0,1,..., by
whereDy = (71 +72+2)do. Sincey is arbitrarily chosenwe @) X7, = (D771 (1 — ay), if at least one attractive
can always assumgl */L())TZJrl + (1 */L())TlJrl —1>1/2. arcs is Select?gjggi[mZ, . (m +1)7Z - 1];.
Thus, [2%) is reduced to b) xZ = 211", (1+ Bk), if one repulsive arc
(i,7) satisfying |z;(mZ) — x;(mZ)| > 242 s
P(xj* (km + Do) — = (km + Do) selcted for allk € [mZ,...,(m +1)Z — 1]
1 P\ (T1+72+2)do B c) xZ =1 otherwise.
> o) = (%) > m=12... (25 ight of @7) and [ZB), we have
Noting the fact that the even{se- (ky, + Do) — 2= (km + (m41)z-1 .
Do) > 1M.} are determined by the node pair selection P( H Gk 2 Xy M= 0,1,2,---) =1 (29)
process, which is independent of time and node states, the k=mZ
Borel-Cantelli Lemma ensures that almost surely, we can From direct calculation according to the definition)gf,,
select an infinite subsequenkg,,,s =1,2,..., such that \ye haveE logxZ ) > Q(m).
i i - 1 19 We next invoke an argument from the strong law of large
2+ (km, + Do) = @ix (km, + Do) = §M*’ P numbers to show that
This has proved that é
P ) P (limsup Z log X% = 00) = 1. (30)
P(limsup |25+ (k) — @+ (k)] > —M*) =1 for all M, > 0. 7 m=0
k—00 2 (26) Suppose there exist two constadty > 0 and0 < ¢ < 1
. t A :
Sincei* and j* are arbitrarily chosen, we have completed®"c" thatP(hm SUP; 00 2 m—0 108 Xim < MO) = g This
the proof. O leadsto )
.. . . 1 7
Proposition IR shows that divergence is also prqpagated P(hm sup > m—ologx;, < 0) > q. (31)
among the network between any two nodes. Denating: 00 t

max{p;; : p;; > 0} and Ey = |Eae|. We end the discussion  On the other hand, noting that the node updates are
of this section by presenting the following almost surgndependent of time and node states, and ¥élog yZ)

divergence result. is bounded in light of the bounds af;, and j3;, the strong
Proposition 13: Suppose G., is weakly connected. |aw of large numbers suggests that
Global consensus convergence is achieved almost surely if .
(i) there existsa™ < 1 such thatny, < o* for all k; P( lim 1 Z (logxz B Q(m)) > 0)
(ii) there existsB, > 0 such thats, < j, for all k; t—oo ¢ A= " -
(i) there exists an integerZ > 1 such that 1 &
an:%@(t) — O(t), where form = 0,1,..., Q(m) = > P(n}gnoog 3" (logxZ —ElogxZ) = 0) —1,
(%) log —~ + Z,(;Z:IIZ)Z_l log(1 + ﬂk)} + (1 -(1- =0 .
2Bz ](QTHZ)Z,l log (1 — )] which contr_adictsl]}!l) fim sup,,, o0 Yo @(m) = O(1).
n =m Thus, [30) is proved.

Proof. Sincea;, < 1 for all k, the structure of the algorithm  the final piece of the proof is based dnl(29). With the
automatically implies thatM (k) > 0 is a sure event for yefinition of (e, (29) yields

all k. As a result, we can well define a sequence of random

variables(, = 24E+D 1 —.1,... aslongas\(0) > 0.  P(logM((t+1)Z) —log M(0)
M(k)

From the considered randomized algorithm, it is easy to see  (zy1)z-1 ;
that = Y g > D logxZ, t:0,1,2,...):1.
P(Ck: M(k+1) >1—ak) 1 27) k=0 m=0
M—(k:) = (32)

andP(¢x < 1) < P(one attractive arcs is selecledviore-  This gives usP ( limsup,_, ., log M((t +1)Z) = oo) =1
over, sinceG,.,, is weakly connected, for any timk, there in light of (30). The desired conclusion holds. O



VI. CONCLUSIONS in light of Lemmal5.

A randomized consensus algorithm with both attractive Now we takeK’ > 8 > 1 > 0. We make the following
and repulsive links has been studied under an asymmetf@im-
gossiping model. The repulsive update was defined in the Claim. f(a, 82) > 1if f(a, 1) > 1.
sense that a negative instead of a positive weight is imposedThe fact that f(«,31) > 1 leads to thatg.(3;) >
in the update. This model can represent the influence gfa,3,) > 1. According to Lemmdl4g,(-) is a convex
certain link faults or malicious attacks in a communicatiofunction, which implies that
network, or the spreading of trust and antagonism in a social
network. We estaplished various conditions for p.robaﬁlilis g.(B1) < (1— &)g*(o) + &g*(@). (36)
convergence or divergence, and proved the existence of a B2 B2
phase-transition threshold for convergence in expectatioyyp, (35) and [(3B), we conclude that
An explicit value of the threshold was derived for classes
of attractive and repulsive graphs. Future work includes th B2 B2

. . gu(f) 21+ (2 =1)0- (2 -1)e

analysis for the symmetric update model and the structure 51
optimization of the repulsive graph so that the maximum . . .
damage can be created for the network. which in turn yields that

APPENDIX Fla,B2) > gul(B2) —e> 1+ (% ~1)s- (%)e, (38)
Lemma 4:Let A, B be two matrices inR"*™. Suppose _ _ ' _1
| - ||« is any matrix norm. Them(\) £ ||A + AB||.,A € R again based on Lemnia 5. Noting the fact than (38) can

(37)
1

is a convex function in\. be chosen arbitrarily small, and thét 52/61, and f(«, 8)
Proof. Noting that do not rely on the choice of - ||, we have proved that
f(a, B2) > 1. The claim holds.
9(t>‘1 + (- t)>‘2) Next, we introduceZs = {8 > 0: f(«, 5) > 1}. First of
= Ht(A + )\1B) + (1 - t)(A + )\QB) all Z3 is nonempty wherL,.,, contains at least one link due
* to the simple fact thalimg_.. f(«, 8) = co. Secondly
< Ht(A+>\1B)H + H(lft)(AnL)\zB) .
* * ﬂ*:inf{ﬂz():f(a,ﬂ)>1} (39)

=tg(A\1) + (1 = 1)g(Xa), (33)

for all t € [0,1] and A1, A2 € R, the lemma is proved. O
Lemma 5:Let K > 0 be a positive constant. Lel i be
a subset of matrices iR"*"™ such that
(i) |M;;] < K for all M € Mk;

is a finite number in light of the claim we just established. It
is straightforward to verify thaf(«, 3) > 1 whenj > j,.
The fact thatf(a, ) < 1 wheng < 3, can be proved via a
symmetric argument. This completes the proof for case (i).

(i) My M, = My M, for all for all My, My € M. Case (ii). From Lemm&l4 and the fact thito, 8) =

117\ 7 i N iry-
Then for anye > 0, there is a matrix nornfj - |, such that _H(I = S )Wl f(o" '_) IS a convex function I, (. 5)
is a convex function in3. The desired conclusion follows

p(A) < [JA]l« < p(A) + € (34) immediately. a
Proof of PropositiofibAccording to the proof of Proposition
m, the eigenvalues aff — #)W are all nonnegative when
a € [0,1], 8 € [0,00), and bothP,; and P,e,. The Courant-
Fischer Theorem guarantees that

forall A e Mg.

Proof. Based on the simultaneous triangularization theore
(Theorem 2.3.3, [2]), there is a unitary matilik € C"*"
such thatU*MU is upper triangular for every// € Mg

since Mg is a commuting family. Similar to the proof 117 _ . o B 117
of Lemma 5.6.10 in [2], we seD, = diag(,¢2,...,t") P — T)W) = max 2 (I* gLatt + gLrep - T)Z
and the desired matrix norm- ||, is obtained by||B|/. = o
| D:U*BUD; ||, takingt sufficiently large. 0 = max [1 = > piyla—z)?
Proof of Propositioi ¥ Case (i). Givere > 0 anda € [0, 1]. l21=1 (4,7) €€t i<
Take K, > 0. If LastLyep = LyrepLast, it iS easy to see 3 1 &
— 2

that M. = {(I — L)1V : 8 < K.} is a commuting . > pij(zifzj)QvLﬁ(Zzi) }
family satisfying the conditions in Lemn& 5. Lgt||, be the (i,1) €€rep,i<j i=1
mautrix n(;rm_established in Lemrfid 5. We introdygés) £ = ‘mﬁx Ho 8,G.10,Geep (2), (40)
H( —L)W|| . Wheng, has a spanning tree, it is well '~

* .
known thatf (c, 0) = p (I*g)(ff aLatt)) —1-6<1 where z = (2’1 o zn)T € R™ It is now clear that

for some( S ) < 1. This gives us Ha1,57gan7grep (Z) Z Ha2;67gatt7grep (Z) for any 0 S aq S
. az < 1, and thatHa, 8, Guw Geep (2) = Ha,B3,Gure Grep (2) TOT

11 « any0 < < B5. This implies the desired result in light of
0:(0) < p((1 = =) = TLw) +e<1—d e (@) Gf==r P o
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