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Randomized Consensus with Attractive and Repulsive Links

Guodong Shi, Alexandre Proutiere, Mikael Johansson, and Karl H. Johansson

Abstract— We study convergence properties of a randomized
consensus algorithm over a graph with both attractive and
repulsive links. At each time instant, a node is randomly selected
to interact with a random neighbor. Depending on if the link
between the two nodes belongs to a given subgraph of attractive
or repulsive links, the node update follows a standard attractive
weighted average or a repulsive weighted average, respectively.
The repulsive update has the opposite sign of the standard
consensus update. In this way, it counteracts the consensus
formation and can be seen as a model of link faults or malicious
attacks in a communication network, or the impact of trust and
antagonism in a social network. Various probabilistic conver-
gence and divergence conditions are established. A threshold
condition for the strength of the repulsive action is given for
convergence in expectation: when the repulsive weight crosses
this threshold value, the algorithm transits from convergence
to divergence. An explicit value of the threshold is derivedfor
classes of attractive and repulsive graphs. The results show
that a single repulsive link can sometimes drastically change
the behavior of the consensus algorithm. They also explicitly
show how the robustness of the consensus algorithm depends
on the size and other properties of the graphs.

Keywords: random networks, consensus algorithms, gos-
siping, sensor networks, opinion dynamics, social networks

I. I NTRODUCTION

Distributed consensus algorithms have been serving as
basic models of information dissemination and aggregation
over complex networks throughout a wide area of sciences
including social sciences, engineering, and biology, e.g.,
opinion dynamics over social networks [7]–[11], parallel
computation and data fusion for sensor networks [12]–[15],
formation control in robotic networks [16]–[19], and flocking
of animal groups [20], [21].

In a typical consensus algorithm, a node collects informa-
tion from a subset of nodes in the network called neighbors
and updates its state following an “attractive” rule, a convex
combination of its own and the neighbors’ previous states.
The neighbor relations and communication are often random,
which lead to random consensus algorithms. The conver-
gence of random consensus algorithms have been extensively
studied in the literature [22]– [37]. A great advantage for
distributed consensus seeking lies in the fact that it is robust
with respect to link failures and communication noise [30],
[32]–[35]. Moreover, due to the attractive update, different
probabilistic convergence concepts often coincide for random
consensus algorithms [28].
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Few works have discussed the influence of “repulsive”
links in the network on the consensus formation despite the
many motivations for doing so. In social networks, signed
graphs were introduced for formulating the tensions and con-
flicts between individuals. Links representing interpersonal
connection were associated with a sign which indicates if
the mutual relationship is friendship or hostility [44]–[46].
In sensor networks, the communication links can be taken by
attackers so that data can be injected to oppose consensus
[42]. In collaborative networks, malicious users may exist
whose objective is to damage the network and increase the
cost incurred by the legitimate users [43].

In [47], a class of antagonistic interactions modeled as
negative weights in the update law were studied in a
continuous-time setting, and necessary and sufficient condi-
tions were derived for consensus over the network in absolute
value. In [48], a randomized model was formulated where
each node executes an attraction, repulsion or neglect update
at random when meeting other nodes.

In this paper, we study a random consensus model with
both attractive and repulsive links in the underlying commu-
nication network. Contrary to the model in [48], where attrac-
tive and repulsive updates are selected at random, the model
in this paper allows the update type to be selected based
on predetermined inter-node relations. We use a gossiping
model to define how nodes are selected for updating [38]–
[41]. In each time slot, a random node is selected to interact
with a random neighbor. The node updates its state following
standard attractive weighted average or repulsive weighted
average, determined by whether the link is attractive or
repulsive. Our main contributions are the following.

• We establish various conditions for convergence or
divergence in expectation, in mean square, and almost
surely. In contrast to the standard consensus model with-
out repulsive updates, some fundamental differences
show up in these probabilistic modes.

• We show that under mild assumptions there is a thresh-
old value for the strength of the repulsive action for
which the convergence in expectation changes: when
the repulsive weight crosses this threshold, the random-
ized consensus algorithm transits from convergence to
divergence. The explicit value of the threshold is derived
for classes of attractive and repulsive graphs.

• We establish a no-survivor theorem for almost sure
divergence, which indicates that a single repulsive link
can drastically change the behavior of the overall net-
work.

The paper is organized as follows. Section II introduces

http://arxiv.org/abs/1309.2574v1


the network model and defines the problem of interest. Sec-
tion III discusses convergence and divergence in expectation
and shows that there is a threshold value for phase transition.
Example graphs are studied and explicit threshold values are
derived. Sections IV and V present mean-square and almost
sure convergence and divergence conditions, respectively.
Finally concluding remarks are given in Section VI.

II. PROBLEM DEFINITION

In this section, we present the considered network model
and define the problem of interest. We first recall some basic
definitions from graph theory [3] and stochastic matrices [1].
A directed graph (digraph)G = (V , E) consists of a finite
setV = {1, . . . , n} of nodes and an arc setE ⊆ V × V . An
elemente = (i, j) ∈ E is anarc from nodei ∈ V to j ∈ V .
A digraphG is bidirectional if for every two nodesi andj,
(i, j) ∈ E if and only if (j, i) ∈ E . A finite square matrix
M = [mij ] ∈ Rn×n is calledstochasticif mij ≥ 0 for all i, j
and

∑

j mij = 1 for all i. A stochastic matrixM is doubly
stochasticif also MT is stochastic. LetP = [pij ] ∈ R

n×n

be a matrix with nonnegative entries. We can associate a
unique digraphGP = (V , EP ) with P on node setV such
that (j, i) ∈ EP if and only if pij > 0. We call GP the
induced graphof P .

A. Node Pair Selection

Consider a network with node setV = {1, . . . , n}, n ≥
3. Let the digraphG0 = (V , E0) denote theunderlying
graph of the considered network. The underlying graph
indicates potential interactions between nodes. We use the
asynchronous time model introduced in [40] to describe node
interactions. Each node meets other nodes at independent
time instances defined by a rate-one Poisson process. This
is to say, the inter-meeting times at each node follows a
rate-one exponential distribution. Without loss of generality,
we can assume that at most one node is active at any given
instance. Letxi(k) ∈ R denote the state (value) of nodei at
the k’th meeting slot among all the nodes.

Node interactions are characterized by ann × n matrix
P = [pij ], wherepij ≥ 0 for all i, j = 1, . . . , n andpij > 0
if and only if (j, i) ∈ E0. We assumeP to be a stochastic
matrix. Without loss of generality we supposepii = 0 for all
i. In other words, the underlying graphG0 the induced graph
of the matrixP . The meeting process is defined as follows.

Definition 1 (Node Pair Selection):Independent of time
and node state, at timek ≥ 0,

(i) A node i ∈ V is drawn with probability1/n;
(ii) Node i picks nodej with probabilitypij .

In this way, we say arc(j, i) is selected.

B. Attractive and Repulsive Graphs

We assign a partition of the underlying graphG0 into
two disjoint subgraphs,Gatt andGrep, namely, the attractive
graph and the repulsive graph. To be precise,Gatt = (V , Eatt)
and Grep = (V , Erep) are two graphs over node setV
satisfying Eatt ∩ Erep = ∅ and Eatt ∪ Erep = E0. Under
this graph partition the node pair selection matrixP can be

naturally written asP = Patt + Prep, for which Gatt is the
induced graph ofPatt, andGrep is the induced graph ofPrep.

Suppose arc(j, i) is selected at timek. Nodej keeps its
previous state, and nodei updates its state following the rule:
(i) (Attraction)If (j, i) ∈ Eatt, nodei updates as a weighted

average withj:

xi(k + 1) = (1− αk)xi(k) + αkxj(k), (1)

where0 ≤ αk ≤ 1.
(ii) (Repulsion) If (j, i) ∈ Erep, node i updates as a

weighted average withj, but with a negative coefficient:

xi(k + 1) = (1 + βk)xi(k)− βkxj(k), (2)

whereβk ≥ 0.

C. Problem of Interest

We introduce the following definition.
Definition 2: (i) Consensus convergence for initial value

x0 ∈ Rn is achieved
• in expectationif limk→∞

∣

∣E
[

xi(k) − xj(k)
]∣

∣ = 0 for
all i andj;

• in mean squareif limk→∞ E
[

xi(k)− xj(k)
]2

= 0 for
all i andj;

• almost surelyif P
(

limk→∞ |xi(k) − xj(k)| = 0
)

= 1
for all i andj.

(ii) Consensus divergence for initial valuex0 ∈ Rn is
achieved

• in expectation if lim supk→∞ maxi,j
∣

∣E
[

xi(k) −
xj(k)

]
∣

∣ = ∞;
• in mean square if lim supk→∞ maxi,j E

[

xi(k) −

xj(k)
]2

= ∞;
• almost surely if for all M ≥ 0,

P
(

lim supk→∞ maxi,j |xi(k)− xj(k)| > M
)

= 1.
Global consensus convergence in expectation, in mean

square, and almost surely are defined when the convergence
holds for allx0 in each of the three cases.

III. C ONVERGENCE VS. DIVERGENCE IN EXPECTATION

The considered randomized algorithm can be expressed as

x(k + 1) = W (k)x(k), (3)

whereW (k) is the random matrix satisfying






P

(

W (k) = I − αkei(ei − ej)
T
)

=
pij

n
, (j, i) ∈ Eatt

P

(

W (k) = I + βkei(ei − ej)
T
)

=
pij

n
, (j, i) ∈ Erep

(4)

with em = (0 . . . 0 1 0 . . . 0)T denoting then×1 unit vector
whosem’th component is1.

DenoteDatt = diag(d1 . . . dn) with di =
∑n

j=1[Patt]ij .
Denote also Drep = diag(d̄1 . . . d̄n) with d̄i =
∑n

j=1[Prep]ij . Define Latt = Datt − Patt and Lrep =
Drep − Prep. ThenLatt andLrep represent the (weighted)
Laplacian matrices of the attractive graphGatt and repulsive
graphGrep, respective. After some simple algebra it can be
shown that

EW (k) = I −
αk

n
Latt +

βk

n
Lrep

.
= W̄k. (5)



A. General Conditions

Introduceyi(k) = xi(k) −
1
n

∑n

i=1 xi(k). Then y(k) =

(y1(k) . . . yn(k))
T = x(k) − 11

T

n
x(k) with 1 = (1 . . . 1)T

denoting then × 1 vector each component of which is1.
Then it is straightforward to see that consensus convergence
in expectation is achieved if and only iflimk→∞ Ey(k) = 0,
and consensus divergence in expectation is achieved if and
only if lim supk→∞

∣

∣Ey(k)
∣

∣ = ∞.
Let λmax(A) denote the largest eigenvalue for a symmetric

matrix A. We have the following result.
Proposition 1: Global consensus convergence in expecta-

tion is achieved if
∏∞

k=0 λmax

(

W̄T
k (I − 11

T

n
)W̄k

)

= 0.
Proof. SinceEW (k) is a stochastic matrix and the node pair
selection is independent of the node states, we obtain

Ey(k + 1) = (I − 11
T /n)W̄kEx(k)

= (I − 11
T/n)W̄kEy(k) + (I − 11

T /n)W̄k11
T /nEx(k)

= (I − 11
T/n)W̄kEy(k) + (I − 11

T /n)11T /nEx(k)

= (I − 11
T/n)W̄kEy(k). (6)

Thus, noticing that(I − 11
T

n
)2 = (I − 11

T

n
), we have

∣

∣Ey(k + 1)
∣

∣ =
∣

∣(I − 11
T /n)W̄kEy(k)

∣

∣

≤ ‖(I − 11
T /n)W̄k‖2

∣

∣Ey(k)
∣

∣

=

√

λmax

(

W̄T
k (I −

11T

n
)W̄k

)
∣

∣Ey(k)
∣

∣, (7)

where‖·‖2 denotes the spectral norm. The desired conclusion
follows. �

WhenPatt andPrep are symmetric, an upper bound for
√

λmax

(

W̄T
k (I − 11T

n
)W̄k

)

can be easily computed with the
help of Weyl’s inequality. We propose the following result.

Proposition 2: Suppose bothPatt andPrep are symmetric.
Global consensus convergence in expectation is achieved if

∞
∏

k=0

(

1−
αk

n
λ2(Latt) +

βk

n
λmax(Lrep)

)

= 0

whereλ2(Latt) is the second largest eigenvalue ofLatt.
Proof. We have

√

λmax

(

W̄T
k (I −

11T

n
)W̄k

)

= λmax

(

W̄k −
11

T

n

)

≤ λmax

(

I −
11

T

n
−

αk

n
Latt

)

+ λmax(Lrep)

= 1−
αk

n
λ2(Latt) +

βk

n
λmax(Lrep), (8)

where the inequality holds from Weyl’s inequality. The
desired conclusion follows directly from Proposition 1.�

When αk and βk are time invariant, i.e., there are two
constants0 ≤ α ≤ 1, β ≥ 0 such thatαk ≡ α and
βk ≡ β for all k, based on (6), the consensus convergence in
expectation is equivalent with the stability of the following
LTI system:

Ey(k + 1) = (I − 11
T/n)W̄Ey(k)

whereW̄ = I − α
n
Latt +

β
n
Lrep. Consequently, lettingρ(A)

represent the spectral radius for a matrixA, i.e., the largest
eigenvalue in magnitude, we have the following result.

Proposition 3: Assume that there are two constants0 ≤
α ≤ 1, β ≥ 0 such thatαk ≡ α andβk ≡ β for all k.

(i). Global consensus convergence in expectation is
achieved if and only ifρ

(

(I − 11
T

n
)W̄

)

< 1,
(ii). Consensus divergence in expectation is achieved for

almost all initial values if and only ifρ
(

(I − 11
T

n
)W̄

)

> 1.

B. Phase Transition

Define f(α, β) , ρ
(

(I − 11
T

n
)W̄

)

. We present the
following result.

Proposition 4: SupposeGatt has a spanning tree andGrep

contains at least one link. Also assume that either of the
following two conditions holds:

(i) LattLrep = LrepLatt;
(ii) Patt andPrep are symmetric.
Then for any fixedα ∈ (0, 1], there exists a threshold

valueβ⋆(α) ≥ 0 such that

• Global consensus convergence in expectation, i.e.,
f(α, β) < 1, is achieved if0 ≤ β < β⋆;

• Consensus divergence in expectation for almost all
initial values, i.e.,f(α, β) > 1, is achieved ifβ > β⋆.

When bothPatt andPrep are symmetric, it turns out that
some monotonicity can be established forf .

Proposition 5: Suppose bothPatt andPrep are symmetric.
Thenf(α, ·) is non-increasing inα for α ∈ [0, 1]; f(·, β) is
non-decreasing inβ for β ∈ [0,∞).

The proofs of Propositions 4 and 5 can be found in
appendix.

C. Examples: Threshold Value

We first consider the case when the underlying graphG0 is
the complete graphKn and each link is selected with equal
probability at any time step. We have the following results.

Proposition 6: Suppose P = 1
n−1 (11

T − I). Let
(Gatt,Grep) be a given bidirectional attraction-repulsion par-
tition. Then we have

β⋆ = max
{

( n

(n− 1)λmax(Lrep)
− 1

)

α, 0
}

.

The proof of Proposition 6 can be obtained straightfor-
wardly from the following key lemma which indicates that
the Laplacian matrix of the complete graphKn commutes
with that of any other bidirectional graph.

Lemma 1:Let Kn be the complete graph andG be any
bidirectional graph. Then there always holdsLKn

LG =
LGLKn

, whereLKn
andLG are the Laplacian matrices of

Kn andG, respectively.
When the repulsive graphGrep is formed by the undirected

Erdös-Rényi random graphG(n, p) in the sense that for every
unordered pair{i, j}, (i, j) and(j, i) are repulsive links with
probabilityp. This gives us a sequence of random variables

ξn = ρ
(

(I −
11

T

n
)W̄

)

, n = 1, 2, 3, . . . .



Note that induced by{ξn}∞1 , the consensus convergence or
divergence forms a well-defined random sequence indexed
by n. We propose the following result.

Proposition 7: SupposeP = 1
n−1 (11

T − I). Fix αk ≡
α ∈ (0, 1] andβk ≡ β ∈ (0,∞). Let Grep be formed by the
undirected Erdös-Rényi random graphG(n, p). Then

p⋆ =
α

α+ β

is a threshold value regarding the consensus convergence or
divergence. To be precise, we have,

a) Whenp < p⋆, global consensus convergence in expec-
tation is achieved in probability, i.e.,limn→∞ P(ξn <
1) = 1;

b) Whenp > p⋆, consensus divergence in expectation for
almost all initial values is achieved in probability, i.e.,
limn→∞ P(ξn > 1) = 1.

The result follows directly from the following lemma.
Lemma 2: [6] Let ∆n be the Laplacian of the Erdös-

Rényi random graphG(n, p). Then λmax(∆n)
pn

→ 1 in proba-
bility.

Next, we discuss the other extreme case when the un-
derlying communication graph is the ring graph,Rn, which
is nearly the mostsparseconnected graph. We present the
following result.

Proposition 8: DenoteARn
as the adjacency matrix of

Rn. SupposeP = ARn
/2. Let (Gatt,Grep) be a given

bidirectional attraction-repulsion partition withGrep 6= ∅.
Thenβ⋆ ≤ α for all n.
Proof. It is well known that LRn

has eigenvalues2 −
2 cos(2πk/n), 0 ≤ k ≤ n/2. On the other hand, we have
λmax(Lrep) = 1. Based on Weyl’s inequality, we obtain

ρ
(

(I −
11

T

n
)W̄

)

≥ λmin

(

I −
α

2n
LRn

−
11

T

n

)

+
α+ β

n
λmax(Lrep)

= 1−
α(1 − cos(2π⌊n

2 ⌋/n)

n
+

α+ β

n

≥ 1 +
β − α

n
. (9)

This means thatρ
(

(I − 11
T

n
)W̄

)

> 1 wheneverβ > α,
which proves the desired conclusion. �

IV. CONVERGENCE VS. DIVERGENCE IN MEAN SQUARE

This subsection discusses the mean square convergence
and divergence for the considered algorithm. With Cauchy-
Schwarz inequality, it holds that

|yi|
2 =

1

n2

∣

∣

∣

n
∑

i=1

(xi − xj)
∣

∣

∣

2

≤
1

n

n
∑

i=1

∣

∣xi − xj

∣

∣

2
. (10)

Moreover, we also have
∣

∣xi − xj

∣

∣

2
=

∣

∣yi − yj
∣

∣

2
≤ 2

(

|yi|
2 + |yj |

2
)

. (11)

Therefore, consensus convergence in mean square is
achieved if and only iflimk→∞ E|y(k)|2 = 0, and con-
sensus divergence in mean square is achieved if and only if
lim supk→∞ E|y(k)|2 = ∞.

We present the following result.
Proposition 9: (i) Global consensus convergence in mean

square is achieved if
∏∞

k=0 λmax

(

E
[

WT
k (I−11

T

n
)Wk

])

= 0.
(ii) Consensus divergence in mean square is achieved for

almost all initial values if
∏∞

k=0 λ2

(

E
[

WT
k (I− 11

T

n
)Wk

])

=
∞, whereλ2 is the second largest eigenvalue.
Proof.Noticing thatWk is a stochastic matrix for all possible
samples, we obtain

E

(

∣

∣y(k + 1)
∣

∣

2
∣

∣

∣
y(k)

)

= E

(

y(k)TWT
k (I −

11
T

n
)Wky(k)

∣

∣

∣
y(k)

)

= E

(

y(k)TE
(

WT
k (I −

11
T

n
)Wk

)

y(k)
∣

∣

∣
y(k)

)

≤ λmax

(

E
[

WT
k (I −

11
T

n
)Wk

])

|y(k)|2, (12)

where the second equality holds from the fact thatWk is
independent of time and the node states, and the inequality
holds from the Rayleigh-Ritz theorem. Similarly we have

E

(

∣

∣y(k + 1)
∣

∣

2
∣

∣

∣
y(k)

)

≥ λ2

(

E
[

WT
k (I −

11
T

n
)Wk

])

|y(k)|2C

= λ2

(

E
[

WT
k (I −

11
T

n
)Wk

])

|y(k)|2,

whereC
.
= {y : y1 = · · · = yn}, and the equality holds from

the fact that1T y(k) = 0 for all k. The desired conclusion
follows immediately. �

V. A LMOST SURE CONVERGENCE VS. DIVERGENCE

We move to the discussion on almost sure consensus
convergence and divergence in this subsection. First we study
a special case whenαk ≡ 1. The following result holds.

Proposition 10: Supposeαk ≡ 1 andGatt has a spanning
tree. Then for any sequence of{βk}∞0 , global consensus is
achieved almost surely in finite time, i.e.,

P

(

∃K, s.t., xi(k) = xj(k), i, j ∈ V , k ≥ K
)

= 1.

Denoting T0 = infk
{

xi(k) = xj(k), i, j ∈ V
}

as the
initial time when consensus is reached, we haveET0 ≤
(n− 1)

(

n
p∗

)n−1
, wherep∗ = min{pij : pij > 0}.

Proof. Introduce

m(k) = min
i∈V

xi(k); M(k) = max
i∈V

xi(k).

We defineM(k) = M(k)−m(k). Following the considered
algorithmM(k) is a Markov chain with nonnegative states.
The structure of the randomized algorithm gives

P

(

M(s) = 0, s ≥ k
∣

∣

∣
M(k) = 0

)

= 1.

Thus, zero is an absorbing state forM(k).
SinceGatt has a spanning tree, we can select a nodei0

which is a root node inGatt. With αk ≡ 1, we have

P

(

xi(k + n− 1) = xi0 (k), i ∈ V
)

≥
(p∗
n

)n−1

, (13)



which implies

P

(

M(k + n− 1) = 0
∣

∣

∣
M(k) > 0

)

≥
(p∗
n

)n−1

. (14)

The Borel-Cantelli Lemma ensures that

P

(

∃k,M
(

k(n− 1)
)

= 0
∣

∣

∣
M(0) > 0

)

= 1,

which proves the almost sure finite-time consensus.
With (14), the upper bound(n− 1)

(

n
p∗

)n−1
of ET0 can

be obtained by direct calculation of the expected value of the
initial success time for a sequence of i.i.d. Bernoulli trials
with success probability

(

p∗

n

)n−1
. The proof is finished.�

Clearly if {βk}∞0 is sufficiently large, both consensus
divergence in expectation and in the mean square are possible
whenαk ≡ 1. Hence with repulsive links, the various notions
of convergence are not equivalent, which contrasts with the
case where all links are attractive.

Proposition 11: SupposeGatt has a spanning tree. Global
consensus convergence is achieved almost surely if

(i) there existsβ∗ > 0 such thatβk ≤ β∗ for all k,
(ii) 0 ≤ Φk(n−1) ≤ 1 with

∑∞
k=0 Φk(n−1) = ∞,

where Φs = 1 −
(

1 −
∏s+n−1

k=s
αk

2

)(

p∗

n

)n−1
−

(

1 −
(

p∗

n

)n−1
)

∏s+n−1
k=s

(

1 + βk

)

.

Proof. The proof is based on a similar martingale argument
as [31]. Leti0 be a root node inGatt. Takek0 ≥ 0. Assume
that xi0 (k0) ≤

1
2m(k0) +

1
2M(k0). Sincei0 is a root node,

there is nodei1 different fromi0 such that(i0, i1) ∈ Eatt. If
arc (i0, i1) is selected at timek0, we have

xi1(k0 + 1) ≤ (1− αk0
)M(k0) + αk0

(1

2
m(k0) +

1

2
M(k0)

)

=
αk0

2
m(k0) + (1 −

αk0

2
)M(k0). (15)

Similarly, there is nodei2, different fromi0 andi1, such that
at least one of(i0, i2) ∈ Eatt and (i1, i2) ∈ Eatt holds. If
(i0, i1) is selected at timek0, and either(i0, i2) or (i1, i2) ∈
Eatt is selected at timek0 + 1, we have

xi2(k0 + 2) ≤ (1− αk0+1)xi2 (k0 + 1)

+ αk0+1 max{xi0(k0 + 1), xi1(k0 + 1)}

=
αk0

αk0+1

2
m(k0) +

(

1−
αk0

αk0+1

2

)

M(k0). (16)

The process can be continued sinceGatt has a spanning tree,
and with a proper choice of arcs inEatt for k0+2, . . . , k0+
n− 2, we havem(k0 + n− 1) = m(k0) and

xi(k0 + n− 1) ≤

∏k0+n−1
k=k0

αk

2
m(k0)

+
(

1−

∏k0+n−1
k=k0

αk

2

)

M(k0), i ∈ V , (17)

which yield

P

(

M(k0 + n− 1) ≤
(

1−

∏k0+n−1
k=k0

αk

2

)

M(k0)
)

≥
(p∗
n

)n−1

. (18)

For the other case withxi0 (k0) > 1
2m(k0) +

1
2M(k0), we

can apply the same analysis onzi(k) with zi(k) = −xi(k)
and (20) still holds.

On the other hand, the structure of the algorithm ensures
that

P

(

M(k0 + n− 1) ≤
k0+n−1
∏

k=k0

(

1 + βk

)

M(k0)
)

= 1. (19)

In light of (18) and (19), we obtain

E

(

M(k0 + n− 1)
∣

∣

∣
M(k0)

)

≤
[

1− Φk0

]

M(k0). (20)

We invoke the supermartingale convergence theorem to
complete the final piece of the proof.

Lemma 3: [4] Let Vk, k ≥ 0 be a sequence of nonnega-
tive random variables withEV0 < ∞. If

E

(

Vk+1

∣

∣

∣
V0, . . . , Vk

)

≤ (1− ck)Vk

with ck ∈ [0, 1] and
∑∞

k=0 ck = ∞, then limk→∞Vk = 0
almost surely.

With Lemma 3 and (20), we havelimk→∞ M
(

(n−1)k
)

=
0 almost surely if0 ≤ Φk(n−1) ≤ 1 and

∑∞
k=0 Φk(n−1) =

∞. Noticing the boundedness ofβk, the desired conclusion
follows immediately. �

For almost sure divergence, we first present the following
result which indicates that as long as almost sure divergence
is achieved, then no node can “survive” if the attractive graph
is strongly connected.

Proposition 12: SupposeGatt is strongly connected and
consensus divergence is achieved almost surely. Suppose also
there existsα∗ > 0 such thatαk ≥ α∗ for all k. Then

P

(

lim sup
k→∞

|xi(k)− xj(k)| > M∗

)

= 1 (21)

for all i, j, andM∗ ≥ 0.
Proof. Suppose consensus divergence is achieved almost
surely. FixM∗ > 0. Then we can find two nodesi∗ andj∗,
such that almost surely, there exist a sequencek1 < k2 < . . .
satisfying xi∗(km) = m(km), xj∗(km) = M(km), and
|xi∗(km)−xj∗ (km)| = M(km) ≥ M∗ for all m = 1, 2, . . . .

Now take two nodesi∗ and j∗. SinceGatt is strongly
connected, there are directed pathsi∗i1 . . . iτ1i

∗ and
j∗j1 . . . jτ2j

∗ in Gatt, where 0 ≤ τ1, τ2 ≤ n − 2. We
impose a recursive argument to establish an upper bound
for xi∗(km + (τ1 + 1)d0). Take µ0 ∈ (0, 1) and define
d0 = inf{d : (1− α∗)

d ≤ µ0}.
Suppose(i∗, i1) is selected at time stepskm, . . . , km+d0−

1, (i1, i2) is selected at time stepskm+d0, . . . , km+2d0−1,
etc. We can obtain by recursive calculation that

xi∗
(

km + (τ1 + 1)d0
)

≤
(

1− µ0

)τ1+1
m(km)

+
(

1−
(

1− µ0

)τ1+1
)

M(km). (22)

A lower bound forxj∗
(

km + (τ1 + τ2 + 2)d0
)

can be
established using the same argument as

xj∗
(

km + (τ1 + τ2 + 2)d0
)

≥
(

1− µ0

)τ2+1
M(km)

+
(

1−
(

1− µ0

)τ2+1
)

m(km) (23)



for a proper selection of arcs during time stepskm + (τ1 +
1)d0, . . . , km + (τ1 + τ2 + 2)d0 − 1.

We can compute the probability of such selection of
sequence of arcs in the previous recursive estimate, and we
conclude from (22) and (23) that

P

(

xj∗
(

km +D0

)

− xi∗
(

km +D0

)

≥
[(

1− µ0

)τ2+1

+
(

1− µ0

)τ1+1
− 1

]

M(km) ≥
[(

1− µ0

)τ2+1

+
(

1− µ0

)τ1+1
− 1

]

M∗

)

≥
(p∗
n

)(τ1+τ2+2)d0

(24)

whereD0 = (τ1+τ2+2)d0. Sinceµ0 is arbitrarily chosen we
can always assume

(

1−µ0

)τ2+1
+
(

1−µ0

)τ1+1
− 1 > 1/2.

Thus, (24) is reduced to

P

(

xj∗
(

km +D0

)

− xi∗
(

km +D0

)

≥
1

2
M∗

)

≥
(p∗
n

)(τ1+τ2+2)d0

, m = 1, 2, . . . . (25)

Noting the fact that the events
{

xj∗
(

km+D0

)

−xi∗
(

km+
D0

)

≥ 1
2M∗

}

are determined by the node pair selection
process, which is independent of time and node states, the
Borel-Cantelli Lemma ensures that almost surely, we can
select an infinite subsequencekms

, s = 1, 2, . . . , such that

xj∗
(

kms
+D0

)

− xi∗
(

kms
+D0

)

≥
1

2
M∗, 1, 2, . . . .

This has proved that

P

(

lim sup
k→∞

|xi∗(k)− xj∗(k)| >
1

2
M∗

)

= 1 for all M∗ ≥ 0.

(26)
Since i∗ and j∗ are arbitrarily chosen, we have completed
the proof. �

Proposition 12 shows that divergence is also propagated
among the network between any two nodes. Denotingp∗ =
max{pij : pij > 0} andE0 = |Eatt|. We end the discussion
of this section by presenting the following almost sure
divergence result.

Proposition 13: Suppose Grep is weakly connected.
Global consensus convergence is achieved almost surely if

(i) there existsα∗ < 1 such thatαk ≤ α∗ for all k;
(ii) there existsβ∗ > 0 such thatβk ≤ β∗ for all k;
(iii) there exists an integerZ ≥ 1 such that

∑t

m=0 Q(t) = O(t), where form = 0, 1, . . . , Q(m)
.
=

(

p∗

n

)Z[

log 1
n−1 +

∑(m+1)Z−1
k=mZ log(1 + βk)

]

+
(

1 −
(

1 −

p∗

n
)E0Z

)[

∑(m+1)Z−1
k=mZ log

(

1− αk

)

]

.

Proof. Sinceαk < 1 for all k, the structure of the algorithm
automatically implies thatM(k) > 0 is a sure event for
all k. As a result, we can well define a sequence of random
variablesζk = M(k+1)

M(k) , k = 0, 1, . . . as long asM(0) > 0.
From the considered randomized algorithm, it is easy to see
that

P

(

ζk =
M(k + 1)

M(k)
≥ 1− αk

)

= 1 (27)

andP
(

ζk < 1
)

≤ P
(

one attractive arcs is selected
)

. More-
over, sinceGrep is weakly connected, for any timek, there

must be two nodesi and j with (i, j) ∈ Erep such that
|xi(k) − xj(k)| ≥

M(k)
n−1 . Thus, if such(i, j) is selected for

time k, k + 1, k + Z − 1, we have

M(k + Z) ≥
∣

∣xi(k + Z)− xj(k + Z)
∣

∣

≥
M(k)

n− 1

Z−1
∏

s=0

(1 + βk+s). (28)

Now we define a new sequence of random variables
associated with the node pair selection process,χZ

m, m =
0, 1, . . . , by

a) χZ
m =

∏(m+1)Z−1
k=mZ

(

1 − αk

)

, if at least one attractive
arcs is selected fork ∈ [mZ, . . . , (m+ 1)Z − 1];

b) χZ
m = 1

n−1

∏(m+1)Z−1
k=mZ (1 + βk), if one repulsive arc

(i, j) satisfying |xi(mZ) − xj(mZ)| ≥ M(mZ)
n−1 is

selcted for allk ∈ [mZ, . . . , (m+ 1)Z − 1]
c) χZ

m = 1 otherwise.
In light of (27) and (28), we have

P

(

(m+1)Z−1
∏

k=mZ

ζk ≥ χZ
m, m = 0, 1, 2, . . .

)

= 1. (29)

From direct calculation according to the definition ofχZ
m,

we haveE
(

logχZ
m

)

≥ Q(m).
We next invoke an argument from the strong law of large

numbers to show that

P
(

lim sup
t→∞

t
∑

m=0

logχZ
m = ∞

)

= 1. (30)

Suppose there exist two constantsM0 ≥ 0 and 0 < q < 1

such thatP
(

lim supt→∞

∑t
m=0 logχ

Z
m ≤ M0

)

≥ q. This
leads to

P

(

lim sup
t→∞

∑t

m=0 logχ
Z
m

t
≤ 0

)

≥ q. (31)

On the other hand, noting that the node updates are
independent of time and node states, and thatV(logχZ

m)
is bounded in light of the bounds ofαk andβk, the strong
law of large numbers suggests that

P

(

lim
t→∞

1

t

t
∑

m=0

(

logχZ
m −Q(m)

)

≥ 0
)

≥ P

(

lim
m→∞

1

t

t
∑

m=0

(

logχZ
m −E logχZ

m

)

= 0
)

= 1,

which contradicts (31) iflim supm→∞

∑t

m=0 Q(m) = O(t).
Thus, (30) is proved.

The final piece of the proof is based on (29). With the
definition of ζk, (29) yields

P

(

logM
(

(t+ 1)Z
)

− logM
(

0
)

=

(t+1)Z−1
∑

k=0

log ζk ≥
t

∑

m=0

logχZ
m, t = 0, 1, 2, . . .

)

= 1.

(32)

This gives usP
(

lim supt→∞ logM
(

(t+ 1)Z
)

= ∞
)

= 1

in light of (30). The desired conclusion holds. �



VI. CONCLUSIONS

A randomized consensus algorithm with both attractive
and repulsive links has been studied under an asymmetric
gossiping model. The repulsive update was defined in the
sense that a negative instead of a positive weight is imposed
in the update. This model can represent the influence of
certain link faults or malicious attacks in a communication
network, or the spreading of trust and antagonism in a social
network. We established various conditions for probabilistic
convergence or divergence, and proved the existence of a
phase-transition threshold for convergence in expectation.
An explicit value of the threshold was derived for classes
of attractive and repulsive graphs. Future work includes the
analysis for the symmetric update model and the structure
optimization of the repulsive graph so that the maximum
damage can be created for the network.

APPENDIX

Lemma 4:Let A, B be two matrices inRn×n. Suppose
‖ · ‖∗ is any matrix norm. Theng(λ) , ‖A+ λB‖∗, λ ∈ R

is a convex function inλ.
Proof. Noting that

g
(

tλ1 + (1− t)λ2

)

=
∥

∥

∥
t
(

A+ λ1B
)

+ (1− t)
(

A+ λ2B
)

∥

∥

∥

∗

≤
∥

∥

∥
t
(

A+ λ1B
)

∥

∥

∥

∗
+
∥

∥

∥
(1 − t)

(

A+ λ2B
)

∥

∥

∥

∗

= tg(λ1) + (1− t)g(λ2), (33)

for all t ∈ [0, 1] andλ1, λ2 ∈ R, the lemma is proved. �

Lemma 5:Let K > 0 be a positive constant. LetMK be
a subset of matrices inRn×n such that

(i) |Mij | ≤ K for all M ∈ MK ;
(ii) M1M2 = M2M1 for all for all M1,M2 ∈ MK .
Then for anyǫ > 0, there is a matrix norm‖ ·‖⋆ such that

ρ(A) ≤ ‖A‖⋆ ≤ ρ(A) + ǫ (34)

for all A ∈ MK .
Proof. Based on the simultaneous triangularization theorem
(Theorem 2.3.3, [2]), there is a unitary matrixU ∈ Cn×n

such thatU∗MU is upper triangular for everyM ∈ MK

since MK is a commuting family. Similar to the proof
of Lemma 5.6.10 in [2], we setDt = diag(t, t2, . . . , tn)
and the desired matrix norm‖ · ‖⋆ is obtained by‖B‖⋆ =
‖DtU

∗BUD−1
t ‖1 taking t sufficiently large. �

Proof of Proposition 4.Case (i). Givenǫ > 0 andα ∈ [0, 1].
Take K∗ > 0. If LattLrep = LrepLatt, it is easy to see
that MK∗

.
= {(I − 11

T

n
)W̄ : β ≤ K∗} is a commuting

family satisfying the conditions in Lemma 5. Let‖·‖⋆ be the
matrix norm established in Lemma 5. We introduceg⋆(β) ,
∥

∥

∥
(I − 11

T

n
)W̄

∥

∥

∥

⋆
. WhenGatt has a spanning tree, it is well

known thatf(α, 0) = ρ
(

(I− 11
T

n
)(I− α

n
Latt)

)

= 1−δ < 1

for some0 ≤ δ < 1. This gives us

g⋆(0) ≤ ρ
(

(I −
11

T

n
)(I −

α

n
Latt)

)

+ ǫ ≤ 1− δ + ǫ (35)

in light of Lemma 5.
Now we takeK∗ ≥ β2 > β1 ≥ 0. We make the following

claim.
Claim. f(α, β2) > 1 if f(α, β1) > 1.

The fact thatf(α, β1) > 1 leads to thatg⋆(β1) ≥
f(α, β1) > 1. According to Lemma 4,g⋆(·) is a convex
function, which implies that

g⋆(β1) ≤ (1−
β1

β2
)g⋆(0) +

β1

β2
g⋆(β2). (36)

With (35) and (36), we conclude that

g⋆(β2) ≥ 1 +
(β2

β1
− 1

)

δ −
(β2

β1
− 1

)

ǫ, (37)

which in turn yields that

f(α, β2) ≥ g⋆(β2)− ǫ ≥ 1 +
(β2

β1
− 1

)

δ −
(β2

β1

)

ǫ, (38)

again based on Lemma 5. Noting the fact thatǫ in (38) can
be chosen arbitrarily small, and thatδ, β2/β1, andf(α, β)
do not rely on the choice of‖ · ‖⋆, we have proved that
f(α, β2) > 1. The claim holds.

Next, we introduceZβ = {β ≥ 0 : f(α, β) > 1
}

. First of
all Zβ is nonempty whenLrep contains at least one link due
to the simple fact thatlimβ→∞ f(α, β) = ∞. Secondly

β⋆ , inf
{

β ≥ 0 : f(α, β) > 1
}

(39)

is a finite number in light of the claim we just established. It
is straightforward to verify thatf(α, β) > 1 whenβ > β⋆.
The fact thatf(α, β) < 1 whenβ < β⋆ can be proved via a
symmetric argument. This completes the proof for case (i).

Case (ii). From Lemma 4 and the fact thatf(α, β) =

‖(I − 11
T

n
)W̄‖2, f(α, ·) is a convex function inα; f(·, β)

is a convex function inβ. The desired conclusion follows
immediately. �

Proof of Proposition 5.According to the proof of Proposition
2, the eigenvalues of(I − 11

T

n
)W̄ are all nonnegative when

α ∈ [0, 1], β ∈ [0,∞), and bothPatt andPrep. The Courant-
Fischer Theorem guarantees that

ρ
(

(I −
11

T

n
)W̄

)

= max
|z|=1

zT
(

I −
α

n
Latt +

β

n
Lrep −

11
T

n

)

z

= max
|z|=1

[

1−
α

n

∑

(i,j)∈Eatt,i<j

pij(zi − zj)
2

+
β

n

∑

(i,j)∈Erep,i<j

pij(zi − zj)
2 +

1

n

(

n
∑

i=1

zi
)2
]

, max
|z|=1

Hα,β,Gatt,Grep
(z), (40)

where z = (z1 . . . zn)
T ∈ Rn. It is now clear that

Hα1,β,Gatt,Grep
(z) ≥ Hα2,β,Gatt,Grep

(z) for any 0 ≤ α1 ≤
α2 ≤ 1, and thatHα,β1,Gatt,Grep

(z) ≥ Hα,β2,Gatt,Grep
(z) for

any 0 ≤ β1 ≤ β2. This implies the desired result in light of
(40). �
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