
Shortest Path Set Induced Vertex Ordering and its Application to Distributed
Distance Optimal Formation Path Planning and Control on Graphs

Jingjin Yu Steven M. LaValle

Abstract— For the task of moving a group of indistinguish-
able agents on a connected graph with unit edge lengths into
an arbitrary goal formation, it was shown that distance optimal
paths can be computed to complete with a tight convergence
time guarantee [30], using a fully centralized algorithm. In
this study, we establish the existence of a more fundamental
ordering of the vertices on the underlying graph network,
induced by a fixed goal formation. The ordering leads to a
simple distributed scheduling algorithm that assures the same
convergence time. The vertex ordering also readily extends to
more general graphs - those with arbitrary integer capacities
and edge lengths - for which we again provide guarantees on
the convergence time until the desired formation is achieved.
Simulations, accessible via a web browser,1 confirm our theo-
retical developments.

I. INTRODUCTION

For the task of moving a group of n indistinguishable
agents (or equivalently, robots or vehicles) on a connected
graph with unit length edges into an arbitrary goal formation,
an efficient centralized algorithm in [30] schedules all agents
from an initial formation (configuration) to a goal formation,
along paths with the smallest total distance. The authors
further showed that, the schedule can be completed in
n+ �−1 time steps (� is the longest distance between a pair
of start and goal vertices), which is a tight bound.

In this paper, we significantly extend the previous results
and show that, a directed acyclic graph (DAG) induced by
the initial and goal formations admits an integral ordering of
the vertices on the involved paths. The ordering, which may
be used to compute the distance between any two vertices
on a directed path of the DAG, is unique up to an additive
constant. A simple algorithm based on this vertex ordering
yields the same n+ �− 1 convergence time guarantee. This
more fundamental structure provides a smooth transition
from the problem formulation to the solution, which is
missing from the constructive proof offered in [30].

Using this vertex ordering structure, once the initial agent-
target assignment is completed, the agents, via local (up
to distance two) communication, can achieve the desired

Jingjin Yu is with the Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
USA. E-mail: jingjin@csail.mit.edu. Steven M. LaValle is with the Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL 61801 USA. E-mail: lavalle@uiuc.edu. Acknowledgments. This
work was supported in part by NSF grants 0904501 (IIS Robotics) and
1035345 (Cyberphysical Systems), MURI/ONR grant N00014-09-1-1052,
and AFOSR grant FA95501210193. We thank the anonymous reviewers for
their constructive comments that helped improve the quality of the final
presentation of the materials.

1http://msl.cs.uiuc.edu/~jyu18/pe/distr-form.html.
A Java plugin of version 6 or higher is required.

formation, again in no more than n+ �− 1 time steps. To
the best of our knowledge, this work provides the first
multi-agent formation path planning algorithm that is both
distance optimal and partially distributed, along with a tight
convergence time guarantee. In general, global distance op-
timality is not achievable without direct or indirect global
communication under our formulation2, implying that a fully
distributed planning algorithm is not possible. As we will
see, the ordering also allows easy extension of the results to
graphs with edges having arbitrary integer lengths and non-
unit capacities (i.e., more than one agent may be traveling
on the same edge at a given instant).

When it comes to problems on formation, two sub-
problems come up. One of them is on the topic of formation
control, which focuses on maintaining a formation of a group
of vehicles; a desired formation, in these research, may
be important for inter-vehicle communication or for maxi-
mizing certain utility functions [5, 24, 32]. Graph theoretic
approaches are quite popular here, probably because vehicles
and inter-vehicle constraints can be represented naturally
with vertices and edges of graphs. The second sub-problem
put more emphasis on how to achieve a desired formation via
planning [4, 7, 9, 10, 15, 16, 17, 19, 20, 23, 28, 26, 29, 30],
rather than to stabilize around a given formation. Among
these, [15, 16, 17] appear to be mostly close to our effort in
this paper (besides our earlier effort [30]). However, these
works did not consider the issue of convergence time.

Generalizing the notion of formation to include multiple
agents trying to agree on some common goal leads to the
problem of consensus and rendezvous. This more general
problem has remained a central research topic in control
theory and robotics; see, e.g., [1, 2, 3, 6, 8, 10, 12, 13,
14, 18, 21, 22, 24, 25, 27, 31], to list a few. An early
account of the rendezvous problem, as a form of formation
control, appeared in [1], in which algorithmic solutions are
provided for agents with limited range sensing capabilities.
An n-dimensional rendezvous problem was approached via
proximity graphs in [3]. For the consensus problem it is
shown that averaging the behavior of close neighbors causes
all agents to converge to the same behavior eventually [8].
We point out that, although this paper works with initial and
goal vertex sets of n distinct elements each, the presented
results can be easily generalized to any number of goal

2A simple example: two agents occupy the diagonals of a square with
two targets located on the other diagonal of the same square. Distance
optimality is only possible if the two agents choose different targets before
starting moving, which is not achievable without some form of global
communication (direct or indirect).



vertices between 1 and n, thus covering additional problems
such as multi-agent rendezvous.

The rest of the paper is organized as follows. Section
II provides the problem formulation, an example, and its
solution. Section III constructively proves the existence of
the aforementioned vertex ordering on the induced DAG,
followed by an application that schedules a set of distance
optimal paths for the agents with a proven convergence time
bound in Section IV. Section V then shows the scheduling
algorithm can be easily turned into a distributed one, without
relaxing the convergence time bound. We generalize the
graph to have integer edge lengths and capacities in Section
VI and conclude in Section VII.

II. FORMATION PATH PLANNING ON GRAPHS

Let G = (V,E) be a connected, undirected, simple graph,
in which V = {vi} is its vertex set and E = {(vi,v j)} is its
edge set. Let A= {a1, . . . ,an} be n agents that move with unit
speeds along the edges of G, with initial and goal vertices on
G specified by the injective maps xI ,xG : A→V , respectively.
For convenience, V,E also denote cardinalities of the sets
V,E, respectively. Let σ be a permutation that acts on the
elements of xG, (σ ◦xG) is a map that defines a possible goal
vertex assignment (a target formation).

A scheduled path is a map pi : Z+ →V , in which Z
+ :=

N∪{0}. Intuitively, the domain of the paths is discrete time
steps. A scheduled path pi is feasible for a single agent ai if
it satisfies the following properties: (1) pi(0) = xI(ai), (2) for
each i, there exists a smallest kmin ∈Z

+ such that pi(kmin) =
(σ ◦xG)(ai) for some fixed σ (i.e., same σ for all 1≤ i ≤ n)
(that is, the end point of the path pi is some unique goal
vertex), (3) for any k ≥ kmin, pi(k)≡ (σ ◦xG)(ai), and (4) for
any 0 ≤ k < kmin, (pi(k), pi(k+1)) ∈ E or pi(k) = pi(k+1).

We say that two paths pi, p j are in collision if there exists
k ∈ Z

+ such that pi(k) = p j(k) (meet, or collision on a
vertex) or (pi(k), pi(k+1)) = (p j(k+1), p j(k)) (head-on, or
collision on an edge). If p(k) = p(k+ 1), the agent stays at
vertex p(k) between the time steps k and k+ 1.

Problem 1 Given a 4-tuple (G,A,xI ,xG), find a set of paths
P = {p1, . . . , pn} and a fixed σ such that pi’s are feasible
paths for respective agents ai’s for this σ and no two paths
pi, p j are in collision.

Note that in the definition, we assume that edges of G
have unit lengths and capacities. That is, it takes unit time
for an agent to cross an edge and no two agents can be on
the same edge at the same time. This implicit assumption is
used throughout Section III-V and relaxed in Section VI.

To familiarize readers with the problem and its solution,
look at the example in Fig. 1. The underlying graph G
is a 6 × 7 grid with holes. Assigning the top left cor-
ner coordinates (0,0) and bottom right coordinates (6,5),
xI(A) = {(0, i− 1)},xG(A) = {(6, i− 1)},1 ≤ i ≤ 6. That is,
we want to move the agents from left to right. A solution
to this problem that is distance optimal is given in Table I,
corresponding to a schedule of the multi-colored paths in Fig.

Fig. 1. A 6×7 grid with some vertices removed. The colored discs on the
left represent the initial formation and the gray discs the goal formation.
The colored paths represent the paths (not yet scheduled to avoid collision).

1. Here, distance optimality seeks to minimize the total path
lengths of all agents. Each main entry of the table designates
the coordinates of the vertex an agent should be staying at
the given time step.

TABLE I

Agent
Time Step

0 1 2 3 4 5 6 7 8
1 0,0 1,0 2,0 3,0 4,0 5,0 6,0 6,1 6,1
2 0,1 0,0 1,0 2,0 3,0 4,0 5,0 6,0 6,0
3 0,2 1,2 2,2 3,2 3,3 4,3 5,3 6,3 6,2
4 0,3 1,3 1,4 1,4 2,4 3,4 4,4 5,4 6,4
5 0,4 1,4 2,4 3,4 4,4 5,4 6,4 6,5 6,5
6 0,5 1,5 2,5 2,4 3,4 4,4 5,4 6,4 6,3

III. FORMATION INDUCED VERTEX ORDERING

Algorithm 1 PLANSHORTESTPATHSET

Input: G,A,xI ,xG as described in Problem 1
Output: Q = {q1, . . . ,qn}

1: for each ui ∈ xI(A) do
2: run breadth first search to get shortest paths qi j for all

(ui,v j)’s such that v j ∈ xG(A)
3: end for
4: run Hungarian method on the above set of n2 paths to get a

path set Q.
5: return Q

Given xI and xG, it is relatively straightforward to obtain
an unscheduled path set Q = {q1, . . . ,qn} in which qi is a
sequence of adjacent vertices (we use Q to distinguish these
paths from the scheduled paths, denoted P), with the help of
the Hungarian method [11]. Our implementation is outlined
in Algorithm 1. Let head(qi), tail(qi), and len(qi) denote the
start vertex, end vertex, and length of qi, respectively. The
path set Q returned from Algorithm 1 has several obvious
properties, listed below.3

Property 2 For all 1≤ i≤ n, head(qi)∈ xI(A) and tail(qi)∈
xG(A). For any two paths qi,q j, head(qi) 	= head(q j) and
tail(qi) 	= tail(q j).

3Properties 2-5 and Proposition 6 are from [30]; they are restated here to
make this paper more self-contained.



Property 3 Each path qi is a shortest path between head(qi)
and tail(qi) on G.

Property 4 The total length of the path set Q is minimal.

Constructively guaranteed by Algorithm 1, Properties 2
and 3 ensure that the initial and goal vertices are paired
up using shortest paths. Property 4 requires the total length
of these paths to be minimal. From now on, Q is always
assumed to be a path set satisfying properties 2-4. It is not
hard to see that Property 4 implies the following.

Property 5 If the edges of every path qi ∈ Q are oriented
from head(qi) to tail(qi), no two paths share a common edge
oriented in different directions.

Let V (·),E(·) denote the vertex set and the undirected edge
set of the input arguments, which can be either a path, q i, or
a set of paths, such as Q. We define an intersection between
two paths as a maximal consecutive sequence of vertices and
edges common to the two paths. Property 5 is a special case
of a more general structure of the path set Q, stated in the
following proposition.

Proposition 6 The path set Q induces a directed acyclic
graph (DAG) structure on E(Q).

Proposition 6 leads to a tight bound on the number
of time steps to schedule the path set Q [30]. Somewhat
surprisingly, the DAG structure on Q has an even stronger
vertex ordering property that does not hold for DAGs in
general; this is where the contribution of this paper starts. To
state the property, we need some definitions for describing
relationships between paths. Recall that two paths intersect (a
symmetric relationship) if they share some common vertices
or edges. Two paths qi,q j are linked (again a symmetric
relationship) if either qi,q j intersect or both qi,q j are linked
to some qk (note that this is an inductive definition with a
base case). A cluster Qc is a set of paths such that every
pair of paths qi,q j ∈ Qc are linked. A path cluster Qc is a
maximal cluster of Q if Qc is a cluster and no other path
qi ∈ Q\Qc is linked to a path q j ∈ Qc.

For each path qi ∈ Q, a distance value function, di :
V (qi)→ Z

+, is defined as

di(u) =

{
0 u = head(qi),
dist(head(qi),u) otherwise,

(1)

in which dist(u,v) denotes the shortest distance between u,v
on the graph G. Distance value functions can be defined
similarly for an arbitrary set of vertices. Given the general-
ized definition, we say that one distance value function, d ′,
respects another one, d, if d ′ is defined for all of d’s domain
and for any u,v on which d is defined,

d′(u)− d′(v) = d(u)− d(v). (2)

In an unscheduled path set Q, for any two paths q i,q j

that intersect, a distance value function can be constructed
to respect both di and d j.

Lemma 7 If a vertex u∗ belongs to the intersection of two
paths qi,q j ∈ Q, then the distance value function

dc(u) =

{
di(u) u ∈V (qi),
dc(u∗)+ d j(u)− d j(u∗) u ∈V (q j),

(3)

respects both di and d j.

v*u*

q
 i

q
 j

Fig. 2. Two intersections between two paths.

PROOF. By definition, dc respects di. WLOG, let u∗ from
(3) be the (unique) vertex on qi with the smallest di value. If
there is a single intersection (or common segment) between
qi and q j, then dc respects d j since by Property 5, qi and q j

cannot have edges oriented differently. If not, let v ∗ 	= u∗
be an arbitrary intersection point of qi and q j such that
the segments of qi and q j between u∗ and v∗ differ by
at least one vertex (see Fig. 2 one such configuration).
Denote the segment between u∗,v∗ as ωi and ω j for qi

and q j, respectively, which must have the same orientation
between u∗ and v∗ by Proposition 6. We want to show that
di(v∗) = dc(v∗), or

di(v∗) = dc(v∗) = dc(u∗)+ d j(v∗)− d j(u∗)
= di(u∗)+ d j(v∗)− d j(u∗)

⇔ di(v∗)− di(u∗) = d j(v∗)− d j(u∗)
⇔ len(ωi) = len(ω j)

(4)

If the last equation of (4) does not hold, without loss
generality, we may assume that len(ωi) < len(ω j); but
then both paths should take ω i, a contradiction. Since v∗ is
arbitrary, dc respects both qi and q j. �

We now show that (3) can be extended to a path cluster.

Theorem 8 Given a path cluster, Qc = {q1, . . . ,qm} ⊂ Q,
there exists a distance value function dc : V (Qc)→ Z

+, such
that dc respects di for all 1 ≤ i ≤ m.

PROOF. Lemma 7 proves the claim for any path cluster with
no more than two paths. We inductively prove the claim for
more than two paths. Assuming that a dc respects a (sub-
)cluster Qc,k = {q1, . . . ,qk−1} ⊂ Qc, k ≤ m−1, we claim that
the inductive definition

dc(u)=

{
dc(u) u ∈V ({q1, . . . ,qk−1}),
dc(u∗)+ dk(u)− dk(u∗) u ∈V (qk),

(5)
extends dc so that it respects dk for a path qk that intersects
paths in {q1, . . . ,qk−1} at some vertex u∗. The claim trivially
holds if qk intersects paths in {q1, . . . ,qk−1} only once or qk

intersects a single path qi,1 ≤ i ≤ k− 1 more than once.



q
 k

q
 j

u*

v*

u1

q
 i

u2
u3

u4 u5

Fig. 3. A typical multiple path intersection.

The non-trivial case has qk intersect multiple paths in Qc,k.
WLOG, assume that qk intersects qi and q j,1 ≤ i, j ≤ k−
1, i 	= j, at u∗ and v∗, respectively (the order of i, j does not
matter), such that v∗ /∈ V (qi) and u∗ /∈ V (q j) (otherwise it
becomes the aforementioned trivial case). Additionally, we
require that u∗ and v∗ have the two lowest (unique) dk values.
We may then assume that the general structure of this setting
is as illustrated in Fig. 3 (in the figure there are 7 paths
on the undirected red cycle; there could be fewer or more
paths). Note that single intersection points between paths are
assumed due to Lemma 7; multiple intersections between the
same pair of paths do not affect dc values.

We make the temporary assumption that the paths in
Fig. 3 are oriented such that for any intersection point (for
example u∗), the two involved paths (in the case of u∗, qi

and qk) take different orientations on the (red) cycle. With
this assumption, on the undirected (red) cycle formed by
intersecting paths, there is always an even number of paths
between u∗ and v∗ besides qk (possibly after applying above
path switching procedure many times). Let this even number
be 2b and the 2b paths intersect at u1, . . . ,u2b−1 (Fig. 3 shows
the case where b = 3). Also let u∗ ≡ u0,v∗ ≡ u2b. To show
that (5) extends dc to dk, we need to show dk(v∗)−dk(u∗) =

q
 k

q
 j

u*

v*

u1

q
 i

u2
u3

u4 u5

Fig. 4. Augmented paths. The dotted paths are the old paths, replaced by
the green ones. Note that the two sets of paths (green and dotted ones) have
the same initial and goal vertex sets.

dc(v∗)− dc(u∗). If this is not true, WLOG, assume that
dk(v∗)− dk(u∗) > dc(v∗)− dc(u∗). For this case, we update
segments of the paths as shown in Fig. 4. The update gives

us a net gain of path length

−dist(u∗,v∗)+
b−1

∑
i=0

dist(u2i,u2i+1)−
b

∑
i=1

dist(u2i−1,u2i)

= dk(u
∗)− dk(v

∗)+
b−1

∑
i=0

(dc(u2i+1)− dc(u2i))

+
b

∑
i=1

(dc(u2i−1)− dc(u2i))

= dk(u
∗)− dk(v

∗)+ dc(v
∗)− dc(u

∗)< 0,

which contradicts Property 4. We conclude that (5) indeed
extends dc to respect dk.

If the temporary assumption does not hold (i.e., two
intersecting paths take the same orientation on the cycle), the
above proof holds via temporarily switching (a finite number
of) paths. As an example, say segments of qi and qk take the
same orientation on the red cycle. Then the new paths q ′

i
and q′k given in Fig. 5 preserve the total path length. The
rest of the proof (previously paragraphs) then applies with
appropriate adjustments to how the paths are switched.

q
 k

u*

q
 i

q
 k

q
 i

0
0

Fig. 5. A case in which qi has a different orientation compared to Fig. 3.

We have so far shown that the dc respects dk on qk up to
v∗. Inductively applying the same proof to other intersection
points beyond v∗ proves the claim of the theorem. �

IV. AN ORDERING-BASED SCHEDULING ALGORITHM

Assuming that a time optimal schedule seeks to minimize
the time it takes the last agent to reach its goal, the following
was established in [30].

Lemma 9 In general, distance optimality and time optimal-
ity for Problem 1 cannot be simultaneously satisfied.

Furthermore, let � be the largest pairwise distance between
a member of xI(A) and a member of xG(A),

�= max
∀u∈xI(A),v∈xG(A)

dist(u,v). (6)

It was also shown in [30] that n + � − 1 time steps is
necessary to schedule a shortest path set Q for an infinite
family of instances of Problem 1. It was then shown that an
unscheduled path set Q can be turned into a scheduled path
set P with a maximum of n+ �− 1 time steps, providing
a distance optimal schedule with a tight scheduling time
bound. We now show that the vertex ordering induced by x G

leads to a scheduling algorithm with the same guarantees on
the scheduled paths’ qualities. The new algorithm is simpler



to implement and has a better running time of O(nV logn);
it is not clear though, from a first look, that it should provide
the said convergence time guarantee.

By Theorem 8, each maximal path cluster Qc ⊂ Q can
be assigned a distance value function dc that respects the
distance function di for each qi ∈ Qc. Since these individual
dc’s have no common domain, they can be combined to
give a global dc (for a fixed Q). Assuming such a dc,
which can be obtained easily using (5). Before scheduling
the path set Q, we introduce a subroutine to handle the
scenario illustrated in Fig. 6. In the figure, Q= {q1,q2} with
head(qi) = ui, tail(qi) = vi for i = 1,2. This path set cannot
be scheduled as is, since q1 is in the way of q2. However, as

u 2 v 2v 1u 1

Fig. 6. A path set Q that cannot be scheduled without modification.

agent a1 reaches v1, we can dynamically switch the goals of
q1,q2. Note that the path set after this update still satisfies
Properties 2-4. For paths qi,q j, denote this path switching
subroutine switch(qi,q j).

Algorithm 2 SCHEDULESHORTESTPATHS

Input: G,Q,dc
Output: scheduled paths, P = {p1, . . . , pn}

1: let pi(0) = head(qi) for all 1 ≤ i ≤ n
2: let vi = next(qi,head(qi)) for all applicable qi ∈ Q
3: let t = 1
4: while some qi is not fully scheduled do
5: while some pi(t) is not set for the current t do
6: pick a candidate path qi with largest dc(vi)
7: if vi is not the same as any pj(t) already assigned then
8: pi(t) = vi
9: vi = next(qi,vi) if qi is not fully scheduled

10: if vi == tail(qi) and vi falls on some qj such that qj
has yet to reach vi then

11: switch(qi,q j)
12: end if
13: else
14: pi(t) = pi(t −1)
15: end if
16: end while
17: t = t +1
18: end while
19: return P = {p1, . . . , pn}

The path scheduling subroutine is outlined in Algorithm
2, in which the routine next(qi,v) returns the next vertex of
path qi after vertex v. A path qi is fully scheduled if tail(qi)
is assigned to pi(t) for some t. The scheduling routine never
considers two paths qi,q j running in opposite directions since
Property 5 excludes such cases. Essentially, the scheduling
algorithm let all paths from Q take their respective courses
simultaneously. Whenever two paths are competing for going
to the same vertex, an arbitrary path is picked to go and

the other one to stay put. With the switch(·, ·) subroutine to
guarantee that no deadlock can occur, it is straightforward to
see that the process must converge since at each t, at least
one agent will make progress toward its goal. That is,

Proposition 10 Algorithm 2 terminates in finite time.

Denote the total path length of Q as �Q, then the con-
vergence time (the time it takes for the formation to be
completed) is no more than �Q. However, as we have
mentioned, Algorithm 2 provides a much stronger guarantee,
as Theorem 11 will show. we apologize for the somewhat
long proof but it seems more appropriate to have a long
proof in this case than to split it into lemmas.

Theorem 11 Algorithm 2 provides a schedule that takes at
most n+ �− 1 time steps to complete.

PROOF. We constructively prove the theorem starting with a
path set Q. Let Qc = {q1, . . . ,qm} be an arbitrary maximal
cluster of Q, it is clear that we only need to prove the claim
for Qc. Moreover, we only need to prove the bound for the
special case in which the routine switch(·, ·) is never invoked,
since we can effectively consider the “dynamic switching”
all happen at time step t = 0.

We want to schedule all agents, a1, . . . ,am, along
q1, . . . ,qm, respectively, starting at t = 0. Before starting, we
create a list of numbers, H, indexed by possible dc values (as
constructed in the proof of Theorem 8) in decreasing order.
Since the cluster Qc is finite, H is also finite. An entry of
this list, hd , is the number of agents whose current locations
have a dc value of d. A list H may look like

d : 5 4 3 2 1 0 −1 −2 −3 −4 . . .
hd : 0 0 3 0 2 1 0 0 0 2 . . .

We note that for a fixed time step t, the only importance of
the index d in list H is that it specifies the relative order
of agents. In the above H, for example, h3 = 3, as the first
non-zero entry, means that there are 3 agents as the “front
runners”, followed by next non-zero entry h 1 = 1, suggesting
that there is 1 agent two steps behind. From this observation,
we may negate the index d and at each time step t, align h 1

with the first non-zero entry of H. The above H then becomes

d : −1 0 1 2 3 4 5 6 7 8
hd : 0 0 3 0 1 2 0 0 0 2

We can also remove the leading (and trailing) zero entries

d : 1 2 3 4 5 6 7 8
hd : 3 0 1 2 0 0 0 2

At this point, we partition the list into one or more sublists
as follows. Starting at d = 0, we look at the sum of first k
terms of H,

Sk =
k

∑
d=1

hd . (7)

If it ever happens for some k, starting at 1, that Sk = k, we
group these k terms of H into a sublist and work with it. We



call these sublists contiguous sublists. Applying the partition
procedure to H above, the first contiguous sublist, H ′, is

d : 1 2 3 4 5 6
h′d : 3 0 1 2 0 0

Now let us consider how the sublist may change after we let
all agents start moving towards their respective goals. For
the first group of 3 agents, at least one of them can move
one step closer to its goal and at most two of them may not
make any progress. The worst case happens in a situation
illustrated in Fig. 7. When conflict like this happens, we pick
a random agent to advance. Suppose the worst case happens,
we update to have h′

0 = 1,h′1 = 2.

a i

a k

a j

Fig. 7. A three-way conflict between three agents, in which case we pick
any agent to go ahead and let the other two wait.

For the rest of the non-zero entries of H ′, if it is preceded
by a zero entry, it means that there are no agents with dc

values exactly one larger than this group of agents. Hence, at
least one agent from this group of agents can make one step
progress towards its goal. When this is applied to h ′

3, which
has a value 1, we update the sublist entries as h ′

2 = 1,h′3 = 0.
After these two steps, the sublist H ′, still being processed
between time steps, is

d : 0 1 2 3 4 5 6
h′d : 1 2 1 0 2 0 0

Observe that the next non-zero entry, h ′
4 = 2, now has a

preceding zero entry. Assume that only one agent advances,
we update the entries to h′

3 = 1,h′4 = 1. At the end of t = 1,
the updates give us H ′ as

d : 0 1 2 3 4 5 6
h′d : 1 2 1 1 1 0 0

We can adjust d to get

d : 1 2 3 4 5 6
h′d : 1 2 1 1 1 0

What does the entries of H ′ mean after each update? The
entry h′1 represents the number of agents (paths) that never
waited for others. Similarly, the entry h ′

i represents the
number of agents (paths) that never waited for more than
i− 1 steps. Note that the leading entry is h ′

1 = 1. Whenever
the leading entry becomes 1, the associated agent/path can no
longer have any conflict with any other agent/path. That is, it
has no more interaction with the rest of the agents. We claim
that throughout the updates, at least i agents never waited
more than i−1 steps, which is easily verifiable via induction
(we omit the details due to its length and irrelevance to the

rest of the paper). The worst case happens when H ′ becomes
all 1’s as

d : 1 2 3 4 5 6
h′d : 1 1 1 1 1 1

In any case, by the above claim, agents from a contiguous
sublist cannot “spill over” to the next contiguous list. If we
apply what we have done to every contiguous sublist, the
claim that at least i agents never waited more than i− 1
steps holds for all agents moving on the cluster Qc. Since
no agent travels a length more than �, We have proved the
claim of the theorem. �

V. A DISTRIBUTED SCHEDULING ALGORITHM

From the constructive proof of Theorem 11 it is clear that
within each maximal path cluster, an agent only needs to be
aware of its neighbors within a distance of 2 to take appropri-
ate actions. This implies that once agent-target assignment is
done, global coordination is not required to schedule these
agents, yielding partially distributed scheduling algorithm.
Since local communication is often more reliable and easy
to implement, such a scheduling algorithm is more desirable
in general. In this section, we provide a local communication
protocol which leads to a distributed scheduling algorithm,
again with a convergence time of n + �− 1. A common
clock is assumed. We omit the pseudocode since it is a
straightforward modification of Algorithm 2.

Assuming each agent is assigned a path, we will schedule
them along these paths and possibly update their goals
(targets) on the fly. Recall that by Property 5, we only need
to worry about two agents occupying the same vertex at a
given time step. This splits into two cases: (1) two agents
want to move to the same vertex in one time step, and (2) one
agent moves to a vertex while another agent is staying there.
We now give a communication protocol, including a forward
communication phase and a backward communication phase
at each time step, that handles both cases.

Schedule 12 (Distributed Transfer Schedule) Repeat the
following two communication phases until the desired for-
mation is complete.

Forward communication phase. Assume that an agent
ai is located on vi and wants to move to vi+1. Agent ai first
checks whether vi+1 is occupied by some other agent a j and
if it is, notifies a j of its intention and waits for a j’s response.
At this point, a j will check whether it is already at its goal
and if it is, switch its goal with ai (a j will also redo its
forward communication phase if it already did). If no agent
is occupying vi+1, ai then looks for agents that also want
to go to vi+1. If there are, one agent is randomly picked
to go to vi+1 in the next time step. Alternatively, we could
deterministically pick an agent (e.g. based on identities of
the vertices occupied by the agents). Other agents wanting
to go to vi+1 then must wait one time step. Since we are
dealing a finite number of agents and there are no cycles on
a DAG, the forward communication phase will stop after at
most O(n) messages, each with a size of O(logV ).



Backward communication phase. Next, an agent that has
received requests from a following agent needs to respond
back. Let such two adjacent agents be ai and a j, occupying
vi, vi+1, respectively, with ai wanting to go to vi+1. There are
two sub-cases. In the first sub-case, a j moves and notifies ai

that it may go ahead and move to vi+1. If a j gets multiple
requests to occupy vi+1 then a randomly agent is selected
to proceed (again, this can be made deterministic). In the
second sub-case, a j cannot move because another agent tells
it so. It then simply relay that message backward. Clearly,
the backward communication will stop after at most O(n)
messages, each with a size of O(logV ).

Schedule 12 has a similar algorithmic complexity com-
pared with the centralized version. Time wise, we have

Corollary 13 Schedule 12 transfers all agents to achieve the
desired formation in O(n+ �− 1) time steps.

PROOF SKETCH. The only difference introduced by the
distributed schedule is the possibility that an agent a j needs
to move to some agent ai’s goal vertex vi, which is already
occupied by ai. In this case, we switch the goals of ai and
a j (and the associated paths of ai and a j). This switch has
the net effect of delaying ai by one time step and speed up
a j by one time step. The delay does not make ai reach its
new goal later than a j so the switch has no negative effect
on the total convergence time; the proof technique from
Theorem 11 then applies with some modification. Note that
we need to work with an entire path cluster in this case. �

The scheduling algorithm is fairly simple to implement,
as we did in a Java simulation (see abstract for the link).
A snapshot of a running session is provided in Fig. 8.
We do not provide computational evaluation here since the
overall algorithm has similar running time as the algorithm
from [30]. Readers interested in computational time on large
instances may refer to [30] for more details.

VI. INTEGER EDGE LENGTHS AND CAPACITIES

So far we have assumed that we work with a graph G
with unit edge lengths and capacities. That is, an edge takes
a unit of time to cross and can hold one agent at a time. We
now relax this assumption to allow non-unit edge lengths and
capacities. Formally, let d,c : E →Z

+ be the edge length map
and edge capacity map, respectively. We assume that for any
e∈E,d(e)≥ c(e), which is generally true for physical robots
with non-negligible sizes (up to a multiplicative constant).
The main goal of this section is to extend the results from
previous sections under this setup. Note that the definition
of scheduled paths and feasible paths from Section II need
to be updated since it may take multiple time steps for an
agent to cross an edge. Thus, a scheduled path p i becomes
a partial map as it may be undefined for some time steps.
We omit formal descriptions of these required updates since
they are intuitive but lengthy to state.

It is clear that Algorithm 1 is insensitive to edge length.
Therefore, the algorithm again produces an unscheduled path
set Q satisfying Properties 2-5. Moreover, all results from

Fig. 8. A simulation capture. The red/blue circles and numbers are the
start/goal locations (already assigned to have shortest total distance). The
light blue solid discs represent the agents. The bold black lines are the paths
yet to be completed.

Section III continue to hold with edge lengths that are not all
ones. On the other hand, scheduling the path set Q becomes
slightly trickier, since depending on edge capacities, one or
more agent may be on the same edge during within one time
step. To simplify the analysis, we look at two extreme cases:
(1) for all e ∈ E,c(e) = d(e), and (2) for all e ∈ E,c(e)≡ 1.
The first case models scenarios that allow bumper to bumper
road traffic. This case is easy to handle, due to the following
observation: By subdividing each edge e∈ E into d(e) edges
of unit length, we obtain a new graph G with unit edge length
and capacity. We turn our attention to the second case, which
models bottleneck edges such as a long and thin bridge. First
we establish a lower bound.

Lemma 14 Assume ∀e ∈ E,c(e) ≡ 1 and let dmax =
maxe∈E d(e). Then �+(n− 1)dmax time steps is necessary
to schedule n agents along a shortest path set Q.

PROOF. In the instance of Problem 1 shown in Fig. 9,
assume that all edges have the same length d; hence,
dmax = d. The graph G is two stars with their centers
connected by a single path; the red vertices form x I(A) and
the blue ones xG(A). It is clear that all red vertices are of
distance � to all blue vertices. Given this problem instance,
all agents must go through the path uv . . .xy sequentially.
To optimize arrival time, the first agent (say a1) to reach
goal must visit u at t = dmax. Consequently, a1 cannot
reach v earlier than t = 2dmax. This implies that no other
agent can head to v from u before t = 2dmax, due to the
unit edge capacity constraint. Via simple induction, the
last agent arriving at u cannot leave it before t = ndmax.
Therefore, it cannot arrive earlier than t = �+(n−1)dmax. �



s 1
+

s n
+

s 1
-

s n
-

u

v

x

y

Fig. 9. An instance of Problem 1 for demonstrating the necessity claim
of Lemma 14.

If we pretend that all edges have the same length dmax,
Algorithm 2 can be easily extended to schedule a shortest
path set Q. Clearly, this provides an overestimate of the
total time it takes to schedule Q. Since no agent is delayed
more than (n−1)dmax time steps, the following corollary to
Theorem 11 is immediate.

Corollary 15 Assume ∀e ∈ E,c(e) ≡ 1 and let dmax =
maxe∈E d(e). Algorithm 2 schedules a shortest path set Q
such that the scheduled path set requires at most �+(n−
1)dmax time steps to complete.

Thus, the time bound �+ (n − 1)dmax is tight for the
unit edge capacity case. Combining the two extreme cases
together, we have the following conclusion.

Theorem 16 For the extension of Problem 1 with integer
edge lengths and capacities in which 1 ≤ c(e) ≤ d(e) for
all e ∈ E, the time bound �+(n− 1)dmax is sufficient and
necessary to schedule n agents along a shortest path set Q.

Straightforward complexity analysis shows that for integer
edge lengths and capacities, the running time of the entire
algorithm becomes O(nV 2 + nVdmax).

VII. CONCLUSION AND FUTURE WORK

In this paper, for the multi-agent formation path planning
problem on graphs, we showed the existence of a vertex
ordering structure induced by the initial and goal formations,
which in turn admits a simple and natural scheduling algo-
rithm for coordinating the shortest paths amongst the indis-
tinguishable agents with a tight convergence time guarantee.
Furthermore, the ordering allows the scheduling algorithm
to be distributed. We then showed that the ordering as well
as the convergence time guarantee generalize to integer edge
lengths and capacities.

Seeing how the vertex ordering helped us in obtaining
a distributed scheduling algorithm without sacrificing con-
vergence time, we plan to study further implications of
this order structure. On the practical side, we hope to put
the algorithm onto robots to test its performance in real
world applications. With increased availability of cheap and
fast wireless communication capabilities, we believe our

algorithm can be used on formation control problems for
a large group of robots or other types of vehicles in practice.

REFERENCES

[1] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed mem-
oryless point convergence algorithm for mobile robots with limited
visibility. IEEE Transactions on Automatic Control, 15(5):818–828,
October 1999.

[2] T. Balch and R. C. Arkin. Behavior-based formation control for
multirobot teams. IEEE Transactions on Robotics & Automation,
14(6):926–939, 1998.

[3] J. Cortés, S. Martı́nez, and F. Bullo. Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions. IEEE
Transactions on Automatic Control, 51(8):1289–1298, August 2006.

[4] M. A. Erdmann and T. Lozano-Pérez. On multiple moving objects. In
Proceedings IEEE International Conference on Robotics & Automa-
tion, pages 1419–1424, 1986.

[5] J. A. Fax and R. M. Murray. Information flow and cooperative control
of vehicle formations. IEEE Transactions on Automatic Control,
49(9):1465–1476, September 2004.

[6] V. Gazi. Stability of a discrete-time asynchronous swarm with time-
dependent communication links. IEEE Transactions on Systems, Man,
and Cybernetics: Part B, 38(1):267–274, February 2008.

[7] Y. Guo and L. E. Parker. A distributed and optimal motion planning ap-
proach for multiple mobile robots. In Proceedings IEEE International
Conference on Robotics and Automation, pages 2612–2619, 2002.

[8] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules. IEEE
Transactions on Automatic Control, 48(6):988–1001, 2003.

[9] K. Kant and S. Zucker. Towards efficient trajectory planning: The path
velocity decomposition. International Journal of Robotics Research,
5(3):72–89, 1986.

[10] S. Kloder and S. Hutchinson. Path planning for permutation-invariant
multirobot formations. IEEE Transactions on Robotics, 22(4):650–
665, 2006.

[11] H. W. Kuhn. The Hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2:83–97, 1955.

[12] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent
rendezvous problem. part 1: The synchronous case. SIAM Journal
on Control and Optimization, 46(6):2096–2119, November 2007.

[13] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent
rendezvous problem. part 2: The asynchronous case. SIAM Journal
on Control and Optimization, 46(6):2120–2147, November 2007.

[14] Z. Lin, M. Broucke, and B. Francis. Local control strategies for
groups of mobile autonomous agents. IEEE Transactions on Automatic
Control, 49(4):622–629, April 2004.

[15] L. Liu and D. A. Shell. Large-scale multi-robot task allocation via
dynamic partitioning and distribution. Autonomous Robots, 33(3):291–
307, 2012.

[16] L. Liu and D. A. Shell. Tunable routing solutions for multi-robot
navigation via the assignment problem: A 3d representation of the
matching graph. In Proceedings IEEE International Conference on
Robotics & Automation, pages 4800–4805, 2012.

[17] D. Miklic, S. Bogdan, R. Fierro, and S. Nestic. A discrete grid
abstraction for formation control in the presence of obstacles. In
Proceedings IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3750–3755, 2009.

[18] L. Moreau. Stability of multiagent systems with time-dependent
communication links. IEEE Transactions on Automatic Control,
50(2):169–182, February 2005.

[19] P. A. O’Donnell and T. Lozano-Pérez. Deadlock-free and collision-
free coordination of two robot manipulators. In Proceedings IEEE
International Conference on Robotics & Automation, pages 484–489,
1989.

[20] J. Peng and S. Akella. Coordinating multiple robots with kinodynamic
constraints along specified paths. In J.-D. Boissonat, J. Burdick,
K. Goldberg, and S. Hutchinson, editors, Algorithmic Foundations of
Robotics V (WAFR 2002), pages 221–237. Springer-Verlag, Berlin,
2002.

[21] W. Ren and R. W. Beard. Consensus seeking in multi-agent systems
under dynamically changing interaction topologies. IEEE Transactions
on Automatic Control, 50(5):655–661, May 2005.

[22] B. Shucker, T. Murphey, and J. K. Bennett. Switching rules for
decentralized control with simple control laws. In American Control
Conference, pages 1485–1492, Jul 2007.



[23] T. Siméon, S. Leroy, and J.-P. Laumond. Path coordination for multiple
mobile robots: A resolution complete algorithm. IEEE Transactions
on Robotics & Automation, 18(1):42–49, February 2002.

[24] B. Smith, M. Egerstedt, and A. Howard. Automatic generation of
persistent formations for multi-agent networks under range constraints.
ACM/Springer Mobile Networks and Applications Journal, 14(3):322–
335, June 2009.

[25] S. L. Smith, M. E. Broucke, and B. A. Francis. Curve shortening
and the rendezvous problem for mobile autonomous robots. IEEE
Transactions on Automatic Control, 52(6):1154–1159, June 2007.

[26] D. M. Stipanovic, S. Shankaran, and C. J. Tomlin. Multi-agent
avoidance control using an m-matrix property. Electronic Journal of
Linear Algebra, 12:64–72, May 2005.

[27] H. Tanner, G. Pappas, and V. Kumar. Leader-to-formation stability.
IEEE Transactions on Robotics & Automation, 20(3):443–455, Jun
2004.

[28] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha. Centralized
path planning for multiple robots: Optimal decoupling into sequential
plans. In Proceedings Robotics: Science and Systems, 2009.

[29] P. Švestka and M. H. Overmars. Coordinated path planning for
multiple robots. Robotics and Autonomous Systems, 23(3):125–152,
1998.

[30] J. Yu and S. M. LaValle. Distance optimal formation control on
graphs with a tight convergence time guarantee. In Proceedings IEEE
Conference on Decision & Control, pages 4023–4028, 2012.

[31] J. Yu, S. M. LaValle, and D. Liberzon. Rendezvous without coor-
dinates. IEEE Transactions on Automatic Control, 57(2):421–434,
February 2012.

[32] M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas. Graph-theoretic
connectivity control of mobile robot networks. Proceedings of the
IEEE, 99(9):1525–1540, September 2011.


	Introduction
	Formation Path Planning on Graphs
	Formation Induced Vertex Ordering
	An Ordering-Based Scheduling Algorithm
	A Distributed Scheduling Algorithm
	Integer Edge Lengths and Capacities
	Conclusion and Future Work

