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Abstract— We consider large scale cost allocation problems
and consensus seeking problems for multiple agents, in which
agents are suggested to collaborate in a distributed algorithm
to find a solution. If agents are strategic to minimize their
own individual cost rather than the global social cost, they are
endowed with an incentive not to follow the intended algorithm,
unless the tax/subsidy mechanism is carefully designed. Inspired
by the classical Vickrey-Clarke-Groves mechanism and more
recent algorithmic mechanism design theory, we propose a tax
mechanism that incentivises agents to faithfully implement the
intended algorithm. In particular, a new notion of asymptotic
incentive compatibility is introduced to characterize a desirable
property of such class of mechanisms. The proposed class
of tax mechanisms provides a sequence of mechanisms that
gives agents a diminishing incentive to deviate from suggested
algorithm.

I. INTRODUCTION

A common difficulty in large scale optimization prob-
lems that arise in social, infrastructural, and communication
networks is the heavy computational load that cannot be
handled by a single computer. A practical solution algorithm
for such problems should thus be parallelizable so that
the computational load can be distributed over the network
agents. Another potential challenge in such problems comes
from the fact that nobody has access to the entire data
defining the optimization problem, because this information
is often private and localized within distributed agents.
Hence, it is desirable that a solution algorithm allows agents
to implement the algorithm without knowing other agents’
private information.

In this paper, we consider two distributed algorithms that
are both attractive in the above sense: the dual decomposition
algorithm for cost allocation problems, and the average con-
sensus algorithms for a consensus seeking. In the majority
of the literature on these algorithms, it is assumed that the
distributed agents are “benevolent” and blindly follow the
intended algorithm. However, if the society involves rational
and strategic agents, it is more realistic to assume that they
behave in more selfish manner in an effort to minimize their
individual cost rather than the global social cost. Hence in
this paper, rather than assuming that agents are collaborative,
we consider a mechanism by which rational agents are
incentivised to follow the intended distributed algorithm.
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Mechanism design theory ([1], [2], [3] to mention a
few) concerns the question of how the society can make a
preferable decision with the presence of strategic agents. The
goal of a mechanism design is to suggest a social decision
procedure (together with a tax/subsidy mechanism) that
incentivises agents to follow the intended action. However,
the framework of the classical mechanism design theory
is often insufficient to handle more complicated distributed
algorithms.

It is relatively recent that the discipline of algorithmic
mechanism design [4] was recognized in computer science.
Inspired by [5], we formulate a distributed mechanism design
problem and suggest a tax mechanism that incentivises
agents in a certain sense to follow the intended dual de-
composition and the average consensus algorithm. Our tax
mechanism can be seen as a generalization of the celebrated
Vickrey-Clarke-Groves (VCG) mechanism.

By its nature, these two algorithms are asymptotic algo-
rithms: if terminated at some finite step, only an approxi-
mation to the optimal solution is obtained. It is recognized
in [6], [7] that the VCG mechanism combined with such an
approximated solution does not guarantee incentive compat-
ibility in general. To circumvent this difficulty, we introduce
a notion of asymptotic incentive compatibility for a sequence
of mechanisms that provides agents a diminishing incentive
to deviate from the intended algorithm.

Finally, with the present study, we are able to relate
our earlier study of real-time electricity pricing scheme [8],
[9] to the mechanism design theory in more solid manner.
Moreover, the framework of distributed mechanism design
potentially allows us to implement the pricing scheme in
[8], [9] in a smarter way: it allows distributed computations
and allows agents not to disclose their private information.

II. A QUICK REVIEW OF MECHANISM DESIGN

A. Mechanisms

Consider a society EN comprised of N agents. Besides
these agents, the society also has a government who makes
a social decision x ∈ X ⊂ Rn. Each agent i = 1, · · · , N
has private information θi ∈ Θi called type. When a social
decision x is made, the intrinsic cost vi(x; θi) is charged
to the i-th agent. The government desires to make a social
decision x in such a way that the sum of individual costs is
minimized. If the agents’ types θ = (θ1, · · · , θN ) ∈ Θ1 ×
· · · ×ΘN =: Θ are available to the government, the desired
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social decision is given by

x(θ) = arg min
x∈X

N∑
i=1

vi(x; θi).

A map x : Θ→ X is called a decision rule. A decision rule
is said to be efficient if

N∑
i=1

vi(x(θ); θi) ≤
N∑
i=1

vi(x
′; θi)

for all θ ∈ Θ and for all x′ ∈ X . Since θ is private in
reality, each agent is asked to report his type (denoted by θ̂i)
to the government. In this process, we assume that agents
are strategic in that they are allowed to make an unfaithful
report (i.e., θ̂i 6= θi). Notice that agent i has an incentive to
do so if it will lead to an alternative social decision x′ that
costs less for himself, i.e., vi(x′; θi) < vi(x(θ); θi).

In order to encourage agents to be truthful, the government
can introduce a monetary transfer function t : Θ→ RN . This
can be seen as a tax mechanism that the government imposes
on each agent. We assume that the amount of tax imposed
on each agent is determined by the government using the
reported type θ̂:

t(θ̂) =
(
t1(θ̂), · · · , tN (θ̂)

)
.

Overall, agent i’s net cost is given by

ui(θ̂, θi, x, t) = vi(x(θ̂); θi) + ti(θ̂)

and agents are expected to behave rationally to minimize this
function. The pair f(θ) = (x(θ), t(θ)), f : Θ 7→ X ×RN is
called a social choice function.

The reporting process can be designed in an indirect
manner using message functions si : Θi → Σi, where
Σ = Σ1 × · · · × ΣN is the space of messages. Upon
receiving “encoded” types s(θ) = (s1(θ1), · · · , sN (θN )), the
government recovers the value of the social choice function
using a “decoding” function g : Σ → X × RN such that
(g ◦ s)(θ) = f(θ) for every θ ∈ Θ. A mechanism is a
triplet M = (g,Σ, s) of an outcome function g, a space of
messages Σ, and a particular encoding scheme s : Θ → Σ
such that g ◦ s = f (see Fig. 1). One can think of s as an
intended encoding scheme that the government desires each
agent to follow. A particular case with Σ = Θ, g = f , and
s = Id (i.e., identity map) is called a direct mechanism,
in which agents are asked to report their types θi to the
government without encoding. A mechanism is said to be
dominant strategy incentive compatible if implementing the
suggested encoding scheme s = (s1, · · · , sN ) is a dominant
strategy for each individual. If there exists such a dominant
strategy incentive compatible mechanism M = (g,Σ, s) such
that f = g◦s, f is said to be implemented by M in dominant
strategies. Since the government announces a mechanism
first and the agents react to it, the government and the agents
are also referred to as the leader and the followers in what
follows.

Θ X × RN

Σ

f = (x, t)

s
g = (x̃, t̃)

Fig. 1. A pair f = (x, t) is called the social choice function while a pair
g = (x̃, t̃) is called the outcome function

B. Fundamental results from mechanism theory
If a mechanism (g,Σ, s) implements a social choice

function f = (x, t) in dominant strategies, then a direct
mechanism (g◦s,Θ, Id) implements f in dominant strategies
as well (revelation principle). This suggests that a given
social choice function is implemented by some mechanism
M if and only if it is implemented by some direct mechanism
in dominant strategies.

If the government wishes to design a mechanism that im-
plements a particular social decision rule x without introduc-
ing monetary transfer function (i.e., t ≡ 0), then the decision
rule has to be quite trivial (Gibbard-Satterthwaite theorem).
This suggest that a tax (or subsidy) mechanism is almost
necessary for the government to incentivise individuals to be
truthful to make the right social decision x.

Let x : Θ → X be an efficient social decision rule. It is
elementary to prove, but valuable to realize that there exists a
class of monetary transfer functions tGroves : Θ→ RN such
that a direct mechanism (f,Θ, Id) with the social choice
function f = (x, tGroves) is dominant strategy incentive
compatible ([3] for a great introduction). Such a class of
monetary transfer functions are given by

xGroves(θ̂) = arg min
x∈X

N∑
i=1

vi(x; θ̂i) (1a)

tGrovesi (θ̂) = ki(θ̂−i) +
∑
j 6=i

vj(x
Groves(θ̂); θ̂j) (1b)

for each i = 1, · · · , N , where ki :
∏
j 6=i Θj → R is an

arbitrary function that does not depend on θ̂i. A mechanism
obtained by the above scheme is referred to as a Groves’
mechanism. It is known that the form of monetary transfer
function (1b) is not only sufficient but also necessary in
an appropriate sense, in order for x to be efficient and
a mechanism (f,Θ, Id), f = (x, t) is dominant strategy
incentive compatible (Green-Laffont theorem).

C. VCG mechanisms
A particular choice of

ki(θ̂−i) = −min
x∈X

∑
j 6=i

vj(x; θ̂j)

yields a mechanism with some additional desirable prop-
erties. With this choice, the monetary transfer function
becomes

tV CGi (θ̂) =
∑
j 6=i

vj(x
Groves(θ̂); θ̂j)−min

x∈X

∑
j 6=i

vj(x; θ̂j). (2)



Let EN−i denote the society excluding the i-th agent. The
first term in (2) corresponds to the total cost of N − 1
agents (excluding i) when an efficient social decision is made
for EN . The second term in (2) represents the minimum
social cost achievable for EN−i. Combined, (2) means that
the tax imposed on the i-th agent is the same amount as
the marginal contribution of the i-th agent to the rest of
the society. The Groves mechanism with tax policy (2) is
called the Vickrey-Clarke-Groves (VCG) mechanism, which
is known to be advantageous from the viewpoint of budget
balance and individual rationality [2]. In order to compute
(2), the government needs to determine social decisions that
minimize the cost for each of EN and EN−i, i = 1, · · · , N .

III. DISTRIBUTED MECHANISMS

A large body of mechanism design theory focuses on
direct mechanisms. Although this is partially justified by the
revelation principle, clearly there are a number of practical
situations in which “indirect” mechanisms are preferable.
For instance, indirect mechanisms allow distributed compu-
tations for large scale problems, while direct mechanisms
require central computation by the government to determine
the optimal social decision. Indirect mechanisms will also
be advantageous for privacy preservation if they allow to
find the optimal social decision without having individuals
disclose their private information completely.

Previously, we considered Σ as the space of messages and
g : Σ → X × RN was viewed as a decoding scheme.
From this section on, we want to consider more general
computational interactions between the leader and the fol-
lowers than mere encoding-decoding interactions. Specifi-
cally, we assume that the interaction between the leader and
the followers occurs in multiple stages (indexed by k =
1, 2, · · · ,K). At each stage, the leader broadcasts his current
computational output ykL to the followers. Also, we assume
that each follower transmits his current computational output
yki directly to the leader (and possibly to the neighboring
followers, depending on the communication topology) via
secure channels. We assume that the leader can be modeled
as a state-based computer with the internal state zkL, while
the i-th follower can be modeled as a state-based computer
with the internal state zki . Given initial states z0L, z

0
i and

y0L, y
0
i , i = 1, · · · , N , the state evolves according to:

zki = Gki,θi(z
k−1
i , yk−1L , {yk−1j }j∈N(i)) (3a)

yki = Hk
i,θi(z

k
i ) (3b)

zkL = GkL(zk−1L , yk1 , · · · , ykN ) (3c)

ykL = Hk
L(zkL) (3d)

for k = 1, 2, · · · ,K. In the above, {yk−1j }j∈N(i) represents
the outputs of the neighboring followers, and hence we are
considering a communication topology as in Fig. 2. Finally,
we require that

yKL = HK
L (zKL ) = (x, t) ∈ X × RN

which will be the value of the social choice.

Fig. 2. Communication topology of distributed algorithms

A strategy of the i-th follower is the sequence of functions
in (3a) and (3b):

si(θi) =
{

(Gki,θi , H
k
i,θi) : k = 1, 2, · · · ,K

}
parametrized by his type θi. On the other hand, the outcome
function is defined by the sequence of functions in (3c) and
(3d):

g =
{

(GkL, H
k
L) : k = 1, 2, · · · ,K

}
.

We call si(·) a slave algorithm, which can be seen as a
map from Θi to the space Σi of follower i’s strategies. On
the other hand, g is referred to as a master algorithm. Given
an element in Σ, a master algorithm g determines a social
choice (x, t). Hence, g can be a map from Σ to X ×RN so
that (g ◦ s)(θ) = (x, t). This way, we can reuse the diagram
of Fig. 1 with a generalized interpretation. To summarize:
• Σi is the space of all possible strategies that could

be taken by followers involved in a game. Notice that
the state space description of a dynamical system is
not unique. Hence, we define Σ as a space of the
equivalence classes of slave algorithms that have the
same input-output behavior. A concrete description of
the strategy space varies depending on the problem of
interest.

• si : Θi → Σi is a mapping that determines a strategy of
the i-th follower with type θi. Each of these mappings
for i = 1, · · · , N is referred to as a slave algorithm.

• A mapping g : Σ → X × RN , g(s) = (x̃(s), t̃(s))
is referred to as the master algorithm. A composition
a = g ◦ s : Θ→ RN is called a distributed algorithm.

With this re-interpretation, a mechanism (g,Σ, s) is defined
as a triplet of a master algorithm g, followers’ strategy space
Σ, and a suggested slave algorithm s.

The notion of dominant strategy incentive compatibility is
often too strong and hard to achieve. Hence, it is common
to employ a weaker notion of incentive compatibility.

Definition 1: A mechanism (g,Σ, s) implements a social
choice function f in ex-post Nash equilibria if
(1). g ◦ s = f
(2). ∀i,∀ŝi ∈ Σi,∀θ ∈ Θ,

vi (x̃i ◦ (si(θi), s−i(θ−i)); θi) + t̃i ◦ (si(θi), s−i(θ−i))

≤ vi (x̃i ◦ (ŝi, s−i(θ−i)); θi) + t̃i ◦ (ŝi, s−i(θ−i))
where s = (si, s−i). In this case, the mechanism is also said
to be incentive compatible.



IV. DUAL DECOMPOSITION

Consider the following cost allocation problem.

min

N∑
i=1

vi(xi; θi) (4a)

s.t. Rx = c (4b)

A vector x = [xT1 ; · · · ;xTN ]T ∈ X is a concatenation of the
social decision variables, and the domain X is defined by an
affine constraint Rx = c. We assume that R = [R1 · · · RN ]
is full row rank.

Let L(x, p) =
∑N
i=1 vi(xi; θi) + pT (Rx − c) be the

Lagrangian of (4). The dual function is given by

g(p) = inf
x
L(x, p) =

N∑
i=1

inf
xi

(
vi(xi; θ) + pTRixi

)
,

and the dual problem is supp g(p). The primal-dual optimal
solution (x∗, p∗) constitutes a saddle point of L(x, p), and
assuming strict convexity of vi(·; θ), the saddle point value
L∗ corresponds to the optimal value of (4). The following
iteration is guaranteed to converge to (x∗, p∗)

x̂ki = arg min
x̂i

(
vi(x̂

k−1
i , θi) + pk−1

T
Rix̂

k−1
i

)
(5a)

pk = pk−1 + γ(Rx̂k − c) (5b)

if the step size γ is chosen to be sufficiently small. At each
step of the above iteration, we have an upper and lower
bound for the optimal value of (4). A lower bound b can
be computed using current x̂ and p by

b :=

N∑
i=1

(
vi(x̂i; θi) + pTRix̂i

)
= inf

x
L(x, p) ≤ sup

p
inf
x
L(x, p) = L∗.

Although the equality constraint (4b) may not be satisfied by
the current x̂, the nearest feasible point x from x̂ is given
by

x = x̂−RT (RRT )−1(Rx̂− c).

Using this x, an upper bound b̄ of the optimal value of (4)
can be computed by

b̄ :=

N∑
i=1

vi(xi; θi) ≥ L∗.

Practically, one terminates the iterative procedure (5) once
the observed tolerance b̄− b is sufficiently small.

Notice that the above algorithm has an attractive form for
a distributed implementation since (5a) can be executed by
the i-th follower and (5b) can be executed by the leader.
Namely (5a) and (5b) is in the form of (3) (See (8) below).
By increasing the number of iterations, the intended social
decision can be approximated with an arbitrary accuracy,
provided that the followers faithfully implement (5a). In what
follows, we consider what kind of side payment mechanism
ti suffices to incentivise followers to be faithful.

1) Pure competitive market: In a pure competitive market,
every follower believes that the price of a commodity is
a given constant that cannot be manipulated by his sole
action (i.e, followers are price-takers). Such an assumption
is employed in the standard tâtonnement process which, after
K iterations, charges ti = pK

T
Rixi on each follower. In this

model, the dual variable p can be naturally understood as the
price of commodities, which defines followers’ net cost

ui = vi(xi; θi) + pTRixi.

With the belief that the price is locally constant, following
(5a) is a rational choice for a price-taking follower.

2) Oligopoly: Many realistic markets are oligopoly, in
which there exists a stakeholder who knows that his actions
give certain effects on the market [10]. In this case, a
stakeholder might be better off by deviating from (5a) and
taking an alternative strategy.

Example 1: Consider the following simple problem:

min
1

2
x21 +

1

2
x22

s.t. x1 + x2 = 1.

The iteration (5) leads to the primal-dual optimal solution
(x∗1, x

∗
2, p
∗) = (1/2, 1/2,−1/2). The corresponding optimal

value is L∗ = 1/2 and agents’ augmented costs are u∗1 =
u∗2 = −1/8. To demonstrate that following (5a) is not
necessarily a rational strategy for the agents when the tax
mechanism is ti = pxi, suppose that player 1 is a stakeholder
(a quantity leader, [10]) who knows how p and x2 react to
his action x1. This leads to a game with two agents, who
are trying to minimize ui(xi, p) = 1/2x2i + pxi, i = 1, 2,
and a market who is trying to maximize L(x1, x2, p) =
1/2x21 + 1/2x22 + p(x1 + x2 − 1). Assuming that the agent
1 is the leader in the Stackelberg game and others are
followers, reaction curves are given by x2(x1) = 1 − x1
and p(x1) = x1 − 1. Hence, suppose that agent 1 takes a
strategy to follow the following update rule instead of (5):

x̂k1 = x̂k−11 − γ d

dx̂1
u1(x̂1, p(x̂1)). (6)

With other players remaining to follow (5), the new dy-
namics leads to a Stackelberg equilibrium (x∗1, x

∗
2, p
∗) =

(1/3, 2/3,−2/3). Notice that player 1 achieves a smaller
augmented cost u∗1 = −1/6 at the new equilibrium, even
though the distributed algorithm as a whole clearly failed to
find the solution to the original resource allocation problem.
In this sense, the strategy of following (5) by no means
constitutes a Nash equilibrium.

V. FAITHFUL IMPLEMENTATION OF DUAL
DECOMPOSITION

We are going to introduce a monetary transfer function t
that incentivises followers to implement (5). For a sufficiently
large K, a social decision

x := x̂K −RT (RRT )−1(Rx̂K − c)



approximates the optimal solution of (4) with an arbitrary
accuracy. A natural choice of ti inspired by the Groves
mechanism is then

ti :=
∑
j 6=i

vi(xi; θi). (7)

Throughout the algorithm, we require the followers to report
not only xki but also the value vi(xki ; θ) so that the leader is
able to perform a convergence analysis and compute ti. The
proposed distributed algorithm is summarized in Algorithm
1. Note that the algorithm is parametrized by n ∈ N, which
guarantees the accuracy 1/n of the final result.

Algorithm 1 Distributed mechanism Mn = (gn,Σn, sn)

Input: Problem data, step size γ
Output: Social outputs x̃, t̃1, · · · , t̃N

(F) Initialize x̂1, · · · , x̂N ;
(L) Initialize and broadcast p and x;
while b̄− b > 1/n do

(F) Compute and report vi = vi(xi; θi);
(F) Find x̂i = arg minxi(vi(xi; θi) + pTRixi)
and report x̂i and v̂i = vi(x̂i; θi);

(L) Compute upper bound b̄ =
∑N
i=1 vi;

(L) Compute lower bound b =
∑N
i=1(v̂i + px̂i);

(L) Compute constraint violation e = Rx̂− c;
(L) Update dual variable p := p+ γe;
(L) Find nearest feasible point x = x̂−R(RRT )−1e;
(L) Broadcast p and x;

end while
(L) Determine social decision x̃ = x;
(L) Determine tax values t̃i =

∑
j 6=i vi;

Note that Algorithm 1 suggests followers’ strategies sn(·)
and a social output function gn = (x̃n, t̃n). One possible
state space description of the follower’s strategy

si(θ) =
{

(Gki,θi , H
k
i,θi) : k = 1, 2, · · · ,K(n)

}
.

is obtained by considering yL = (p;x) as the leader’s output
and [

vi
x̂i

]
︸ ︷︷ ︸
zki

=

[
vi(xi)

arg minxi
(
vi(xi) + pTRixi

) ]︸ ︷︷ ︸
Gki,θi

(zk−1
i ,yk−1

L )

(8a)

 vi
x̂i
v̂i


︸ ︷︷ ︸

yki

=

 vi
x̂i

vi(x̂i; θi)


︸ ︷︷ ︸

Hki,θi
(zki )

. (8b)

The number of steps K(n) is not known a priori but is finite.
The strategy space Σni for the i-th follower is the space
of causal mappings from y0L, · · · , y

K(n)
L to y0i , · · · , y

K(n)
i .

This way Algorithm 1 defines a sequence of mechanisms
{Mn}n∈N, Mn = (gn,Σn, sn).

Notice that the payment t obtained in Algorithm 1 is only
an approximation of the correct VCG payment because, as
per (7), it is computed using the final value of x, as opposed

to the optimal social decision. Hence generally it does not
guarantee incentive compatibility in the sense of Definition
1. Such a fragile aspect of the VCG mechanism is considered
in [6].

Definition 2: A sequence of mechanisms {Mn}n∈N,
Mn = (gn,Σn, sn) is said to asymptotically implement a
social choice function f in ex-post Nash equilibria if for
every δ1 > 0, δ2 > 0, there exists N ∈ N such that for any
n ≥ N ,
(1). ‖gn ◦ sn − f‖ < δ1
(2). ∀i,∀ŝni ∈ Σni ,∀θ ∈ Θ,

vi
(
x̃ni ◦ (sni (θi), s

n
−i(θ−i))); θi

)
+ t̃ni ◦ (sni (θi), s

n
−i(θ−i))

< vi
(
x̃ni ◦ (ŝni , s

n
−i(θ−i)); θi

)
+ t̃ni ◦ (ŝni , s

n
−i(θ−i)) + δ2.

In this case, {Mn}n∈N is said to be asymptotically incentive
compatible.

Remark 1: For a fixed n ∈ N, Mn is not incentive com-
patible. However, as n → ∞, Mn provides every follower
a diminishing incentive to deviate from the suggested slave
algorithm.

Theorem 1: Assume that vi(·; θi), i = 1, 2, · · · , N are
strictly convex for every θi ∈ Θi, and define a social choice
function f = (x, t) by

x : Θ→ X,x(θ) = arg min
x1,··· ,xN

N∑
i=1

vi(xi; θi)

t : Θ→ Rn, ti(θ) =
∑
j 6=i

vj(xj(θ); θj).

Then the sequence of mechanisms {Mn}n∈N provided in
Algorithm 1 asymptotically implements f in ex-post Nash
equilibria.

Proof: By the convergence property of the dual decom-
position algorithm, we have

x̃n ◦ sn(θ)→ x(θ) as n→∞.

As a result, by the continuity of vi, ∀i = 1, · · · , N ,

t̃ni ◦ sn(θ) =
∑
j 6=i

vj(x̃
n
j ◦ sn(θ); θj)

→
∑
j 6=i

vj(xj(θ); θj) = ti(θ)

as n → ∞. This proves the first condition of Definition 2.
To prove the second condition, suppose that there exist a
sequence of strategies {ŝni }n∈N, δ2 > 0, and a subsequence
{nl} in N such that

vi
(
x̃nli ◦ (snli (θi), s

nl
−iθ−i)); θi

)
+ t̃nli ◦ (snli (θi), s

nl
−i(θ−i))

≥ vi

x̃nli ◦ (ŝnli , s
nl
−i(θ−i))︸ ︷︷ ︸

x̂

; θi

+ t̃nli ◦ (ŝnli , s
nl
−i(θ−i))︸ ︷︷ ︸

t̂i

+δ2

(9)

for all l ∈ N. Notice that

x̂ := x̃nl ◦ (ŝnli , s
nl
−i(θ−i)) ∈ X



is a feasible point in the original optimization problem, and

t̂i := t̃nli ◦ (ŝnli , s
nl
−i(θ−i)) =

∑
j 6=i

vj(x̂j ; θj).

Hence

(RHS of (9)) = vi(x̂i; θi) +
∑
j 6=i

vj(x̂j ; θj) + δ2

=

N∑
i=1

vi(x̂i; θi) + δ2 ≥ L∗ + δ2.

On the other hand, by definition of Algorithm 1, it is
guaranteed that

(LHS of (9)) =

N∑
i=1

v(x̃nli ; θi) = b̄nl

with b̄nl − bnl ≤ 1/nl. Since bnl ≤ L∗ ≤ b̄nl ,
(LHS of (9)) ≤ L∗ + 1/nl. Thus we have shown that

L∗ + δ2 ≤ (RHS of (9)) ≤ (LHS of (9)) ≤ L∗ + 1/nl.

However, since it is possible to take a sufficiently large l so
that δ2 > 1/nl, the above inequality lead to a contradiction.

VI. DYNAMIC DUAL DECOMPOSITION

In our earlier study [8], [9], we have proposed a real-
time electricity pricing scheme that incentivises strategic
consumers/generators over the power grid to implement the
socially optimal control action. We have assumed that there
is no private information so that leader is able to compute
the socially optimal control. The motivation of introducing
a payment mechanism in our scenario was not to induce
followers a faithful information revelation as in the classical
mechanism design problems but to induce them to take
the intended control actions. Our payment mechanism was
strongly inspired by the VCG mechanism, but due to this
difference, the connection to the classical mechanism design
setting was not transparent.

Notice that the formulation of the distributed mecha-
nism introduced in this paper contains both the classical
mechanism design problem and the pricing scheme [8], [9]
as special cases. The classical mechanism design problem
corresponds to the single step case (K = 1) in (3), while
the pricing scheme in [8], [9] corresponds to the case where
there is no private information (Θ is a trivial singleton set).

Moreover, the distributed mechanism for dual decompo-
sition algorithm considered in this paper suggests a better
implementation of the real-time pricing scheme. In our
earlier study, the leader (the central computer) needs to solve
a large scale optimal control problem in the centralized
manner. Using the idea of dynamic dual decomposition
(e.g., [11]) combined with the VCG-like tax mechanism
(7), computation can be faithfully parallelized. Furthermore,
since the current framework is built on non-singleton type
space Θ, it allows strategic power generators/consumers to
have private information. More details will be explored in
our future work.

VII. FAITHFUL AVERAGE CONSENSUS IMPLEMENTATION

As an application of the approach presented above, we
now consider average consensus seeking using dual de-
composition when dealing with strategic agents. Let an
undirected graph G = ({1, . . . , N}, E), with vertex set
{1, . . . , N} and edge set E , be given to illustrate the com-
munication links between the agents (see Fig. 2). Follow-
ing [12], we can achieve the average consensus through
solving the optimization problem

min
x∈RN

N∑
i=1

(xi − θi)2, (10a)

s.t. xi = xj ,∀(i, j) ∈ E , (10b)

where xi ∈ R denotes the decision variable of agent i, 1 ≤
i ≤ N , and θi ∈ Θi ⊆ R is its type. Note that our assumption
of considering scalar consensus problem is only in place
to simplify the presentation and the results can be readily
extended to higher dimensional cases using the same line of
reasoning. Let us introduce the incidence matrix of G. To do
so, we need to assign arbitrary directions to the edges of G.
It is important to note that the underlying graph (specifically,
the communication graph) is still an undirected graph. Let
us define the incidence matrix B(G) ∈ {−1, 0,+1}N×|E|
so that bij(G) = 1 if the edge ej ∈ E leaves vertex i,
bij(G) = −1 if the edge ej ∈ E enters vertex i, and
bij(G) = 0 otherwise. In the rest of the section, we assume
that G is a tree. Using the incidence matrix, we can rewrite
the optimization problem in (10) as

min
x∈RN

N∑
i=1

(xi − θi)2, (11a)

s.t. Rx = 0, (11b)

where R = B(G)>. Clearly, the optimization problem (11)
is of the form discussed in (4) when substituting vi(xi; θi) =
(xi − θi)2 for all 1 ≤ i ≤ N . Noting that this optimization
problem satisfies the Slater’s condition, the duality gap is
indeed zero and we can solve the problem using the dual
decomposition [13, p. 226]. As a result, Algorithm 1 can
be used to handle situation where, unlike in the classical
literature (e.g., [12], [14], [15]), the agents engaged in the
averaging process are strategic. However, we present two
other algorithms which, unlike Algorithm 1, allow for direct
communication between the followers and therefore, can be
considered more desirable. Before stating the results, let us
define the sequence of mechanisms {M ′n}n∈N, where each
mechanism M ′n is introduced in Algorithm 2. Furthermore,
note that Algorithm 2 suggests followers’ strategies sn(·)
and a social output function gn = (x̃n, t̃n).

Proposition 1: Define a social choice function f = (x, t)
by

x : Θ→ X,x(θ) =

(
1

N

N∑
i=1

θi

)
1, (12a)

t : Θ→ Rn, ti(θ) =
∑
j 6=i

(xj(θ)− θj)2, (12b)



Algorithm 2 Distributed mechanism M ′n = (gn,Σn, tn) for
asymptotically implementing the average consensus.
Input: Problem data, step size γ
Output: Social outputs x̃, t̃1, . . . , t̃N

(F) Initialize x1, . . . , xN ;
(L) Initialize and broadcast p;
repeat

(F) Each agent solves xi = arg minz∈R(z − θi)
2 +

pTRiz and transmit it to the leader;
(F) Each agent calculates vi = (xi − θi)2 and transmit
it to the leader;
(F) Update dual variables p` = p` + γ(xi − xj) for all
edges e` = (i, j) ∈ E ;
(L) Compute ‖Rx‖2;

until ‖Rx‖2 ≤ 1/n
(L) Determine the social decision x̃ = x;
(L) Determine the tax values t̃i =

∑
j 6=i vj ;

Algorithm 3 Distributed mechanism M ′′n = (gn,Σn, tn) for
asymptotically implementing the average consensus.
Input: Problem data
Output: Social outputs x̃, t̃1, . . . , t̃N

(L) Set α ∈ (0, 1/dmax) (where dmax denotes the maxi-
mum degree of the vertices in G) and broadcast it;
(F) Initialize zi(0) = θi for each 1 ≤ i ≤ N ;
(F) Initialize τ = 0;
repeat

(F) Increase iteration number τ by one;
(F) Each agent calculates zi(τ) = zi(τ −1)+α

∑
j∈Ni

(zj(τ − 1) − zi(τ − 1)), where Ni is the set of all
neighbors of vertex i in G, and transmit it to the leader;

(F) Each agent computes vi = (zi(τ)−θi)2 and transmit
it to the leader;
(L) Calculate ‖Rz(τ)‖2;

until ‖Rz(τ)‖2 ≤ 1/n
(L) Determine the social decision x̃ = z(τ);
(L) Determine the tax values t̃i =

∑
j 6=i vj ;

where 1 denotes the vector of all ones in RN . Then the
sequence of mechanisms {M ′n}n∈N provided in Algorithm 2
asymptotically implements f in ex-post Nash equilibria.

Proof: The proof follows the same line of reasoning as
in the proof of Theorem 1.

Remark 2: As we have described in Algorithm 2, the
agents need to solve xi = arg minz∈R(z − θi)2 + pTRiz.
This optimization problem has a explicit solution xi = θi −
0.5pTRi. Therefore, at each iteration, the agents only need
to apply a simple linear update rule, calculate the new cost,
and send these information to the leader.

Note that {M ′n}n∈N is not the only sequence of mecha-
nisms that asymptotically implements the average consensus.
In order to show this, we define the sequence of mechanisms
{M ′′n}n∈N using Algorithm 3 and show that this sequence

indeed asymptotically implements the average consensus.
Again, Algorithm 3 suggests followers’ strategies sn(·) and
a social output function gn = (x̃n, t̃n).

Proposition 2: Define a social choice function f = (x, t)
by (12). Then the sequence of mechanisms {M ′′n}n∈N pro-
vided in Algorithm 3 asymptotically implements f in ex-post
Nash equilibria.

Proof: Following [16], since G is a tree and α ∈
(0, 1/dmax), we have limτ→∞ z(τ) = (N−1

∑N
i=1 θi)1.

Thus, we clearly get limn→∞ x̃n◦sn(θ) = x(θ). Considering
the continuity of the cost functions, we can also recover
limn→∞ t̃ni ◦ sn(θ) =

∑
j 6=i (xj(θ)− θj)2 . Evidently, for

any δ2 > 0, there exists n1 ∈ N such that (13) holds true for
all n ≥ n1. Therefore,

(x̃ni ◦ (sni (θi), s
n
−i(θ−i))− θi)2

+ t̃ni ◦ (sni (θi), s
n
−i(θ−i))− δ2/2

≤ (xi(θ)− θi)2 +
∑
j 6=i

(xj(θ)− θj)2.
(15)

Now, assume that there exists an index i such that agent i fol-
lows {ŝni }n∈N. Clearly, by the construction of Algorithm 3,
we have limn→∞Rx̃n ◦ (ŝni (θi), s

n
−i(θ−i)) = 0. Therefore,

because of the fact that z(τ) = (I − αR>R)z(τ − 1),
we know that the limit limn→∞ x̃n ◦ (ŝni (θi), s

n
−i(θ−i))

indeed exists. Let us use the notation x̂(θ) = limn→∞ x̃n ◦
(ŝni (θi), s

n
−i(θ−i)). Because of the continuity of the cost

functions, for any δ2 > 0, there exists n2 ∈ N such that (14)
holds true for all n ≥ n2. Therefore,

(x̂i(θ)−θi)2 +
∑
j 6=i

(x̂j(θ)− θj)2

≤ (x̃ni ◦ (ŝni (θi), s
n
−i(θ−i))− θi)2

+ t̃ni ◦ (ŝni (θi), s
n
−i(θ−i)) + δ2/2.

(16)

Furthermore, because x̂(θ) is a feasible point and x(θ) is the
global solution of (11) (see [12]), the following inequality
holds

(xi(θ)−θi)2 +
∑
j 6=i

(xj(θ)− θj)2

≤ (x̂i(θ)− θi)2 +
∑
j 6=i

(x̂j(θ)− θj)2.
(17)

Finally, combining (15), (16), and (17) results in

(x̃ni ◦ (sni (θi), s
n
−i(θ−i))− θi)2

+ t̃ni ◦ (sni (θi), s
n
−i(θ−i))− δ2/2

≤ (x̃ni ◦ (ŝni (θi), s
n
−i(θ−i))− θi)2

+ t̃ni ◦ (ŝni (θi), s
n
−i(θ−i)) + δ2/2,

for n ≥ max(n1, n2). This concludes the proof.

Remark 3: Algorithms 2 and 3 allow direct communi-
cations between followers, while Algorithm 1 involves only
leader-follower communications. Also, unlike Algorithm 1,
the social decision x̃n ◦sn as an output of Algorithms 2 or 3
may not be feasible (feasibility holds only at the limit, i.e.,
limn→∞ x̃n◦sn ∈ X). Nevertheless, the notion of asymptotic
incentive compatibility (Definition 2) is still applicable.



∣∣∣∣[(x̃ni ◦ (sni (θi), s
n
−i(θ−i))− θi)2 + t̃ni ◦ (sni (θi), s

n
−i(θ−i))

]
−
[
(xi(θ)− θi)2 +

∑
j 6=i

(xj(θ)− θj)2
]∣∣∣∣ ≤ δ2/2, (13)

∣∣∣∣[(x̃ni ◦ (ŝni (θi), s
n
−i(θ−i))− θi)2 + t̃ni ◦ (ŝni (θi), s

n
−i(θ−i))

]
−
[
(x̂i(θ)− θi)2 +

∑
j 6=i

(x̂j(θ)− θj)2
]∣∣∣∣ ≤ δ2/2, (14)

VIII. CONCLUSIONS

We presented a framework for faithful implementation of
dual-decomposition algorithms as well as average consensus
seeking algorithms in a network of strategic agents. We
introduced the notion of asymptotic incentive compatibility
for a sequence of mechanisms, that is, this sequence provides
every follower a diminishing incentive to deviate from the
suggested slave algorithm. We proposed a tax mechanism, in-
spired by the classical Vickrey–Clarke–Groves mechanisms,
to asymptotically implements a social choice function in ex-
post Nash equilibria.
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