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ABSTRACT
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by Abeer Al-Gburi

The feedback linearization approach is a control method which employs feedback to sta-

bilize systems containing nonlinearities. In order to accomplish this, it assumes perfect

knowledge of the system model to linearize the input-output relationship. In the ab-

sence of perfect system knowledge, modelling errors inevitably affect the performance

of the feedback controller. This thesis introduces a design and analysis approach for

robust feedback linearizing controllers for nonlinear systems. This approach takes into

account these model errors and provides robustness margins to guarantee the stability

of feedback linearized systems.

Based on robust stability theory, two important tools, namely the small gain theorem

and the gap metric, are used to derive and validate robustness and performance margins

for the feedback linearized systems. It is shown that the small gain theorem can provide

unsatisfactory results, since the stability conditions found using this approach require

the nonlinear plant to be stable. However, the gap metric approach is shown to yield

general stability conditions which can be applied to both stable and unstable plants.

These conditions show that the stability of the linearized systems depends on how exact

the inversion of the plant nonlinearity is, within the nonlinear part of the controller.

Furthermore, this thesis introduces an improved robust feedback linearizing controller

which can classify the system nonlinearity into stable and unstable components and

preserve the stabilizing action of the inherently stabilizing nonlinearities in the plant,

cancelling only the unstable nonlinear part of the plant. Using this controller, it is shown

that system stability depends on the bound on the input nonlinear component of the

plant and how exact the inversion of the unstable nonlinear of the plant is, within the

nonlinear part of the controller.
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Chapter 1

Introduction

Physical systems are nonlinear in nature, yet, most techniques and analysis available in

the literature relate to linear systems. To approximate nonlinear systems with linear

models a system can be linearized about an operating point and then analysis can be

carried out on the resulting model. However, approaches based on linearization have

limitations. Since it is an approximation method for system behavior near an operating

point, it describes the nonlinear system behavior around that point and cannot be

expected to capture its behavior far from the operating point. Another limitation is that

linear systems are less rich in dynamics, so to describe nonlinear phenomena linearized

models are inadequate. This has motivated the development of many control techniques

introduced for nonlinear systems in the past three decades.

Feedback control has been used extensively to develop control techniques for nonlinear

systems. Depending on the control problem different types of feedback are used. If all

the state variables of the system are measured and can be controlled a state feedback

control system may be used. Alternatively, if only some of the states of the system are

measured and can be controlled an output feedback may be used.

Full state feedback techniques for continuous time nonlinear systems have been intensely

discussed in the literature (e.g. in Isidori (1989), Sastry (1999) and Nijmeijer and van der

Schaft (1990)). The feedback linearization approach Isidori (1989) is a well known state

feedback technique where an exact linearization is performed to the system states via

internal feedback. This method is based on linearizing the input-output relations of a

nonlinear system but it assumes perfect knowledge of the system equations and it uses

that knowledge to cancel the nonlinearity of the system. Since perfect system knowledge

is not available in practice, the degree to which modelling error affects performance be-

comes an important issue. This problem and others will be discussed in the next section.

It is the limitations associated with the feedback linearization approach in the presence

of model uncertainties which prompt the work conducted in this thesis.

1



2 Chapter 1 Introduction

This thesis focuses on control design based on robust stability theory in which the

feedback linearization is applied to control a nonlinear model. The conceptual idea of

robust control can be briefly described as follows:

Consider the physical plant P1 and its model P . The controller C is developed such that

the feedback system [P,C] shown in Figure 1.1 is stable. For a system with closed-loop

[P1, C], a stability margin represents the amount that the plant P1 can differ from P

and [P1, C] still remain stable.

P

C

u0 u1

u2

y1

y2 y0��
?j

--

6

j

Figure 1.1: Feedback configuration [P,C]

There are many robustness tools which are used to analyze stability of nonlinear systems.

One basic approach is the small gain theorem which was first introduced in Zames

(1966). Despite its simplicity it forms a fundamental basis for many robustness results.

A significant drawback to this approach is that it is not applicable to the case in which

there is an unstable plant in the system (for more details see Chapters 3 and 4).

Another approach is the use of the gap metric, a tool which was first introduced directly

in Zames and El-Sakkary (1980). This metric introduces a measure of the distance

between two linear plants, and uses it to provide a quantitative description of a set

of plants able to be stabilized by a robust controller. In particular a system [P1, C]

has a stability margin if the gap between the two plants P and P1 is less than the

robust stability margin of [P,C]. Later on, the case where the gap metric is defined via

bijective mappings between graphs was investigated in Georgiou and Smith (1997), and

an input−output framework was developed for robustness analysis of nonlinear systems

which generalized the linear gap metric introduced in Zames and El-Sakkary (1980).

In contrast to the small gain theorem which applies to the stable plant case only, the

gap metric can be applied to more general cases including cases with unstable plants. It

is closely related to the standard coprime factor uncertainty models which can include

additive, multiplicative and inverse multiplicative uncertainty models.

In this thesis robustness of nonlinear systems with full state linearizing controllers will

be investigated using the gap metric. Theoretical robustness and performance margins

will be derived and validated for these systems. This work introduces the nonlinear

gap metric and uses a ‘network’ result (Theorem (10)) Georgiou and Smith (1997) to

undertake stability analysis for nonlinear systems.



Chapter 1 Introduction 3

The reminder of this chapter motivates the work performed in this thesis. First, the

feedback linearization approach will be introduced, and its importance in solving many

control problems will be addressed. This will lead to consideration of shortcomings and

limitations related to robustness of systems designed using this approach which arise

from the fact that feedback linearization uses an exact model of the plant to design

a feedback controller. To solve this problem robustness analysis will be carried out

using key tools within robust control (in particular, the small gain theorem and the gap

metric).

1.1 Feedback Linearization

The feedback linearization approach, as comprehensively surveyed by Isidori (1989), effi-

ciently deals with nonlinearities via feedback, assuming full state knowledge to linearize

the input-output relationship. The main idea of this approach is to algebraically trans-

form nonlinear system dynamics into a (fully or partly) linear counterpart, so that linear

control techniques can be applied.

To introduce the idea of feedback linearization control, consider the single-input-single-

output nonlinear system:

ẋ = f(x) + g(x)u

y = h(x)

where f, g, and h are sufficiently smooth in a domain D ⊂ Rn where R is the set of real

numbers. The mappings f : D → Rn and g : D → Rn are called vector fields on D. The

output derivative ,ẏ, is given by:

ẏ =
∂h

∂x
[f(x) + g(x)u] = Lfh(x) + Lgh(x)u

where

Lfh(x) =
∂h

∂x
f(x)

is called the Lie Derivative of h with respect to f or along f . This is the familiar notion

of the derivative of h along the trajectories of the system ẋ = f(x). The new notation

is convenient when we repeat the calculation of the derivative with respect to the same
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vector field or a new one. For example, the following notation is used:

LgLfh(x) =
∂Lfh

∂x
g(x),

L2
fh(x) = LfLfh(x) =

∂Lfh

∂x
f(x),

Lkfh(x) = LfL
k−1
f h(x) =

∂Lk−1
f h

∂x
f(x),

L0
fh(x) = h.

If Lgh(x) = 0 then ẏ = Lfh(x), independent of u. If we continue to calculate the second

derivative of y, denoted by y(2), we obtain:

y(2) =
∂Lfh

∂x
[f(x) + g(x)u] = L2

fh(x) + LgLfh(x)u.

Once again, if LgLfh(x) = 0, then y(2) = L2
fh(x), independent of u. Repeating this

process, we see that if h(x) satisfies:

LgL
i−1
f h(x) = 0, i = 1, 2, . . . , ρ− 1; LgL

ρ−1
f h(x) 6= 0, (1.1)

then the input ,u, does not appear in the equations of y, ẏ, . . . , y(ρ−1) and appears in the

equation y(ρ) with a nonzero coefficient:

y(ρ) = Lρfh(x) + LgL
ρ−1
f h(x)u.

The forgoing equation shows clearly that the system is input-output linearizable, since

the state feedback control:

u =
1

LgL
ρ−1
f h(x)

[
−Lρfh(x) + v

]
reduces the input-output map to:

y(ρ) = v,

which is a chain of ρ integrators. In this case the integer ρ is called the relative degree of

the system. This is the standard way to describe input−output feedback linearization,

which was presented in, for example, Khalil (2002). For a nonlinear system, if ρ = n

(relative degree = state dimension) then the system is said to be full linearizable and a

state feedback linearizing controller can be designed for this system. On the other hand,

if ρ < n the system is said to be partially linearizable and an input-output linearizing

controller can be designed for this system.

When a nonlinear system is linearized using feedback linearization, the resulted system

can be stabilized using additional state feedback v = a>(y, y(1), . . . , y(ρ))> where a> =
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(a1, . . . , an) is such that the linear system matrix

A =



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

. . .
...

0 0 0 . . . 0 1

a1 a2 . . . an−1 an


.

is stable. Exact linearization conditions can be satisfied for many physical systems.

In many practical control problems feedback linearization has been used successfully.

These applications include, for example, the control of helicopters Koo and Sastry (1998),

high performance aircraft Huang et al. (2009), biomedical devices Mohammed et al.

(2007), stroke rehabilitation Freeman et al. (2012a) and extensively to the control of

robot manipulators Sage et al. (1999).

However, feedback linearization has limitations. A major drawback is that it relies

strongly on exact knowledge of nonlinearities and an exact model of the nonlinear pro-

cess, which is generally not available. Another limitation is that not all nonlinear system

classes are feedback linearizable, and the existence condition for the successive differ-

entiations of the required outputs may not be satisfied. Also, since exact feedback

linearization cancels the nonlinearity of the plant, it may destroy inherently stabilizing

nonlinearities that can be used to stabilize the plant (an example is given in Section 5.3,

Example 5.1). This problem was stated in, for example, Khalil (2002), Freeman and

Kokotović (2008) and Sepulchre et al. (1997).

As noted in the previous section, this thesis is concerned with the robustness of nonlin-

ear systems with full state linearizing controllers. To add robustness to state feedback

linearization many approaches have been presented in the literature, including appli-

cations to systems with structured or unstructured uncertainties. Most of the work

done is for systems with structured uncertainties, for example systems of the form

ẋ = f(x) + g(x)u + κ(x) where ‖κ(x)‖ < M ∀x and M < ∞. In the work pre-

sented in Spong and Vidyasagar (1987) a robust state feedback controller is designed to

control a nonlinear robotic system. Assuming that the nonlinearities of the plant are

bounded, the stability of this system was established using the small gain theorem.

While, in Spong et al. (1984) a state feedback controller was designed for a robotic ma-

nipulator with structured bounded uncertainties. However, this controller was designed

based on the Lyapunov direct method and did not account for actuator saturation.

To solve this problem, it was incorporated with an optimal decision strategy to realize

a robust unsaturated controller. Meanwhile, Khalil (1994) uses a state feedback con-

troller to drive the states of the system to a region of attraction and then depends on

a servomechanism to recover the robustness and asymptotic tracking properties of this

controller. Moreover, in Kravaris (1987) a robust nonlinear state feedback control de-
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sign is proposed that is also based on input-output linearization. The robustness of the

closed loop system in this paper is guaranteed using a Lyapunov based approach.

Another approach is to incorporate feedback linearization with adaptive control. In

this approach an adaptive controller is used to add robustness to feedback linearized

systems by helping to achieve asymptotic exact cancellation of the system nonlinearity

in the presence of parametric uncertainty. This approach was developed through a

number of publications, for example, Ortega and Spong (1989) and Sastry and Isidori

(1989). However, in this approach a matching condition is required to be placed on the

uncertainty of the system (the parameter uncertainty should appear at the same order

of the differentiation as the control input). To overcome this problem, backstepping

was introduced to adaptive nonlinear control. In Kanellakopoulos et al. (1991) the

backstepping design scheme was illustrated. While in Freeman and Kokotović (2008) a

study for robust backstepping controller designs was carried out. More results can be

found in Marino and Tomei (1996) and Slotine and Hedrick (1993).

Although there has been little research to address robustness of these systems in the

presence of unstructured uncertainties, a few works have dealt with the robustness of

feedback linearization based controllers in the presence of input unstructured uncertain-

ties (additive and multiplicative). In these works the small gain theorem is combined

with backstepping to deal with unstructured uncertainty. This new approach is based on

the input to state stability (ISS) concept introduced by Sontag (1995) and was presented

in Jiang et al. (1994), Krstić et al. (1996), Praly and Wang (1996) and Jiang and Ma-

reels (1997). However, these designs require the unmodelled dynamics to have bounded

ISS-gain. Later on, this condition was replaced with a strict passivity condition on the

class of the unmodelled dynamics in Janković et al. (1999) and Hamzi and Praly (2001).

All small gain and strict passivity designs require the unstructured uncertainties to have

relative degree zero. Finally, in Kokotović and Arcak (2001) the small gain and strict

passivity conditions were relaxed by combining dynamic nonlinear normalizing design

of Krstić et al. (1996) with the LgV -backstepping scheme in Arcak et al. (1999).

Other works that address unstructured uncertainties include Taylor et al. (1989) where

a robust state feedback linearization controller design is presented for nonlinear systems

with parametric and multiplicative uncertainties. Then an adaptive parametric update

law is introduced to the system to accommodate large parameters uncertainties. Robust

stability for this design was established using LaSalle’s theorem. In Chao (1995) an

analysis was carried out for the stability robustness of a multiple input multiple out-

put(MIMO) nonlinear system under feedback linearization which has a multiplicative

unstructured uncertainty at the plant input. Meanwhile, Wang and Wen (2009) pre-

sented an approach to design robust backstepping controllers for MIMO systems with

linear input unstructured uncertainty.

Despite the importance of the gap metric in robustness analysis, very few works have ad-
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dressed the use of this tool to analyze the robustness of feedback linearization controllers.

Xie (2004) used the gap metric framework to study the robustness of the backstepping

design procedure for state feedback and output feedback designs and robust high-gain

observer designs. Then it employed the robustness framework in Georgiou and Smith

(1997) to design robust controllers to plant uncertainty for these approaches.

This motivates the work set out in this thesis, since most of the work done before

focuses on input uncertainties and since there is a great need for robustness analysis

for the controllers designed using the feedback linearization approach in the presence

of output unstructured uncertainties (inverse muliplicative uncertainties) where more

general cases can be included, but this analysis is absent from the literature.

1.2 Robust Control

In robust control a nominal model is defined and any perturbation to this model is

considered as model uncertainty. The nominal and perturbed models can be represented

as points in a ball and a robust controller will try to meet the performance objectives

for any models inside this ball.

Given a plant model set ∆, if there exists a feedback controller C which stabilizes P ∈ ∆

such that [P,C] is stable then C is a robust stabilizing controller. A feedback structure

is required in robust control to provide desirable performance of a system in the presence

of uncertainty.

Two substantial tools in robust feedback stability analysis are next considered; the small

gain theorem and the arguments related to gap metric.

The small gain theorem is a classical tool for input-output stability. It was introduced in

Zames (1966) for closed loop stability. For nonlinear systems, it states that if the open

loop gain is less than one, i.e. ‖P‖‖C‖ < 1, then the closed loop is stable. The small

gain theorem is conservative, for example, in the case of an unstable plant ‖P‖ = ∞
the stability condition ‖P‖‖C‖ < 1 cannot be met but clearly some unstable P s can be

stabilized. The small gain theorem was formulated for nonlinear systems in Hill (1991)

and was extended in the ISS framework by Jiang et al. (1994). However, these results

still do not apply to unstable P .

Another important tool is the gap metric Zames and El-Sakkary (1980). This metric

measures the size of coprime factor perturbations. This type of perturbation provides

a good description of unstructured model uncertainties compared to other uncertainty

models. Other models have restrictions: a stable and unstable model cannot be com-

pared using an additive model, and parametric uncertainty does not permit changes in

the model order. On the other hand the coprime factor uncertainty model describes

unmodeled high and low frequency system dynamics well. This metric can be computed
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as a solution of an H∞ optimization problem as was shown in Georgiou (1988). In

Vidyasagar (1984) another related metric (but unfortunately not exactly computed),

the graph metric, captures the robust perturbations of stable feedback systems. This

metric can be found based on normalized coprime factorization. The gap and the graph

metrics where studied in Vidyasagar (1984) and were shown to be equivalent. Finally,

In Vinnicombe (1993) a new metric δv(P, P1) was introduced. This metric is the tightest

possible metric for the stability margin bP,C .

Georgiou and Smith (1990) showed the equivalence between the robustness optimization

problem in the gap metric and the robustness optimization for the normalized coprime

factor perturbation. Moreover, in this work a robust stability condition was introduced

for linear perturbed systems based on the gap metric. This condition is that any con-

troller which can stabilize a nominal plant with stability margin bP,C > 0 can stabilize

plants within a distance measured by the gap metric.

The gap metric was generalized to a nonlinear setting in Georgiou and Smith (1997).

In this paper the fundamental robustness theorem for nonlinear systems was presented.

It states that, given the gap perturbations are smaller than the inverse of the norm of

the parallel projection operator related to the feedback loop, then the feedback stability

is preserved. Furthermore, in this paper it was illustrated that perturbations which are

small in the gap are those which give small closed loop errors in a feedback loop. The

basic tool used in Georgiou and Smith (1997) is to introduce a map from the nominal

to the perturbed plant graph and measure the distance between these systems based on

this map. Also, in Anderson and de Bruynet (1999), Vinnicombe (1999) a generalization

of δv(P, P1) was proposed for nonlinear systems.

In James et al. (2005) many expressions for the gap metric were presented and the

connection between gap metrics and representations of the graph was studied.

In this thesis both small gain theorem and the gap metric will be used to study the

robustness of nonlinear systems with full state linearizing controllers.

1.3 Chapter Organization

In Chapter 2 an introduction to the concepts and notation which are used in this thesis is

presented. Starting with concepts related to signals and systems, like signal boundness,

system stability and presentation of unstable systems using coprime factors. Following

this, robust stability analysis for feedback control systems is introduced and a basic

robust stability tool, namely the small gain theorem, is presented. Then a compre-

hensive description of uncertainty modelling is given, including additive, multiplicative,

inverse multiplicative, coprime factor and the use of gap metric to measure the size of

coprime factor perturbations. Finally, stability analysis using the gap metric is intro-
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duced. In this section, significant tools and results are provided, these tools will be used

subsequently in the work done in this thesis.

Chapter 3 undertakes a robust stability analysis for a stable Hammerstein model using

the small gain theorem and the gap metric approach. The gap metric analysis undertaken

in this chapter uses Georgiou and Smith (1997)(Theorem 1) to study robust stability

for this nonlinear system. This analysis is an introduction to the procedure carried

out to study the robust stability for more complex nonlinear systems considered in the

following chapters.

In Chapter 4 a stable affine nonlinear system with input nonlinearity is considered. Ro-

bustness analysis for this system is also carried out using the small gain theorem and the

gap metric. However, a more complex configuration (rather than the two block structure

used in Georgiou and Smith (1997)(Theorem 1)) is used. This configuration has a three

plant structure P1, P2, P3, and a stability condition is given for this system using the

gap metric network result introduced in Georgiou and Smith (1997)(Theorem (10)). In

addition, an illustrative example is introduced to compare the stability conditions found

using the small gain theorem and the gap metric.

Chapter 5 undertakes a robustness analysis for an unstable affine nonlinear system using

the gap metric. The gap analysis carried out in this chapter is more complicated than

that of Chapter 4. Since the considered system is unstable, the stability assumption

on the plant is dropped and coprime factors are used to represent the unstable plant in

the system. Two cases of affine systems are considered here, the first case comprises an

unstable affine nonlinear system with an unstable nonlinear part, the controller in this

case carries out an inverting action to cancel all the nonlinear terms in the system. The

second case considered is the affine nonlinear system with unstable linear and stable

and unstable nonlinear components. In this case the system is assumed to have two

nonlinear parts, an unstable nonlinear component also cancelled by control action, and

a useful stable nonlinear component, whose control action is preserved in this approach.

Stability conditions for these systems are given using the gap metric network result

introduced in Georgiou and Smith (1997)(Theorem (10)).

In Chapter 6 a special class of unstable affine systems which have only a single nonlinear

plant component is considered. This nonlinear component includes a stable part and an

unstable part. The configuration used in the analysis undertaken in this chapter uses the

linear stabilising component of the controller to stabilize the linear unstable part of the

plant and produce a new stabilized plant. The gap analysis for this system also follows

the procedure carried out in Chapter 4. Stability condition is given for this system using

the gap metric network result introduced in Georgiou and Smith (1997)(Theorem (10)).

In Chapter 7 conclusions are drawn and future work is described in detail.





Chapter 2

Preliminaries

This chapter introduces the notation used in this thesis. Several concepts related to

signals and systems are presented. Furthermore, the chapter illustrates the nonlinear

robust stability framework and relates this framework to uncertainty modelling and gap

metric analysis.

2.1 Signals and Norms

Signals can be defined as a pattern of variation of a physical quantity. A signal v can

be considered as a map from time to a value, e.g. v : t → Rn, t ∈ R+ where R+ is the

set of positive real numbers. A signal space can be defined as a vector space V which is

a set of signals defined on a scalar field and satisfying a number of axioms.

In order to describe the performance of a control system we should be able to measure

the size of certain signals in this system. For this purpose norms are used. Norms can

be described as a yardstick with which we measure the size of vectors, or of real-valued

function, or of vector-valued functions. A general definition of a norm can be stated as:

Definition 2.1. Let E be a vector space over either R the set of real numbers or C the

set of complex numbers, a norm on E is a function ‖.‖ with the following properties:

For all a ∈ C or R and all x, y ∈ E,

• x = 0⇔ ‖x‖ = 0 : positivity,

• ‖ax‖ = |a|‖x‖ : homogeneity,

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ : triangle inequality.

where E is closed under finite vector addition and scalar multiplication.

11
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Examples on norms that are used to express physical properties of a signal defined in

R, R+ are:

‖x‖p =

(∫
R
|x(t)|pdt

) 1
p

, 1 ≤ p <∞

‖x‖∞ = ess sup
t∈R
|x(t)|.

By essential supremum we mean:

ess sup
t∈R
|x(t)| = inf (a ≥ 0 : |x(t)| ≤ a for almost every t)

that is, |x(t)| ≤ a except for a set of measure zero, and the ess sup is the smallest number

which has that property. The corresponding normed spaces are called Lebesgue Lp and

L∞ spaces, respectively. The norms given above are defined for all functions for which

these norms are finite so the signals they define are bounded, e.g. we say that:

f : R+ → R belongs to L∞ iff ess sup
t∈R
|f(t)| <∞.

Following the definitions given in Buchstaller (2010), we define a signal space S as the

space of all measurable maps T → Rn, where n ∈ N, N is the set of natural numbers

and T = R, and define the corresponding signal space V ⊂ S by:

V := {v ∈ S,∀t ∈ T; ‖v‖ <∞}

where V is a normed vector space which includes norm bounded signals ‖v‖ <∞.

To include signals that becomes unbounded in norm after infinite time, we extend the

signal space V to Ve. We can define the extended space V ⊂ Ve ⊂ S by:

Ve := {v ∈ S|∀t ∈ T : Ttv ∈ V}.

where (Ttv)(τ) is called the truncation operator of v to the interval [0, τ ]:

(Ttv)(τ) =

v(τ), 0 ≤ τ ≤ t, t ∈ T,

0, otherwise.

A multidimensional extended spaces are defined as follows: if L∞,e is the extended L∞
norm then Ln∞,e = L∞,e × ...× L∞,e︸ ︷︷ ︸

n

for any n ∈ N,

Since the signals used in this thesis are all in L∞,e space, the following Lemma is useful.
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Lemma 2.2. Let a(·) and b(·) be two functions that belongs to L∞,e space, then:

‖a(·)b(·)‖ ≤ ‖a(·)‖‖b(·)‖.

Proof. Since a(·) and b(·) belong to L∞,e space, then:

‖a(·)b(·)‖∞,e = sup
t>0
|a(t)b(t)|,

≤ sup
t>0
|a(t)| sup

t>0
|b(t)|,

= ‖a(·)‖∞,e‖b(·)‖∞,e.

2.2 Frequency Domain: Operators and Stability

Control systems are often thought of as being operators. An operator is defined as

the mapping from an input vector space to an output vector space. For example an

operator G that acts on signal u ∈ U and produces an output signal y ∈ Y is defined

as G : U → Y. Operators can exhibit many properties such as linearity, continuity and

boundedness.

Norms can be used to measure the “gain” of operators. For example the maximum gain

for G is given by the induced operator norm

‖G‖ = sup
u6=0,u∈U

‖Gu‖
‖u‖

G is said to be bounded (or gain stable if ‖G‖ <∞).

Another important property of operators is causality, a causal operator is:

Definition 2.3. An operator G : U → Y is called causal if, and only if,

∀x, y ∈ U ∀τ ∈ dom(x) ∩ dom(y) [Tτx = Tτy ⇒ Tτ (Gx) = Tτ (Gy)]. (2.1)

This property ensures that an output of an operator depends only on past and current

inputs but not future inputs. Using causal operators we can define the following:

Definition 2.4. A causal operator G : U → Y is called gain stable if G(U) ⊂ Y, G(0)=0

and

‖G‖ := sup

{
‖TτGx‖τ
‖Tτx‖τ

: x ∈ U , τ > 0, Tτx 6= 0

}
<∞, (2.2)

where ‖TτGx‖τ , ‖Tτx‖τ are the truncated norms of Gx, x, respectively to the interval

[0, τ ].
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To study the stability of causal operators, it is necessary to consider the relations between

time and frequency domain spaces (Based on the definitions given in Vinnicombe (2001)).

For example, the L2 space in the frequency domain is related to the l2 space in the time

domain, given that a signal v̂ ∈ L2 is the Laplace transform of a signal v ∈ l2. In either

space, the norm of v is equivalent to the norm of v̂ (by Parseval’s theorem) and can be

used to measure the energy of these signals.

Defining H2 as the space which contains all bounded signals in the frequency domain.

A stable system is a system that maps an input signal in H2 to an output signal which

is also in H2. For a linear, time invariant, continuous time, stable system we consider

H∞ space which is a Hardy space. Given an operator P ∈ H∞, this has norm

‖P‖∞ = sup
u∈H2,u6=0

‖Pu‖2
‖u‖2

.

This norm measures the maximum energy gain of the system P . A stable P system has

a finite ‖P‖∞. Another expression for H∞ is

‖P‖∞ = sup
s:<(s)>0

σ̄(P (s)),

where (s : <(s) > 0) is the space of functions of the complex variable s that are analytic

for all s in the open RHP and σ̄ denotes the maximum singular value, see for example

Vinnicombe (2001).

For an unstable P we have ‖P‖∞ =∞ and coprime factors are required to represent P .

2.3 Coprime Factor Representation of an Operator

Suppose that P ∈ R is unstable, where R denotes the space of all real rational transfer

functions, then P can be represented as a quotient of two RH∞ stable functions M,N .

Given that there exist X,Y ∈ RH∞ such that NX + MY = I a right coprime factor-

ization of a plant P is defined when P = NM−1, where the zeros of M are the closed

RHP poles of P .

One approach to find the coprime factors M,N for an unstable plant P is using a

state-space approach. Consider the system:

P : u 7→ y,

ẋ = Ax+Bu, (2.3)

y = Cx+Du, (2.4)
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where A,B,C,D are the state, input and output matrices.

A matrix L is chosen such that A+ BL is stable, and an external signal v = u− Lx is

introduced. Then from (2.3) and (2.4), P can be written as:

P : u 7→ y,

ẋ = (A+BL)x+Bv, (2.5)

u = Lx+ v, (2.6)

y = (C +DL)x+Dv, (2.7)

which can be given as two stable operators M and N as follows:

M : v 7→ u,

ẋ = (A+BL)x+Bv,

u = Lx+ v,

and

N : v 7→ y,

ẋ = (A+BL)x+Bv,

y = (C +DL)x+Dv.

Clearly, M and N are stable because (A+BL) is stable.

2.4 Feedback System Configuration

For the closed loop system shown in Figure 2.1, the plant P is given as:

P : Ue → Ye (2.8)

and the controller C is given as:

C : Ye → Ue (2.9)

and we assume P (0) = 0, C(0) = 0.

The closed loop system [P,C] is defined in the following set of equations:
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P

C

u0 u1

u2

y1

y2 y0��
?j

--

6

j

Figure 2.1: Closed loop [P,C]

y1 = Pu1 (2.10)

u2 = Cy2 (2.11)

u0 = u1 + u2 (2.12)

y0 = y1 + y2 (2.13)

For W := U × Y and We = Ue × Ye, where U and Y are appropriate input and

output signal spaces and Ue and Ye are the extended input and output signal spaces,

we have w0 = (u0, y0)> ∈ W represents the input and output disturbance acting on

the plant P , and w1 = (u1, y1)> ∈ We represents the plant input and output, also

w2 = (u2, y2)> ∈ We represents the controller input and output. We can define the

graph of a system as the set of all possible input-output pairs which are compatible with

the description of the system.

Formally the graph of P is defined as:

GP :=

{(
u

Pu

)
: u ∈ U , Pu ∈ Y

}
⊂ W.

The graph of C is defined as:

GC :=

{(
Cy

y

)
: Cy ∈ U , y ∈ Y

}
⊂ W.

To study stability, robustness and performance of such closed loop systems [P,C], we

would first like to assume a priori that the system is well-posed.

Definition 2.5. A closed loop system [P,C] given by (2.10)-(2.13) is said to be well-

posed if for all w0 ∈ W there exists a unique solution (w1, w2) ∈ We ×We.

The fundamental nonlinear robust stability framework for this system was developed

in Georgiou and Smith (1997), and the following notation and results follow from this

work. The closed-loop operator HP,C is defined as the mapping from the external to
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internal signals as:

HP,C : W →We ×We : w0 → (w1, w2)

HP,C can be decomposed into the operator ΠP//C (which is the map from the distur-

bances w0 ∈ W to the plant signals w1 ∈ We) and the operator ΠC//P (which is the

map from the disturbances w0 ∈ W to the controller signals w2 ∈ We), i.e.

ΠP//C : W →We : w0 → w1,

ΠC//P : W →We : w0 → w2

so

HP,C = (ΠC//P ,ΠP//C).

The stability of a system can be defined by the boundedness of the induced norm of

ΠP//C

Lemma 2.6. Let the closed loop system [P,C] shown in Figure 2.1 and given by (2.10)-

(2.13), be well-posed. [P,C] is said to be gain stable if there exists a M > 0 such that:

sup
w0∈W,w0 6=0

‖ΠP//Cw0‖
‖w0‖

= ‖ΠP//C‖ ≤M <∞.

Proof. Since for all w0 ∈ W we have

ΠP//Cw0 + ΠC//Pw0 = w1 + w2 = w0,

then

ΠP//C + ΠC//P = I

This means that the gain stability of ΠP//C also ensures gain stability for ΠC//P and

HP,C , this can be proved as follows:

‖ΠP//C‖ <∞ ⇒ ‖ΠP//Cw0‖ ≤M‖w0‖ ∀w0 ∈W

⇒ ‖ΠC//Pw0‖ = ‖(I −ΠP//C)w0‖

≤ ‖w0‖+ ‖ΠP//Cw0‖

≤ (M + 1)‖w0‖ ∀w0 ∈W

⇒ ‖ΠC//P ‖ ≤M + 1 <∞.

A BIBO stable system is defined as:

Definition 2.7. The closed loop system [P,C], is a bounded input bounded output

BIBO stable system if the induced norm of the closed loop operator given by:
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ΠP//C :

(
u0

y0

)
7→

(
u1

y1

)

is gain stable (that is ‖ΠP//C‖ <∞).

2.5 Stability Analysis using the Small Gain Theorem

The small gain theorem, first introduced in Zames (1966), is the basis for many stability

results. Consider the feedback configuration of a nonlinear system consisting of a non-

linear plant P with nonlinear feedback controller C shown in Figure 2.2.

The small gain theorem has been stated in several publications, for example, as follows:

P

C

u0 u1

u2

y1

y2 y0��
?j

--

6

j

Figure 2.2: Feedback control system

Theorem 2.8. For the system shown in Figure 2.2 with the inputs u0, y0 and the outputs

y1, u2. Assume that the systems P : Lpe → Lpe, C : Lpe → Lpe are both causal and finite

gain stable, that is, there exist γ1, γ2, β1, β2 such that:

‖ y1 ‖ = ‖ P (u1) ‖p≤ γ1 ‖ u1 ‖ +β ∀u1 ∈ Lpe, (2.14)

‖ u2 ‖ = ‖ C(y2) ‖p≤ γ2 ‖ y2 ‖ +β ∀y2 ∈ Lpe. (2.15)

Further, assume that the loop is well posed in the sense that for given u0 ∈ Lpe, y0 ∈ Lpe
there are unique u1, u2 ∈ Lpe; y1, y2 ∈ Lpe, then the closed loop system is also finite gain

stable from u0, y0 to y1, u2 if

γ1γ2 < 1.

Proof. See Sastry (1999).

This theorem will be used in Chapters 3 and 4 to find stability conditions for a Ham-

merstein structure and an affine system with input nonlinearity, respectively.
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2.6 Modelling the Uncertainty

Choosing an appropriate nominal model of a system when designing a robust controller

determines how well this controller will work on the real system. The mismatch between

the real physical plant P1 and the nominal model P of the plant is referred to as un-

certainty. As mentioned in Chapter 1, uncertainty can be structured or unstructured.

Structured uncertainty corresponds to the inaccuracies in the terms actually included

in the model (unknown plant parameters), e.g. P1 = 1
s+θ , θmin ≤ θ ≤ θmax. This type

of uncertainty modelling has a very restrictive form since using it uncertainties cannot

be expressed outside a defined structure.

The other type of uncertainty is unstructured uncertainty which may correspond to

unmodelled dynamics or underestimation of the system order. Next, the unstructured

uncertainty models will be described following the standard presentation given in Vin-

nicombe (2001) .

2.6.1 Unstructured Uncertainty Models

Unstructured uncertainty modelling can take many forms such as additive, multiplica-

tive, inverse or coprime factor models, these models are described in this section.

• Additive Uncertainty

In the additive model the uncertainty is assumed to be represented by an additive

perturbation. The additive uncertainty set for a plant P is typically given as

{P + ∆, ‖W1∆W2‖ < 1,∆,W1,W2 ∈ RH∞} .

The weights W1 and W2 are chosen sufficiently large at frequencies where the

plant P response is well known, driving ∆ to be small, and are chosen to be small

at frequencies where the plant P response is unknown, driving ∆ to be large,

(Vinnicombe, 2001). Figure 2.3 shows a block diagram for the additive uncertainty

representation.

However, this uncertainty model has disadvantages. For example, in the presence

of additive uncertainty, to ensure that ‖C(1−PC)−1‖ is small, ‖C‖ must be small.

Moreover, the number of RHP poles should not be changed. This is impractical

in feedback control, since it is preferred to have large loop gain in the system.

• Multiplicative and Inverse Multiplicative Uncertainty

Similarly to additive uncertainty a multiplicative uncertainty model can be de-

scribed using the multiplicative uncertainty set

{(I + ∆)P, ‖W1∆W2‖ < 1,∆,W1,W2 ∈ RH∞} .
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P

C

-
u0

u1

u2

y1

y2 y0��
?j

--

6

j
∆-

-
?j

Figure 2.3: Additive uncertainty

Multiplicative uncertainty model are often regarded as arising from high frequency

unmodelled dynamics. Figure 2.4 shows a block diagram for the multiplicative

uncertainty representation.

P

C

-
u0 u1

u2

y1

y2 y0��
?j

--

6

j
∆-

-
?j

Figure 2.4: Multiplicative uncertainty

In contrast, for low frequency unmodelled dynamics the inverse multiplicative

uncertainty model is used (Vinnicombe, 2001). If [P,C] is stable and satisfies

‖W−1
2 (I − PC)−1W−1

1 ‖ < 1, then the inverse multiplicative uncertainty set

{
(I + ∆)−1P, ‖W1∆W2‖ < 1,∆,W1,W2 ∈ RH∞

}
.

Figure 2.5 shows a block diagram for the inverse multiplicative uncertainty repre-

sentation.

In some frequency range, inverse multiplicative uncertainty can be dealt with using

large feedback gains. Since in this case robust stability can be guaranteed by

insuring that the sensitivity function is small (Vinnicombe, 2001). On the other

hand, in another frequency range, multiplicative uncertainty can be dealt with

using small loop gain. Since in this case robust stability can be guaranteed by

ensuring that the complementary sensitivity function is small.

These two models can be mixed to include different frequency range uncertainties

in the system. However, using such a model has a number of drawbacks, e.g., the
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P

C

-
u0 u1

u2

y1

y2 y0��
?j

--

6

j
∆

-j?

Figure 2.5: Inverse multiplicative uncertainty

specifications imposed by the multiplicative uncertainty and inverse multiplicative

uncertainty in the system could be contradictory, and the resulting mathematical

structure could be complicated.

The next model can combine different types of uncertainty (additive, multiplicative

and inverse multiplicative uncertainty models).

• Coprime Factor Uncertainty

Coprime factor uncertainty models combine features from all other uncertainty

models. Given that M,N ∈ RH∞ are the right coprime factors of a plant P

defined when P = NM−1 and there exist X,Y ∈ RH∞ such that XM + Y N =

I. Moreover, if M∗M + N∗N = I (where M∗, N∗ are the conjugates of M,N ,

respectively) then the pair M,N are considered normalized. Then the coprime

factor uncertainty set is of the form{
(N + ∆N )(M + ∆M )−1 :

∥∥∥∥∥ ∆N

∆M

∥∥∥∥∥ < 1

γ

}
.

where γ > 1.

Figure 2.6 shows a block diagram for the coprime factor uncertainty representation.

N

C

-
u0 u1

u2

y1

y2 y0��
?j

--

6

j
∆N

-

-j?M−1 -

∆M
�

j?-

Figure 2.6: Coprime factor uncertainty

As discussed in Chapter 1, the linear gap metric presented in Zames and El-Sakkary
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(1980) measures the size of coprime factor perturbations.

~δ(P, P1) = inf
(∆N∆M )∈RH∞

{∥∥∥∥∥ ∆N

∆M

∥∥∥∥∥ :

(
∆N

∆M

)
∈ RH∞, P1 = (N + ∆N )(M + ∆M )−1

}
.

Based on normalized coprime factorization, this type of perturbation provides a

good description of unstructured model uncertainties compared to other uncer-

tainty models (Vinnicombe, 2001).

2.6.2 Considering Nonlinear Components as Uncertainties in a Non-

linear System

As mentioned in Chapter 1, this thesis studies the robustness for nonlinear systems

control design. This study considers a nominal model, which will include in most cases

the linear component of the actual nonlinear system, and a perturbed plant which will

include the nominal linear model along with the nonlinear component as the uncertainty

presented in the real plant.

As an example, consider the SISO nonlinear system given by the Hammerstein model

shown in Figure 2.7 (the Hammerstein model will be considered in Chapter 3).

P

C

-
u0 u1

u2

y1

y2 y0��
?j

--

6

j
∆ = H − 1-

-
?j

Figure 2.7: Multiplicative uncertainty

Note that the considered system is an example of a perturbed system with multiplicative

uncertainty, however, the uncertainty model in this case lies at the input part of the

plant (while the multiplicative uncertainty model lies at the output of the plant). Given

that the nominal linear plant is P and let h(u) be a bounded memoryless continuous

increasing nonlinear function, where ‖h‖ < D, 0 < D < ∞, we can define an operator

H : u 7→ y such that H(u)(t) = h(u(t)) then the uncertainty ∆ = H − 1 and the

uncertainty model set is given by:

{P (1 + (H − 1)) : H ∈ RH∞, ‖H‖ < D} .
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2.7 Robust Stability Analysis Using the Gap Metric

In the presence of uncertainty, stabilization of feedback systems is established using

robust stability margins. According to Lemma 2.6 a closed loop system [P,C] is gain

stable if the induced norm ‖ΠP//C‖ < ∞. A robust stability margin for the system

[P,C] is defined as the inverse of the gain ‖ΠP//C‖ which is given as

bP,C =


1

‖ΠP//C‖
for ‖ΠP//C‖ > 0,

0 otherwise,

where bP,C has the same definition for the system [P,C] whether the operators P,C

are LTI systems or nonlinear systems. Given this margin, a stability condition for a

perturbed linear system P1 is found using the gap metric as follows

Theorem 2.9. Let P, P1, C ∈ R and let the closed loop system [P,C] shown in Figure

2.1 and given by (2.10)-(2.13), be well-posed and gain stable. Then the well-posed closed

loop system [P1, C] is gain stable if:

~δ(P, P1) < bP,C .

Proof. See Georgiou and Smith (1990).

To undertake stability analysis for nonlinear feedback control systems, the gap metric

approach was generalized to be suitable to study the robustness of nonlinear systems in

Georgiou and Smith (1997).

This metric is defined as

Definition 2.10. Let X ,Y ⊆ W where W is a signal space then the gap metric can be

given as:

~δ(X ,Y) =


inf{‖(Φ− I) |X ‖ : Φ is a causal, surjective map from X to Y with

Φ(0) = 0},

∞ if no such operator Φ exists,

δ(X ,Y) = max
{
~δ(X ,Y), ~δ(Y,X )

}
.

Using the gap metric, to have a stable system Georgiou and Smith (1997) (Theorem 1)

states that:
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Theorem 2.11. Consider the system shown in Figure 2.1 and denote M := GP ,

N := GC , and let HP,C be stable. If a system P1, with M1 := GP1 is such that

~δ(M,M1) < bP,C . (2.16)

then HP1,C is stable and

‖ΠP1//C‖ ≤ ‖ΠP//C‖
1 + ~δ(M,M1)

1− ‖ΠP//C‖~δ(M,M1)
.

Proof. See Georgiou and Smith (1997).

This theorem deals with robustness of global stability of nonlinear feedback systems. In

Chapter 3, Theorem 2.11 will be used to study the robust stabilization of Hammerstein

systems in the sense that the induced norm of the input-to-error mapping is finite and

remains finite for suitable perturbations of the nominal plant P . The original condition

imposed on the map Φ in the definition of ~δ(X ,Y) was that this map should be bijective,

however, this condition was relaxed in Georgiou and Smith (1997) (Section 3D) to the

requirement that Φ can be subjective for the robust stability theorem to remain valid.

The gap analysis carried out in this thesis will consider many cases of nonlinear systems,

where stable, unstable and more complex networked systems than the one shown in

Figure 2.1 are involved. The following subsections provide critical background results,

based on the gap metric, which will be used subsequently in this thesis.

2.7.1 Stability Analysis for a Network System Using the Gap Metric

Consider an interconnection of three systems as shown in Figure 2.8. Let U ,X , and Y be

the input, state and output signal spaces, respectively, where we define a signal space to

be an extended space, e.g., L∞,e with ui ∈ U (i = 0, 1, 2, 3) and denoteW := U ×X ×Y.

The closed-loop operator HP1,P2,P3 is defined as the mapping from external to internal

signals, given by

HP1,P2,P3 : u0

x0

y0

→

 u1

x1

y1

 ,

 0

x2

y2

 ,

 u3

0

y3




We denote by Πi(i = 1, 2, 3) the natural projection fromW onto U ,X and Y respectively.
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The graphs for Pi in W are written as

GP1 =


 u1

x1

y1

 :

(
x1

y1

)
= P1u1, ‖u1‖ <∞,

∥∥∥∥∥ x1

y1

∥∥∥∥∥ <∞
 ,

GP2 =


 u2

x2

y2

 : u2 = 0, y2 = P2x2, ‖x2‖ <∞, ‖y2‖ <∞

 ,

GP3 =


 u3

x3

y3

 : u3 = P3y3, x3 = 0, ‖u3‖ <∞, ‖y3‖ <∞

 .

P1

P3

-u0 u1

u3

x1

y2

y0��

?

--

6

P2

?

y1

s

x0�

x2

y3

h

h

h

Figure 2.8: Feedback interconnection of three subsystems Pi, (i = 1, 2, 3)

Writing Mi := GPi , (i = 1, 2, 3) define the summation operator as:

ΣM1,M2,M3 :M1 ×M2 ×M3 →W,

so that:

HP1,P2,P3 = Σ−1
M1,M2,M3

.

Let Π(i) denote the mapping

Π(i) := ΠiΣ
−1
M1,M2,M3

, (i = 1, 2, 3).

Definition 2.12. The closed-loop [P1, P2, P3] is called gain stable if the operator Π(i),

where i = 1, 2, 3, has a finite induced norm, i.e.

‖Π(i)‖ = sup
‖w‖6=0

‖Π(i)w‖
‖w‖

<∞. (2.17)

Now consider perturbed systems P ′1, P
′
2, P

′
3, acting on the appropriate spaces, with

graphs M′i := GP ′i . Accordingly, define

Π′(i) := ΠiΣ
−1
M′1,M′2,M′3 , (i = 1, 2, 3).

According to Georgiou and Smith (1997) the gap metric between the nominal plant Pi



26 Chapter 2 Preliminaries

and any perturbed plant P ′i is defined as follows:

~δ(Mi,M′i) =



inf{‖(Φ− I) |Mi ‖ : Φ is a causal,

surjective map from Mi

to M′i with Φ(0) = 0},

∞ if no such operator Φ exists,

δ(Mi,M′i) = max
{
~δ(Mi,M′i), ~δ(M′i,Mi)

}
.

The robust stability theorem, Georgiou and Smith (1997) (Theorem 10) states that:

Theorem 2.13. Let HP1,P2,P3 be gain stable. If

α :=

3∑
i=1

~δ(Mi,M′i)‖Π(i)‖ < 1 (2.18)

then Σ−1
M′1,M′2,M′3 is gain stable and

‖Π′(i)‖ ≤ ‖Π(i)‖
1 + ~δ(Mi,M′i)

1− α
.

Proof. The proof of this theorem can be found in Georgiou and Smith (1997).

This provides a condition on the gap ~δ(Mi,M′i) for plant Pi, and hence defines a plant

set able to be stabilized by the controller. In Chapters 4, 5 and 6, Theorem 2.13 will be

used to study robust stability for the nonlinear systems considered in these chapters.

2.7.2 Finding the Gap Bound for Nonlinear Stable Systems

Consider the system shown in Figure 2.1, the graphs for stable P and P1 are given as

follows:

GP :=

{(
u

Pu

)
: ‖u‖ <∞, ‖Pu‖ <∞

}
,

GP1 :=

{(
u

P1u

)
: ‖u‖ <∞, ‖P1u‖ <∞

}
.
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A map Φ between the graphs of P and P1 can be defined as:

Φ : GP → GP1

Φ

(
u

Pu

)
=

(
u

P1u

)
. (2.19)

This map is surjective by the following proposition:

Proposition 2.14. Consider the system shown in Figure 2.1. Suppose P, P1 are stable,

then the map Φ given in (2.19) is surjective.

Proof. The map Φ is surjective if the following condition is satisfied:

∀y ∈ GP1 ∃x ∈ GP s.t. Φ(x) = y.

Let us choose an element y ∈ GP1 ,where:

y =

(
u

P1u

)
,

for some ‖u‖ <∞. As P1 is stable, then ‖P1u‖ <∞.

Define:

x =

(
u

Pu

)
.

Since ‖u‖ <∞ and as P is a stable plant, then ‖Pu‖ <∞ and x ∈ GP .

Finally using the mapping:

Φ(x) = Φ

(
u

Pu

)
=

(
u

P1u

)
= y.

Using the identity:

(Φ− I)x = (Φ− I)

(
u

Pu

)
,

= Φ

(
u

Pu

)
− I

(
u

Pu

)
,

=

(
u

P1u

)
−

(
u

Pu

)
,

=

(
0

(P1 − P )u

)
.
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A bound on the gap distance is:

~δ(M,M1) ≤ ‖(Φ− I) |GP ‖,

= sup
x∈GP \{0}

‖(Φ− I)x‖
‖x‖

,

≤ sup(
u

Pu

)
∈GP \{0}

∥∥∥∥∥(Φ− I)

(
u

Pu

)∥∥∥∥∥∥∥∥∥∥
(

u

Pu

)∥∥∥∥∥
,

= sup(
u

Pu

)
∈GP \{0}

∥∥∥∥∥
(

0

(P1 − P )u

)∥∥∥∥∥∥∥∥∥∥
(

u

Pu

)∥∥∥∥∥
,

Since

∥∥∥∥∥ u

Pu

∥∥∥∥∥ ≥ ‖u‖ and since

(
u

Pu

)
∈ GP \{0} implies

(
u

Pu

)
6= {0} then ‖u‖ 6= 0

and ‖Pu‖ 6= 0, it follows that:

~δ(M,M1) ≤ sup
‖u‖6=0

‖(P1 − P )u‖
‖u‖

. (2.20)

The approach described in this subsection will be used in Chapters 3 and 4 to establish

a bound on the gap metric ~δ(M,M1) <∞ for the stable nonlinear systems considered

in these chapters.

2.7.3 Finding the Gap Bound for Unstable Linear Systems

This thesis studies the robust stability control of unstable nonlinear systems, where

coprime factors are used to represent the unstable part of the plant and to find the gap

metric (in Chapters 5 and 6). An introduction to this approach is presented in this

subsection.

Consider the system shown in Figure 2.1. To represent unstable linear plant P we use

coprime factorization which is a significant tool in the study of robustness of stability

for linear feedback systems. In this case P is written as the ratio of coprime functions,

P =
N

M

and the graph of P is defined as

GP =

{(
M

N

)
v : v ∈ U

}
.
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also for the perturbed system the plant P1 is defined as:

P1 =
N1

M1
;

with its graph

GP1 =

{(
M1

N1

)
v : v ∈ U

}
.

A possible map Φ between GP and GP1 is given as

Φ : GP → GP1 ,

Φ

(
M

N

)
v =

(
M1

N1

)
v.

Using Φ a bound on the gap between P and P1 is:

~δ(P, P1) = sup(
M

N

)
v 6=0

∥∥∥∥∥
(
M1

N1

)
v −

(
M

N

)
v

∥∥∥∥∥∥∥∥∥∥
(
M

N

)
v

∥∥∥∥∥
In the above equation the operators M,N appear in the denominator of the expression

used to find the gap metric. Using the relation:

XM + Y N = I ⇒ (XY )

(
M

N

)
= I

then

Φ

(
M

N

)
v =

(
M1

N1

)
v,

Φ

(
M

N

)
v =

(
M1

N1

)
(XY )

(
M

N

)
v,
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and if there is a signal w ∈ GP such that:

w =

(
M

N

)
v

(X Y )w = (X Y )

(
M

N

)
v

= Iv = v,

then

(I − Φ) |GP w = (I − Φ)

(
M

N

)
v,

=

(
M

N

)
v − Φ

(
M

N

)
v,

=

(
M

N

)
v −

(
M1

N1

)
v,

=

(
M −M1

N −N1

)
v,

=

(
M −M1

N −N1

)
(X Y )w.

Taking the norms for both sides, gives:

‖(I − Φ) |GP w‖ = sup
06=w∈GP

‖(Φ− I)w‖
‖w‖

,

= sup
06=w∈GP

∥∥∥∥∥
(
M −M1

N −N1

)
(X Y )w

∥∥∥∥∥
‖w‖

=

∥∥∥∥∥
(
M −M1

N −N1

)
(X Y )

∥∥∥∥∥ ,
and a bound on the gap is:

~δ(P, P1) ≤

∥∥∥∥∥
(
M −M1

N −N1

)∥∥∥∥∥ ‖X Y ‖ (2.21)



Chapter 3

Stability Analysis for

Hammerstein Systems Using the

Small Gain Theorem and the Gap

Metric

3.1 Introduction

In this chapter a simple nonlinear system structure is considered, the Hammerstein

model, and a procedure is presented to study the robustness of feedback linearization

controllers designed for this model using the small gain theorem and the gap metric.

The analysis performed in this chapter will help to explain the approach undertaken

to study the robustness of feedback linearizing controllers designed for more complex

nonlinear system structures, which will be considered in the following chapters.

First, the Hammerstein model is presented, then the nonlinear feedback control for this

system is introduced. Then, the small gain theorem is used to find a simple stability

condition for this feedback control system. Finally, the main stability result for the

Hammerstein model is given using the gap metric analysis.

3.2 Hammerstein Models

The Hammerstein model is a type of nonlinear structure which is composed of a memo-

ryless nonlinear function and a linear dynamic subsystem, as shown in Figure 3.1. The

identification of Hammerstein models was first suggested by (Narendra and Gallman,

1966). Along with other types, such as Wiener, Wiener-Hammerstein and others (Haber

31
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and the Gap Metric

and Unbehauen, 1990), the Hammerstein model has proven to be successful in describ-

ing the nonlinear dynamics of many chemical, biological and electrical processes (Sung,

2002). In chemical processes, this model can account for nonlinear effects encountered

where the nonlinear behaviour of many distillation columns, pH neutralization processes,

heat exchangers as well as furnaces and reactors can be effectively modelled by a non-

linear static element followed by a linear dynamic element (Fruzzetti et al., 1997).

In particular, the Hammerstein structure has been particularly useful for describing

biological systems that involve neural encoding, like the stretch reflex. An important

application for this is stroke rehabilitation using robotic systems and functional electrical

stimulation, where the Hammerstein structure is used to model the nonlinear isometric

recruitment curve and the linear activation dynamics of an electrically stimulated mus-

cle (Le et al., 2010). For this application, the Hammerstein model has been found to

accurately capture the force or torque generated by electrically stimulated muscle, fa-

cilitating increasingly accurate model-based control approaches to be applied (Freeman

et al., 2012b).

To describe the Hammerstein model, consider the system shown in Figure 3.1. The

input, u(t), is transformed by a memoryless, i.e.(static), invertible nonlinearity φ pro-

ducing the intermediate signal, v(t). This, in turn, is operated on by a dynamic linear

system P , producing y(t), the system output.

P-
u(t) v(t) y(t)

Nonlinear System

- -φ

Figure 3.1: Hammerstein Model

We can define the memoryless property of a system as follows:

Definition 3.1. In a memoryless (static) nonlinear system, the output of the system at

time t depends only on the instantaneous input values at time t and not on any of the

past values of its input. Formally:

Φ : Lpe → Lpe is memoryless if ∃φ : R→ R s.t.

Φ(u)(t) = φ(u(t)) ∀u ∈ Lpe, 1 ≤ p <∞.

The input-output relations for the Hammerstein model can be given as:
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v(t) = φ(u(t))

y(t) = Pv(t)

= Pφ(u(t)).

In the literature, a common method to control the Hammerstein system is to use a

model of the inverse of the static nonlinearity in order to cancel it (Samuelsson et al.,

2005), (Hwang and Hsu, 1995). Another possibility is to use a gain scheduling technique

(Åstrm and Wittenmark, 1995) or approximate the inverse implicitly using high-gain

feedback (Goodwin et al., 2000). Another approach which is based on the dissipativity

theory is described in Haddad and Chellaboina (2001). This approach assumes that the

linear part of the system is passive and the nonlinear controller is exponential passive,

while the class of the input nonlinearities is general. In this paper, the global closed loop

stability is achieved by modifying the input to the nonlinear compensator to counteract

the effects of the input nonlinearity.

In the following sections, robustness analysis will be performed for a feedback linearizing

controller designed for a Hammerstein model. This analysis will be implemented using

the small gain theorem and the gap metric.

3.3 Nonlinear Feedback Control of a Hammerstein Model

In this section the nonlinear feedback control of a SISO Hammerstein model system is

investigated. In this system we consider the nonlinear plant to consist of P which is

the linear component and φ which is the memoryless invertible nonlinear component.

The nonlinear feedback controller consists of the linear component C and −φ−1 which

is the inverse of the memoryless nonlinearity φ. The term −φ−1 forms the nonlinear

component of the controller. This configuration is shown in Figure 3.2.

P

−φ−1 C

-

?
�

6

u1 v1 y1u0

y0

Hammerstein Model

Nonlinear Feedback Controller

+

-

+
-

y2v2u2 �

- -

�

����

����

φ-

Figure 3.2: Nonlinear feedback control system for a Hammerstein model
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In this configuration, if we set the input disturbance u0 to zero, as shown in Figure

3.3(a), then we have an exact cancelation for the nonlinearity in the system since v1 =

φ(φ−1(v2)) = v2, and classical LTI feedback control design can be used to control the

plant P , as shown in Figure 3.3(b), as the closed loop system is equivalent to the LTI

interconnection of P and C.

Pφ−1 φ

C

-

�

u1 v1

y1

y0

+

y2

v2

�

- -

?�
��
P

C

v1
y1

y2 y0
��
?j

-

(a) (b)

Figure 3.3: Reduction to the feedback configuration [P,C]

However, u0 6= 0 and hence v1 = φ(u1) = φ(u0− u2) = φ(u0 + φ−1(v2)), then to analyze

the system in Figure 3.2 further consideration is required. Let us consider the more

general Hammerstein system:

Mh : L∞,e → L∞,e
: u1 7→ y1,

y1 = Pφ(u1), (3.1)

with the nonlinear component specified as:

φ : L∞,e → L∞,e
: u1 7→ v1,

v1 = f(u1), (3.2)

while P can be suitably represented by:

P : L∞,e → L∞,e
: v1 7→ y1,

y1 = Pv1, (3.3)

A nonlinear feedback linearizing controller Nh is defined to be:

Nh : L∞,e → L∞,e
: y2 7→ u2,

u2 = ψ(Cy2). (3.4)
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This controller consists of two components, the nonlinear component ψ which tries to

cancel the nonlinear component φ of the plant, and the linear component C which

stabilizes the linear component P of the plant. These components can be described as:

C : L∞,e → L∞,e
: y2 7→ v2,

v2 = Cy2, (3.5)

and

ψ : L∞,e → L∞,e
: v2 7→ u2,

u2 = −f−1(v2). (3.6)

Note that ψ = −φ−1 and as u0 6= 0 then [Mh, Nh] is not equivalent to the linear system

[P,C]. The configuration in Figure 3.4 shows this system and in the following section

robustness analysis will be carried out for this configuration.

P

ψ C

-

?
�

6

u1 v1 y1u0

y0

Mh

Nh

+

-

+
-

y2v2u2 �

- -

�

����

����

φ-

Figure 3.4: Hammerstein feedback control system configuration.

The closed loop equations for the system shown in Figure 3.4 are:

u0 = u1 + u2, (3.7)

y0 = y1 + y2, (3.8)

v1 = f(u1), (3.9)

v2 = Cy2, (3.10)

y1 = Pf(u1), (3.11)

u2 = −f−1(Cy2). (3.12)
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3.4 Stability Analysis for a Hammerstein Model Control

System Using the Small Gain Theorem

As mentioned in Chapter 1 the small gain theorem is a classical tool for input-output sta-

bility. This theorem provides a straightforward stability condition for nonlinear systems,

i.e. ‖P‖‖C‖ < 1. However, the theorem does not apply to unstable P .

In this analysis the following assumption on the form of f(u1) is required:

Assumption 3.2. Let f : R → R be a memoryless continuous nonlinear function, satis-

fying the following condition:

∃ε > 0, ∃D <∞ and

εx ≤ f(x) ≤ Dx ∀x.

Hence

‖f(x)‖ ≤ D‖x‖ ∀x ∈ R, (3.13)∥∥f−1(x)
∥∥ ≤ 1

ε
‖x‖ ∀x ∈ R. (3.14)

In this section, a stability condition based the small gain theorem 2.8 for the nonlinear

closed loop system [Mh, Nh] shown in Figure 3.4 is given in the following theorem:

Theorem 3.3. Consider the nonlinear closed loop system [Mh, Nh] given by Figure 3.4

and equations (3.7-3.12). Suppose P is stable and f satisfies Assumption 3.2. Then

the closed loop system [Mh, Nh] is a bounded input bounded output stable system if the

following condition holds:

D

ε
‖P‖‖C‖ < 1.

Proof. First we consider y1 and u2 in the system shown in Figure 3.4 and given by

equations (3.11) and (3.12), respectively, as follows:

y1 = Pv1 = Pf(u1)

‖y1‖ ≤ ‖P‖‖f(u1)‖,

Using(3.13) we have:

‖y1‖ ≤ D‖P‖‖u1‖, (3.15)

for u2:

u2 = −f−1(Cy2),

‖u2‖ ≤ ‖f−1(Cy2)‖,
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using (3.14) we have

‖u2‖ ≤
1

ε
‖C‖‖y2)‖, (3.16)

Now consider equations (2.14) and (2.15) in Theorem 2.8, then:

‖ y1 ‖ = ‖ P (u1) ‖≤ γ1 ‖ u1 ‖ +β,

‖ u2 ‖ = ‖ C(y2) ‖≤ γ2 ‖ y2 ‖ +β.

Let β1, β2 = 0 , so that:

‖ y1 ‖ = ‖ P (u1) ‖≤ γ1 ‖ u1 ‖, (3.17)

‖ u2 ‖ = ‖ C(y2) ‖≤ γ2 ‖ y2 ‖ . (3.18)

Comparing the expressions in (3.17), (3.18) with those found for ‖ y1 ‖, ‖ u2 ‖ given by

(3.15) and (3.16), respectively, we have:

γ1 = D‖P‖.

and

γ2 =
1

ε
‖C‖.

from the above two expressions for γ1 and γ2, the closed loop system [Mh, Nh] is a

bounded input bounded output stable system if

γ1γ2 < 1⇒ D

ε
‖P‖‖C‖ < 1,

as required.

This stability condition is simple, it states that the stability of closed loop system is

ensured if the product of the system components gains is less than one. However, it

shows that the closed loop system [Mh, Nh] is stable if the linear part P of the plant is

stable.

3.5 Stability Analysis for a Hammerstein Model Control

System Using the Gap Metric

In this section we will consider the application of the gap metric to study the stability

of the nonlinear feedback control system shown in Figure 3.4.
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The main result is stated as follows:

Theorem 3.4. Consider the nonlinear closed loop system [Mh, Nh] given by Figure 3.4

and (3.7)-(3.12). Suppose P is stable and f satisfies Assumption 3.2. Then [Mh, Nh]

has a robust stability margin.

The proof requires results that are developed in this section, and appears subsequently.

The route taken is as follows:

Although it is possible to apply the robust stability result Theorem 2.11 directly to the

system shown in Figure 3.4, the presence of nonlinear elements in multiple blocks leads

to significant conservatism. Hence a new system representation is required where the

nonlinear component of the plant and the nonlinear component of the controller are

both included together with the linear component of the plant in block P ′1, and only

the linear component of the controller is included in the block C ′1. This configuration is

shown in Figure 3.5. This new configuration of the perturbed (actual) system allows us

Pψ φ

C

-
?

�

u1 v1

y1

u0

y0

P ′1

+

-

+

-

y2

v2

u2

�

- - -

?

�
��

�
��
Figure 3.5: Second Hammerstein model feedback control system configuration

to consider the nonlinear components of the plant and controller in calculating a bound

for the gap metric and minimizing this value will mean that we can make this nonlinear

system approximate to its linear version.

The linear configuration for this system is shown in Figure 3.6, where the unperturbed

linear system is taken to be the system components P1, C1 with the nonlinearities φ, ψ

set to φ = 1, ψ = −1.

To present the nonlinear and linear configurations of this system shown in Figures 3.5

and 3.6, respectively, in the form of Figure 2.1, we add x0 = 0 as an external input to

the systems shown in Figures 3.5 and 3.6, as shown in Figures 3.7 and 3.8, respectively.

The following augmented signals will be considered to define input and output sig-

nals in the new forms of these systems. Hence, let the external input u0 be changed to

u′0 =

(
u0

x0

)
since x0 = 0 then u′0 =

(
u0

0

)
, let u′2 =

(
0

−v2

)
and let u′1 = u′0−u′2 =
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P−1 1

C

-
?

�

u1 v1

y1

u0

y0

P1

+

-

+

-

y2

v2

u2

�

- - -

?

�
��

�
��
Figure 3.6: Hammerstein model feedback control system, linear configuration

Pψ φ
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u1 v1
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P ′1

C ′1
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+

-

y2v2

u2

�

- - -

?

�
��

�
��
6-

x0
-�
��+

�-1

Figure 3.7: Second Hammerstein model feedback control system configuration with
extra input x0

P−1 1

C

-
?

�

u1 v1

y1

u0

y0

P1

C1

+

-

+

-

y2v2

u2

6

�

- - -

?
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��

�
��
-

x0
-�
��+

�-1

Figure 3.8: Hammerstein model feedback control system, linear configuration with
extra input x0
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(
u0

v2

)
. Also let y′0 = y0, y′1 = y1 and y′2 = y2. The augmented system is shown in

Figure 3.9.

P ′1

C ′1

y1

y2 y0��
?j

--

6

j
(

0
−v2

)

(
u0

0

) (
u0

v2

)

Figure 3.9: Nonlinear feedback system configuration

The system shown in Figure 3.9 corresponds exactly to the system form shown in Figure

3.10, which in turn has identical structure to that of Figure 2.1.

P ′1

C ′1

u′0 u′1

u′2

y′1

y′2 y′0��
?j

--

6

j

Figure 3.10: Nonlinear control system configuration

The linear configuration of this system is shown in Figure 3.11,

P1

C1

u′0 u′1

u′2

y′1

y′2 y′0��
?j

--

6

j

Figure 3.11: linear control system configuration

The gap metric measures the difference between the linear nominal plant P1 :
(
u0, v2

)
7→

y′1, y
′
1 = P (u0 + v2) and the nonlinear perturbed plant P ′1 :

(
u0, v2

)
7→ y′1, y

′
1 =

Pφ(u0 −ψ(v2)). The unperturbed and perturbed plants P1 and P ′1 are shown in Figure

3.12.

Before providing a complete description of the operators P ′1, C
′
1, P1, C1 shown in Figures

3.10, 3.11 we briefly state the motivation for the proceeding manipulations.

A stability condition on the gap between P1 and P ′1 is provided using Theorem 2.11 as:
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P1:

P ′1:

(a)

(b)

P−1 1-
?u1 v1

u0

+

-

u2
- - - -�
�� y′1v2

Pψ φ-
?u1 v1

u0

+

-

u2
- - - -�
�� y′1v2

Figure 3.12: Hammerstein plant mapping:(a) purely linear, (b) with nonlinear part.

~δ(P1, P
′
1) < ‖ΠP1//C1

‖−1, (3.19)

where C1 is the linear controller which stabilizes P1 and P ′1. This stability condition can

be related to the original system configuration shown in Figure 3.4. It will be shown

later in the proof of Theorem 3.4 that the stability margin for the system shown in

Figure 3.11 is greater than or equal to the stability margin for the system shown in

Figure 3.6 which in turn equals the stability margin for the original system shown in

Figure 3.4 with φ = 1, ψ = −1. Now a description for the closed loop operators P ′1, C
′
1

and P1, C1 shown in Figures 3.10, 3.11, respectively, is given. The perturbed system

shown in Figure 3.10 can be described as

P ′1 : L2
∞,e → L∞,e

: u′1 7→ y′1,

y′1 = Pφ(u0 − ψ(v2)), (3.20)

and

C ′1 : L∞,e → L2
∞,e

: y′2 7→ u′2,

u′2 =

(
0

v2

)
,

v2 = −Cy′2. (3.21)
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While the unperturbed system shown in Figure 3.11 can be described as

P1 : L2
∞,e → L∞,e

: u′1 7→ y′1,

y′1 = P (u0 + v2), (3.22)

and

C1 : L∞,e → L2
∞,e

: y′2 7→ u′2,

u′2 =

(
0

v2

)
,

v2 = −Cy′2.

The closed loop equations for the system shown in Figure 3.10 are

u′0 = u′1 + u′2, (3.23)

y′0 = y′1 + y′2. (3.24)

v1 = f(u′1), (3.25)

v2 = −Cy′2, (3.26)

y′1 = Pf(u′1), (3.27)

u′2 = (0,−Cy′2). (3.28)

To apply Theorem 2.11 to this system, we must satisfy inequality (3.19). In the following

two subsections the two sides of this inequality will be evaluated, namely the linear gain

‖ΠP1//C1
‖ and the gap value ~δ(P1, P

′
1).

3.5.1 Finding ‖ΠP1//C1‖ for a Hammerstein Model Control System

Let us consider the RHS of inequality (3.19) first. The parallel projection ΠP1//C1
is

the mapping from the external signals (u′0, y
′
0) to the internal signals (u′1, y

′
1) in the

configuration shown in Figure 3.11. The inverse of its gain, ‖ΠP1//C1
‖, is the stability
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margin for the plant P1. The value of ‖ΠP1//C1
‖ is found as(

u′1
y′1

)
= ΠP1//C1

(
u′0
y′0

)
,

‖ΠP1//C1
‖ = sup

‖u′0,y′0‖6=0

‖u′1, y′1‖
‖u′0, y′0‖

. (3.29)

= sup∥∥∥( u0

0

)
,y0

∥∥∥6=0

∥∥∥∥∥
(

u0

−v2

)
, y1

∥∥∥∥∥∥∥∥∥∥
(
u0

0

)
, y0

∥∥∥∥∥
,

= sup
‖u′0,y′0‖6=0

∥∥∥∥∥
(

u0

−v2

)
, P

(
u0

−v2

)∥∥∥∥∥
‖u′0, y′0‖

,

(3.30)

‖ΠP1//C1
‖ ≤ sup

‖u′0,y′0‖6=0

∥∥∥∥∥
(

I

P

) (
u0

v2

) ∥∥∥∥∥
‖u′0, y′0‖

. (3.31)

An expression for (u0, v2) in terms of (u′0, y
′
0) is found to be:

(
u0

v2

)
=

(
u0

0

)
+

(
0

v2

)

=

(
u0

0

)
+ Cy2

=

(
u0

0

)
+ C(y0 − y1)

=

(
u0

0

)
+ (Cy0)− (CP

(
u0

v2

)
)(

u0

v2

)
(I + CP ) =

(
u0

0

)
+ Cy0.

If the sensitivity function (I + CP )−1 exists, then:(
u0

v2

)
= (I + CP )−1

((
u0

0

)
+ Cy0

)
,
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and since u′0 =

(
u0

0

)
and y′0 = y0 then:

(
u0

v2

)
= (I + CP )−1(I 0 C)

(
u′0
y′0

)
.

Substituting this value in (3.31); it follows that:

‖ΠP1//C1
‖ ≤ sup

‖u′0,y′0‖6=0

∥∥∥∥∥
(

I

P

)
(I + CP )−1(I 0 C)

∥∥∥∥∥
∥∥∥∥∥ u′0
y′0

∥∥∥∥∥
‖u′0, y′0‖

,

≤

∥∥∥∥∥ (I + CP )−1 0 C(I + CP )−1

P (I + CP )−1 0 PC(I + CP )−1

∥∥∥∥∥
From the above inequality it can be noted that the components of ‖ΠP1//C1

‖ are the

closed loop transfer functions of the linear system [P1, C1], indicating that ‖ΠP1//C1
‖ is

finite. Let:

Qh =

(
(I + CP )−1 0 C(I + CP )−1

P (I + CP )−1 0 PC(I + CP )−1

)
Hence from (3.19) the gap between perturbed and unperturbed plants must satisfy:

~δ(P1, P
′
1) < ‖Qh‖−1 (3.32)

3.5.2 Finding the Gap Metric for a Hammerstein Model Control Sys-

tem

In this subsection the LHS of the condition in (3.19) is considered. As mentioned

previously the gap metric ~δ(P1, P
′
1) is a measure of the distance between the models P1

and P ′1, given that there exists a surjective map between the graphs of these plants.

To express ~δ(P1, P
′
1) in terms of the individual plant parameters contained within P1

and P ′1, we need to define the graphs for these systems, these graphs are defined to be:

GP ′1 : =


 u0

v2

y′1

 :

∥∥∥∥∥∥∥
u0

v2

y′1

∥∥∥∥∥∥∥ <∞, y′1 = P (φ(u0 − ψ(v2)))

 , (3.33)

GP1 : =


 u0

v2

y′1

 :

∥∥∥∥∥∥∥
u0

v2

y′1

∥∥∥∥∥∥∥ <∞, y′1 = P (u0 + v2)

 . (3.34)
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In order to find a bound on the gap metric a surjective map Φ is required between GP1

and GP ′1 . To define this map, the following two lemmas are used. First consider the

nonlinear component of the plant P ′1 shown in Figure 3.12 (b), for this component the

following lemma is used.

Lemma 3.5. Let f satisfy Assumption 3.2, and consider the following equation:

v1 = φ(u0 − ψ(v2)), (3.35)

= f(u0 − f−1(v2)). (3.36)

Then

‖v2‖ <∞, ‖u0‖ <∞⇒ ‖v1‖ <∞,

Proof. Let ‖v2‖ < ∞, ‖u0‖ < ∞, and using Assumption 3.2 equation (3.14) since f−1

is a bounded function and since ‖v2‖ < ∞ then ‖f−1(v2)‖ < ∞. Since ‖u0‖ < ∞, it

follows that:

‖u0 − f−1(v2)‖ ≤ ‖u0‖+ ‖f−1(v2)‖ <∞.

Since f is a bounded function, then

‖v1‖ = ‖f(u0 − f−1(v2))‖ <∞,

as required.

In this analysis Φ is defined to be the map between stable P1 and P ′1. These two plants

are stable if the plant P is stable, as proved in the following lemma.

Lemma 3.6. Suppose P is BIBO stable and let f satisfy Assumption 3.2. Then P1 and

P ′1 given by Figure 3.12 and (3.22) and (3.20), respectively, are stable.

Proof. First we prove that if P is stable, then P1 is stable. In order to do that we must

prove that if ‖u′1‖ < ∞ then ‖P1u
′
1‖ < ∞. So, let ‖u′1‖ < ∞. While u′1 =

(
u0

v2

)
, so

‖u0‖, ‖v2‖ <∞. Then by definition:

‖y′1‖ = ‖P1u
′
1‖,

= ‖P (u0 + v2)‖,

≤ ‖P‖(‖u0‖+ ‖v2‖),

< ∞.

Hence P1 is stable.

Similarly to prove that if P is stable then P ′1 is stable it is required to prove that if
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‖u′1‖ <∞ then ‖P ′1u′1‖ <∞. Let ‖u′1‖ <∞, and since u′1 =

(
u0

v2

)
, then ‖u0‖, ‖v2‖ <

∞.

by definition:

y′1 = P ′1u
′
1 = P (φ(u0 − ψ(v2))),

‖y′1‖ = ‖P (φ(u0 − ψ(v2)))‖,

Using Lemma 3.5, since ‖u0‖, ‖ṽ2‖ <∞:

‖v1‖ = ‖φ(u0 − ψ(v2))‖ <∞.

Since P is stable, it follows that:

‖y′1‖ = ‖P‖‖φ(u0 − ψ(v2))‖ <∞,

and hence P ′1 is stable, as required.

Since P1 and P ′1 are stable, the graphs for P1 and P ′1 can be written as given in the

following proposition:

Proposition 3.7. Let P be stable and let f satisfy Assumption 3.2, for the systems P1

and P ′1 given by Figure 3.12 and (3.22) and (3.20), respectively, the graphs GP1 and GP ′1
are given by:

GP1 =




(
u0

v2

)

P1

(
u0

v2

)
 :

∥∥∥∥∥ u0

v2

∥∥∥∥∥ <∞
 , (3.37)

GP ′1 =




(
u0

v2

)

P ′1

(
u0

v2

)
 :

∥∥∥∥∥ u0

v2

∥∥∥∥∥ <∞
 . (3.38)

Proof. To show that if P is stable and f satisfies Assumption 3.2 then GP ′1 given in

(3.33) can be written in the form given in (3.38), and denote the set given in (3.38) as

A.

Let
(

(u0, v2) P ′1(u0, v2)
)>
∈ A, i.e ‖(u0, v2)‖ < ∞, P is stable and f satisfies As-

sumption 3.2. Hence using lemma 3.6, P ′1 is stable. Since ‖(u0, v2)‖ < ∞ and P ′1 is

stable then ‖y′1‖ = ‖P ′1(u0, v2)‖ <∞. Thus we conclude that A ⊂ GP ′1 .

Next we prove that GP ′1 ⊂ A. Let
(
u0 v2 y′1

)>
∈ GP ′1 , i.e ‖(u0, v2, y

′
1)‖ < ∞ and

y′1 = P (φ(u0 − ψ(v2))). Then ‖(u0, v2)‖ <∞ and y′1 = P (φ(u0 − ψ(v2))) = P ′1(u0, v2).
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This leads to GP ′1 ⊂ A. Hence GP ′1 = A.

To show that GP1 given in (3.37) is equivalent to that given in (3.34), set φ(x) = 1, ψ(x) =

−1 for all x. In this case GP1 follows as a special case, as required.

The map Φ between GP1 and GP ′1 is defined using the following proposition:

Proposition 3.8. Let P be stable and let f satisfy Assumption 3.2. Let P1 and P ′1
be given by Figure 3.12 and (3.22) and (3.20), respectively, then there exists a map

Φ : GP1 → GP ′1 given by:

Φ


(
u0

v2

)

P1

(
u0

v2

)
 =


(
u0

v2

)

P ′1

(
u0

v2

)
 , (3.39)

Furthermore this map is surjective.

Proof. First we need to prove that if

x =
(

(u′′0, v
′′
2) P1(u′′0, v

′′
2)
)>
∈ GP1 ,

then Φ(x) ∈ GP ′1 . Since x ∈ GP1 then ‖(u′′0, v′′2)‖, ‖y′′1‖ = ‖P1(u′′0, v
′′
2)‖ < ∞. Let y =(

(u0, v2) P ′1(u0, v2)
)>

= Φ(x). We need to show that y′1 = P ′1(u0, v2), ‖(u0, v2)‖ <
∞. It follows from (3.39) that (u0, v2) = (u′′0, v

′′
2) and y′1 = P ′1(u′′0, v

′′
2), then ‖(u0, v2)‖ <

∞.

Using Proposition 3.7 since P is stable, f satisfies Assumption 3.2 and ‖(u0, v2)‖ <∞,

then ‖y′1‖ = ‖P ′1(u0, v2)‖ <∞. Hence:

y =
(

(u0, v2) P ′1(u0, v2)
)>

=
(

(u0, v2) y′1

)>
∈ GP ′1 .

as required.

Next, to prove that Φ is surjective, let u = (u0, v2) and using Proposition 2.14 since P1

and P ′1 are stable and since ‖(u0, v2)‖ <∞ then the map given in (3.39) is surjective.

Using the previous results, a bound on the gap between P1 and P ′1 is given using the

following theorem

Theorem 3.9. Let P be stable and let f satisfy Assumption 3.2. Let P1 and P ′1 be given

by Figure 3.12 and (3.22) and (3.20), respectively. Then a bound on the gap between P1
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and P ′1 is
~δ(P1, P

′
1) ≤ ‖P‖Fδ, (3.40)

where

Fδ = sup∥∥∥∥∥ u0

v2

∥∥∥∥∥ 6=0

‖ φ(u0 − ψ(v2))− (u0 + v2) ‖
‖u0, v2‖

.

Proof. Using Proposition 3.8, since P is stable and f satisfies Assumption 3.2. Since P1

and P ′1 are given by Figure 3.12 and (3.22), (3.20). Then there exists a surjective map

Φ : GP1 → GP ′1 given by (3.39). Then the gap between P1 and P ′1 is given by:

~δ(P1, P
′
1) ≤ sup

x∈GP1
\{0}

‖(Φ− I)x‖
‖x‖

,

≤ sup∥∥∥∥∥ u0

v2

∥∥∥∥∥ 6=0

‖P‖ ‖ φ(u0 − ψ(v2))− (u0 + v2) ‖
‖u0, v2‖

.

Let:

Fδ = sup∥∥∥∥∥ u0

v2

∥∥∥∥∥ 6=0

‖ φ(u0 − ψ(v2))− (u0 + v2) ‖
‖u0, v2‖

,

then
~δ(P1, P

′
1) ≤ ‖P‖Fδ.

as required.

Recall from Chapter 2 that a robust stability margin for the system [P ′1, C
′
1] exists if

there is a finite gap metric between P1 and P ′1, and this gap is less than ‖ΠP1//C1
‖.

Then a robust stability result for the rearranged block diagram shown in Figure 3.10 is

stated as follows:

Proposition 3.10. Consider the nonlinear closed loop system [P ′1, C
′
1] given by Figure

3.10 and (3.23)-(3.28). Suppose P is stable and f satisfies Assumption 3.2. Then

[P ′1, C
′
1] has a robust stability margin.

Proof. Since P is stable and f satisfies Assumptions 3.2, then by Lemmas 3.5, 3.6, and

using Proposition 3.7 for the systems P1 and P ′1 given by Figure 3.12 and equations

(3.22) and (3.20), respectively, the graphs GP1 and GP ′1 can be given by (3.37) and

(3.38), respectively. Using Proposition 3.8, there exists a map Φ : GP1 → GP ′1 given by
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(3.39). This leads to the presence of a finite gap value between the linear and nonlinear

configurations of this system given by the inequality (3.40). Then the closed loop system

[P ′1, C
′
1] given by Figure 3.10 and (3.23)- (3.28) have a robust stability margin.

The main result Theorem 3.4 easily follows from Theorem 3.11.

Theorem 3.11. Consider the nonlinear closed loop system [Mh, Nh] given by Figure 3.4

and (3.7)-(3.12). Suppose P is stable and f satisfies Assumption 3.2. Then [Mh, Nh]

has a robust stability margin bP,C that satisfies the inequality

bP,C ≥ ‖Qh‖−1. (3.41)

Proof. Let ‖ΠP1//C1
‖−1 = ‖Qh‖−1 be a stability margin for the system [P ′1, C

′
1] shown

in Figure 3.10, let ‖Π′P1//C1
‖−1 be a stability margin for the system [P ′1, C

′
1] shown in

Figure 3.5, finally let ‖ΠP//C‖−1 be a stability margin bP,C for the system [Mh, Nh]

shown in Figure 3.4, then

∥∥∥∥∥∥∥ΠP1//C1

 u0

x0

y0


∥∥∥∥∥∥∥ = sup

‖u0,x0,y0‖6=0

∥∥∥∥∥∥∥ΠP1//C1

 u0

x0

y0


∥∥∥∥∥∥∥

‖u0, x0, y0‖
,

≥ sup
‖u0,0,y0‖6=0

∥∥∥∥∥∥∥Π′P1//C1

 u0

0

y0


∥∥∥∥∥∥∥

‖u0, 0, y0‖
,

= sup
‖u0,y0‖6=0

∥∥∥∥∥ΠP//C

(
u0

y0

)∥∥∥∥∥
‖u0, y0‖

,

= ‖ΠP//C‖.

This leads us to

bP,C =
1

ΠP//C
=

1

Π′P1//C1

≥ 1

ΠP1//C1

= ‖Qh‖−1.

Moreover the existence of a stability margin for the system shown in Figure 3.10 guar-

antees the existence of a stability margin for the system [Mh, Nh] shown in Figure 3.4.

Also, since P is stable and f satisfies Assumption 3.2, by Proposition 3.10, the nonlinear
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closed loop system [P ′1, C
′
1] given by Figure 3.10 and (3.23)-(3.28), has a robustness sta-

bility margin. This leads to that the system [Mh, Nh] given by Figure 3.4 and (3.7)-(3.12)

also has a robust stability margin.

Based on Theorems 3.9 and 3.11 we can give the following corollary:

Corollary 3.12. Consider the nonlinear closed loop system [Mh, Nh] given by Figure

3.4 and (3.7)-(3.12). Suppose P is stable and f satisfies Assumption 3.2. Then this

system is stable if

‖P‖Fδ < ‖Qh‖−1.

Proof. Using Theorem 3.9 inequality (3.40):

~δ(P1, P
′
1) ≤ ‖P‖Fδ,

and using Theorem 3.11 inequality (3.41), it follows that if

‖P‖Fδ < ‖Qh‖−1,

we have:
~δ(P1, P

′
1) ≤ ‖P‖Fδ < ‖Qh‖−1 ≤ bP,C .

Then ~δ(P1, P
′
1) < bP,C and the conditions hold from Theorem 2.11, hence stability.

as required.

3.6 Summary

Chapter 3 introduced a procedure to study the robustness of a feedback linearization

controller designed for a Hammerstein model nonlinear system using the small gain

theorem and the gap metric. First, the small gain theorem was employed to find a

stability condition for this feedback control system. The stability condition found using

small gain theorem is conservative, since the closed loop system is stable if the product

of the system components is less than one and holds if the linear component P of the

plant is stable.

To perform the gap analysis, a new configuration of the perturbed (actual) system which

allowed for the consideration of the nonlinear components of the plant and controller in

calculating a bound for the gap metric was investigated. In this configuration minimizing

the gap metric made the nonlinear system approximates its linear version. The stability
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condition found using this approach depends on the linear gain of the system and the

bound on the gap between the linear and the nonlinear configurations of the system.

The result found using the gap metric is also conservative, since the bounds on the gap

scale with the uncertainty in the plant, hence having large nonlinearities in the plant will

make this stability condition harder to be met, on the other hand the linear component

P of the plant is required to be stable.

In later chapters affine systems will be considered. The gap metric will be used to find

more general results where the stability assumption on P is dropped and Proposition

3.7 does not hold. In this case the system characterization will be more complex and

analysis involving coprime factors will be required.





Chapter 4

Stability Analysis for Affine

Systems with Input Nonlinearity

Using the Small Gain Theorem

and the Gap Metric

4.1 Introduction

This chapter undertakes robustness analysis for a stable affine nonlinear system with

input nonlinearity using the small gain theorem and the gap metric. First a stability

condition is provided for this system using the small gain theorem. Then the gap metric

analysis is performed to find stability conditions for this system. In this chapter the

gap analysis will follow the same procedure carried out in Chapter 3, however, a MIMO

affine nonlinear system will be considered which is significantly more complicated than

the SISO Hammerstein model considered in Chapter 3. To apply the gap analysis for

this new system, a more complex configuration (rather than the two block structure used

in Chapter 3) is needed. Hence, a three plant configuration P1, P2, P3 will be used and

a stability condition will be given for this system using the gap metric network result

introduced in (Theorem (10)) Georgiou and Smith (1997). An illustrative example is

then used to compare the stability conditions found using the small gain theorem and

the gap metric. This example will investigate the validity of each result in providing

stability for a nonlinear system.

53
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4.2 Affine Systems with Input Nonlinearity

Consider an affine nonlinear system described as

P1 : L∞,e → Ln∞,e
: u 7→ y,

ẋ = f(x) + g(x)u, (4.1)

y = h(x), (4.2)

where x = (x1, x2, · · · , xn), f, g, and h are smooth in Rn. The mappings f : Rn → Rn,

g : Rn → Rn and h : Rn → R are called vector fields on Rn. The derivative ẏ is given

by:

ẏ =
∂h

∂x
[f(x) + g(x)u] = Lfh(x) + Lgh(x)u

where

Lfh(x) =
∂h

∂x
f(x)

The new notation is convenient when we repeat the calculation of the derivative with

respect to the same vector field or a new one. For example, the following notation is

used:

LgLfh(x) =
∂Lfh

∂x
g(x),

L2
fh(x) = LfLfh(x) =

∂Lfh

∂x
f(x),

Lkfh(x) = LfL
k−1
f h(x) =

∂Lk−1
f h

∂x
f(x),

L0
fh(x) = h.

If Lgh(x) = 0 then ẏ = Lfh(x) is independent of u. If we continue to calculate the

second derivative of y, denoted by y(2), we obtain:

y(2) =
∂Lfh

∂x
[f(x) + g(x)u] = L2

fh(x) + LgLfh(x)u.

Once again, if LgLfh(x) = 0, then y(2) = L2
fh(x) is independent of u. Repeating this

process, we see that if f, g, h satisfy:

LgL
i−1
f h(x) = 0, i = 1, 2, . . . , ρ− 1; LgL

ρ−1
f h(x) 6= 0,

then u does not appear in the equations of y, ẏ, . . . , y(ρ−1) and appears in the equation

y(ρ) with a nonzero coefficient:

y(ρ) = Lρfh(x) + LgL
ρ−1
f h(x)u.
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The system is input-output linearizable since the state feedback control:

u =
1

LgL
ρ−1
f h(x)

[
−Lρfh(x) + v

]
reduces the input-output map to:

y(ρ) = v,

which is a chain of ρ integrators Khalil (2002). In this case the integer ρ is the relative

degree of the system, defined as follows:

Definition 4.1. The nonlinear system (4.1)-(4.2) is said to have relative degree ρ,

1 ≤ ρ ≤ n, if

LgL
i−1
f h(x) = 0, i = 1, 2, . . . , ρ− 1; LgL

ρ−1
f h(x) 6= 0. (4.3)

for all x ∈ Rn.

The case considered in this analysis is when the relative degree of P1 equals the order

of this system i.e. ρ = n. A change of variables x∗ = T (x) is needed to transform the

state equation from x − coordinates to x∗ − coordinates. The map T used must be a

diffeomorphism where

Definition 4.2. A function T : Rn → Rn is called a diffeomorphism if it is smooth, and

if its inverse T−1 exists and is smooth.

The form of T considered is defined as follows

Definition 4.3. Suppose the nonlinear system (4.1)-(4.2) where f, g, and h are suffi-

ciently smooth in Rn, is full relative degree (i.e relative degree = state dimension). Then

the map T : Rn → Rn given by

T (x) =


h(x)

Lfh(x)
...

Ln−1
f h(x)

 =


T1(x)

T2(x)
...

Tn(x)

 , (4.4)

is a diffeomorphism and transforms the system into the normal form (x∗ = T (x)), where

P1 : Ln+1
∞,e → Ln∞,e : (u1, z1) 7→ (y1),

ẋ∗ = Ax∗ +B(f∗(z1) + g∗(z1)u1), (4.5)

y1 = (y11, . . . , y1n) = x∗, (4.6)

z1 = (z11, . . . , z1n) = x∗, (4.7)

In this system the feedback input y1 is considered as an input, z1, to the nonlinear parts
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of the plant g∗(z1) and f∗(z1), and A =



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

. . .
...

0 0 0 . . . 0 1

a1 a2 . . . an−1 an


, B =


0
...

0

1

 ,

f∗(x∗) = Lnfh(T−1(x∗)),

g∗(x∗) = LgL
n−1
f h(T−1(x∗)).

Such a system is said to be feedback linearizable.

For simplicity, in this chapter we consider the transformed plant to only have a nonlinear

input component. This can be done by setting f∗(z1) = 0 in (4.5), so that we have the

system

P ′1 : Ln+1
∞,e → Ln∞,e : (u1, z1) 7→ (y1),

ẋ∗ = Ax∗ +Bg∗(z1)u1, (4.8)

y1 = (y11, . . . , y1n) = x∗, (4.9)

z1 = (z11, . . . , z1n) = x∗,

The feedback control connection for this system is shown in Figure 4.1.

P̃

1
g∗(z2) C̃

-

?
�

6

u1 v1 y1u0

y0

+

-

+
-

y2v2u2 �

- -

�

����

����

g∗(z1)-
-

�

z1 z2
�-1

P ′1

C ′1

Figure 4.1: Nonlinear Feedback System

Here the linear part of the plant is

P̃ : L∞,e → Ln∞,e : v1 7→ y1,

ẋ∗ = Ax∗ +Bv1, (4.10)

y1 = x∗, (4.11)

given that v1 = g∗(z1)u1 and P̃ is assumed to be stable (this is done because the plant
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required for the small gain theorem analysis must be stable), then we can define P ′1 as

P ′1 : Ln+1
∞,e → Ln∞,e : (u1, z1) 7→ (y1),

y1 = P̃ g∗(z1)u1 (4.12)

z1 = (z11, . . . , z1n) = y1.

Motivated by the form of (4.8), the feedback linearizing controller for this system is

given as:

C ′1 : L2n
∞,e → L∞,e : (y2, z2) 7→ u2

u2 =
1

g∗(z2)
C̃y2, (4.13)

z2 = (z21, . . . , z2n) = −y2,

where y2 = (y21, . . . , y2n), the signal −y2 is considered as an input z2 to the nonlinear

part 1
g∗(z2) and C̃ is the linear component of the controller C ′1,

C̃ : Ln∞,e → L∞,e : y2 7→ v2 (4.14)

v2 = c>y2. (4.15)

and

c = (c1, . . . , cn)>.

For the system shown in Figure 4.1 the closed loop equations can be written as:

u0 = u1 + u2, (4.16)

y0 = y1 + y2, (4.17)

v1 = g∗(z1)u1, (4.18)

v2 = C̃y2, (4.19)

y1 = P̃ v1, (4.20)

u2 =
1

g∗(z2)
v2. (4.21)

We note that the system shown in Figure 4.1 is not equivalent to the closed loop system

[P,C] shown in Figure 2.1. This is due to the presence of the two signals z1, z2 which feed

the signals y1,−y2 to the blocks P ′1, C
′
1, respectively. Hence, we cannot apply Theorem

2.11 to find stability conditions for this system.

However, the linear configuration which will be needed to find stability conditions for

this system corresponds to that shown in Figure 2.1, since replacing g∗(z1) and 1
g∗(z2)

by the linear operators π : (u1, z1) 7→ v1, v1 = u1 and π′ : (v2, z2) 7→ u2, u2 = v2,

respectively, will result in the system [P̃ , C̃] shown in Figure 4.2.

The blocks π, π′ cancel the effect of the signals z1, z2 on the closed loop system [P1, C1].
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P̃

π′ C̃

-

?
�

6

u1 v1 y1u0

y0

+

-

+
-

y2v2u2 �

- -

�

����

����

π-
-

�

z1 z2
�-1

P1

C1

Figure 4.2: Linear configuration of the system in Figure 4.1

Hence, the signals z1, z2 can be removed, with the mappings π, π′ unchanged as shown

in Figure 4.3.

P̃

C̃

-

?

6

u1 y1u0

y0

+

-

+
-

y2u2
�

-

�

����

����

-

Figure 4.3: Linear configuration of the system in Figure 4.1 with z1, z2 removed and
the mappings π, π′ applied to the system

Note that ΠP̃ //C̃ is the closed loop operator for the system shown in Figure 4.3.

Robust stability analysis is carried out for the system shown in Figure 4.1 using two

approaches, the small gain theorem and the gap metric. Then a simple example is used

to compare the stability conditions found using these approaches.

4.3 Stability Analysis for Stable Affine Systems with Input

Nonlinearity Using the Small Gain Theorem

This section will carry out stability analysis for the closed loop system shown in Figure

4.1 using the small gain theorem stated in Theorem 2.8. In this analysis, Definition

2.7 will be used to define the stability for this system. In this analysis the following

assumption on the form of g∗(x) is required:

Assumption 4.4. Assume g∗ : R → R is a continuous nonlinear function, satisfying the

following condition:

∃ε > 0, ∃D <∞ and ε ≤ ‖g∗(x)‖ ≤ D ∀x ∈ R,
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Hence

‖g∗(x)‖ ≤ D ∀x ∈ R, (4.22)∥∥∥∥ 1

g∗(x)

∥∥∥∥ ≤ 1

ε
∀x ∈ R. (4.23)

Then a stability condition based on Theorem 2.8 for the nonlinear closed loop system

shown in Figure 4.1 is given in the following theorem:

Theorem 4.5. Consider the nonlinear closed loop system given by Figure 4.1 and

(4.16)-(4.21). Suppose P is stable and g∗(x) satisfies Assumption 4.4. Then this closed

loop system is a bounded input, bounded output stable system if the following condition

holds:

D

ε
‖P̃‖‖C̃‖ < 1.

Proof. First we consider y1 and u2 in the system shown in Figure 4.1 and given by (4.20)

and (4.21), respectively, as follows:

y1 = P̃ v1

= P̃ g∗(z1)u1

‖y1‖ ≤ ‖P̃‖‖g∗(z1)‖‖u1‖,

Using(4.22) we have:

‖y1‖ ≤ D‖P̃‖‖u1‖, (4.24)

for u2:

u2 =
1

g∗(z2)
v2.

=
1

g∗(z2)
(C̃y2)

‖u2‖ ≤
∥∥∥∥ 1

g∗(z2)

∥∥∥∥ ‖C̃‖‖y2‖,

using (4.23) we have

‖u2‖ ≤
1

ε
‖C̃‖‖y2)‖, (4.25)

Now consider (2.14) and (2.15) in Theorem 2.8, then:

‖ y1 ‖ = ‖ P (u1) ‖≤ γ1 ‖ u1 ‖ +β,

‖ u2 ‖ = ‖ C(y2) ‖≤ γ2 ‖ y2 ‖ +β.
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Let β1, β2 = 0 , so that:

‖ y1 ‖ = ‖ P (u1) ‖≤ γ1 ‖ u1 ‖, (4.26)

‖ u2 ‖ = ‖ C(y2) ‖≤ γ2 ‖ y2 ‖ . (4.27)

Comparing the expressions in (4.26), (4.27) with those found for ‖ y1 ‖, ‖ u2 ‖ given by

(4.24) and (4.25), respectively, we have:

γ1 = D‖P̃‖.

and

γ2 =
1

ε
‖C̃‖.

From the above expressions for γ1 and γ2, it follows that the closed loop system shown

in Figure 4.1 is a bounded input bounded output stable system if

γ1γ2 < 1⇒ D

ε
‖P̃‖‖C̃‖ < 1,

as required.

Comparing the stability condition in Theorem 4.5 to that given in Theorem 3.3 for

Hammerstein systems, this new condition also states that the stability of closed loop

system shown in Figure 4.1 is ensured if the product of the system components gains is

less than one and it requires the linear part P̃ of the plant P ′1 to be stable.

4.4 Stability Analysis for Stable Affine Systems with Input

Nonlinearity Using the Gap Metric

In this section the nonlinear system shown in Figure 4.1 is considered, and the gap metric

framework is applied to study the stability of this system using the following theorem:

Theorem 4.6. Consider the nonlinear closed loop system shown in Figure 4.1 and given

by (4.16)-(4.21). Suppose P̃ is stable and g∗ satisfies Assumption 4.4. Then this system

has a robust stability margin.

The analysis carried out in this section will follow the approach of Chapter 3, and

analogous to that for Theorem 3.4 , this proof also requires results that are first developed

in this section.
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To find a stability condition for the nonlinear system shown in Figure 4.1, the route

taken is as follows:

As discussed in Chapter 3, the presence of nonlinear elements in multiple blocks leads to

significant conservatism. Hence, a new representation for the system shown in Figure 4.1

is required. For this system, the stability condition in Theorem 2.11 can not be applied

(as was done in Chapter 3 for the Hammerstein model), since we cannot put this system

in a configuration that corresponds exactly to the form of the system shown in Figure

2.1 (this is due to the extra feedback signal z1 in the system shown in Figure 4.1 which

feeds back the signal y1 to the block g∗(z1)). However, this system can be configured

in a form that allows Theorem 2.13 to be applied. In the new configuration it is also

required that the nonlinear components of the plant and controller be included in one

block to calculate a bound on the gap metric, and minimizing this value means that we

can make the nonlinear system correspond more closely to its linear counterpart.

The new configuration is shown in Figure 4.4. In this configuration the nonlinear com-

ponent of the plant P1 and the nonlinear component of the controller C1 are considered

to be both included in the block P ′3 and an external input x0 is added to the system.

Also the feedback input x0−y1 is considered as an input, z1, to the nonlinear part of the

plant g∗(z1), and the feedback input −y2 is considered as an input z2 to the nonlinear

part 1
g∗(z2) .

P̃
1

g∗(z2) g∗(z1)

C̃

-
?

�

u1 v1
y1

u0

y0

P ′3

P ′2

+

-

+

-

y2

v2

u2

�

- - - -�
��

�
��

- -

x0+

-
��
��

P ′1

�-1 x1

ỹ1

z1z2

?

?

-1

Figure 4.4: Nonlinear system with input nonlinearity configuration

To do stability analysis for this new configuration, we consider the triple system configu-

ration shown in Figure 4.5. For this system a ‘network’ result which was introduced (as

Theorem (10)) in Georgiou and Smith (1997) can be applied to find stability condtions.

This theorem was stated in Subsection 2.7.1 (Theorem 2.13).
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P1

P3

-u0 u1

u3

x1

y2

y0��

?

--

6

P2

?

y1

s

x0�

x2

y3

h

h

h

Figure 4.5: Feedback interconnection of three subsystems Pi, (i = 1, 2, 3) shown
previously in Figure 2.8

The linear configuration for the system shown in Figure 4.4 is taken to be the system

shown in Figure 4.6. The components P1, P2, P3 are taken to be with the nonlineari-

ties g∗(z1) and 1
g∗(z2) replaced by the linear operators π : (u1, z1) 7→ v1, v1 = u1 and

π′ : (v2, z2) 7→ u2, u2 = v2, respectively.

To apply Theoreom 2.13 we must put the nonlinear and linear configurations of

P̃π′ π

C̃

-
?

�

u1 v1
y1

u0

y0

P3

P2

+

-

+

-

y2

v2

u2

�

- - - -�
��

�
��

- -

x0+

-
��
��

P1

�-1 x1

ỹ1

z1z2

?

?

-1

Figure 4.6: Linear control system with linear plant configuration

the systems shown in Figures 4.4 and 4.6 in a form comparable to that given in Fig-

ure 4.5. In order to do this we consider three signal spaces U = Ln∞,e, X = Ln∞,e
and Y = Ln∞,e, together with the following augmented signals, let v̂2 = −v2 and let

u′1 =
(

0 0 z1 0
)>

and let u′2 =
(

0 v̂2 0 z2

)>
also let the external input u0

be changed to u′0 =
(
u0 d1 d2 d3

)>
, let u′3 = u′0−u′2−u′1 =

(
u0 d1 d2 d3

)>
−(

0 v̂2 0 z2

)>
−
(

0 0 z1 0
)>

=
(
u0 d1 − v̂2 d2 − z1 d3 − z2

)>
, let ṽ2 =

d1 − v̂2, z̃1 = d2 − z1, z̃2 = d3 − z2 then u′3 =
(
u0 ṽ2 z̃1 z̃2

)>
. Finally, let x′0 = y0,

y′0 = x0, y′3 = y1, x′1 = x1, x′2 = y2 and let y′1 = y′0 − y′3 = x0 − y1. The change made to

the nonlinear configuration of this system is shown in Figure 4.7.
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P̃
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Figure 4.7: Nonlinear system with input nonlinearity and injected disturbance

While the change made to the linear configuration of this system is shown in Figure 4.8.

P̃π′ π

C̃
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?

��

u1 v1
y1
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y0
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+
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�
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��
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6

d1 d3 d2

-

-

-

+

+

+

z̃2
ṽ2

z̃1

�-1
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Figure 4.8: Linear system with input nonlinearity and injected disturbance

Note from the two systems shown in Figure 4.7 and Figure 4.8 that P1 = P ′1 and P2 = P ′2.

These configurations correspond to those of Figures 4.4, 4.6, respectively, except for the

presence of d1, d2 and d3. Figures 4.7, 4.8 correspond exactly to the forms shown in

Figures 4.9, 4.10, respectively, which in turn have identical structure to that of Figure

4.5.
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Figure 4.9: Nonlinear control system with input nonlinearity, second configuration
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�
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Figure 4.10: Linear control system with linear input, second configuration

Since P1 = P ′1 and P2 = P ′2 , then

~δ(P1, P
′
1) = 0, ~δ(P2, P

′
2) = 0.

Using Theorem 2.13, the robust stability condition is given as:

3∑
i=1

~δ(Pi, P
′
i ) < ‖Π(i)‖−1,

For our system this condition becomes:

~δ(P3, P
′
3) < ‖Π(3)‖−1. (4.28)

Then the gap metric measures the difference between the linear nominal plant P3 :
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u′3 7→ y′3, y
′
3 = P̃ π(u0 − π′(ṽ2, z̃2), z̃1) = P̃ (u0 − ṽ2) and the nonlinear perturbed plant

P ′3 : u′3 7→ y′3, y
′
3 = P̃ g∗(z̃1)(u0 − 1

g∗(z̃2) ṽ2). The plants P3 and P ′3 are shown in Figure

4.11.

P3:

P̃
1

g∗(z̃2) g∗(z̃1)-
?u1 v1 y′3

u0

+

-
ṽ2

u2
- - - -�
��- -

z̃2

z̃1

P ′3:

(a)

(b)

P̃π′ π-
?u1 v1 y′3

u0

+

-
ṽ2

u2
- - - -�
��- -

z̃2

z̃1

Figure 4.11: Second plant mapping:(a) purely linear, (b) with nonlinear components
g(z1) and g(z2).

Analogous to the analysis in Section 3.5, before providing a complete description of the

operators P ′1, P
′
2 and P ′3 and P1, P2 and P3 shown in Figures 4.9 and 4.10, respectively,

we briefly state the motivation for the proceeding manipulations.

The stability condition (4.28) can be related to the original system configuration shown

in Figure 4.1 as follows: It will be shown later in the proof of Theorem 4.6 that the

stability margin for the system shown in Figure 4.7 is less than or equal to the stability

margin corresponding to the system shown in Figure 4.4 which in turn is less than or

equal to the stability margin corresponding to the original system shown in Figure 4.1.

This is because for each pair the latter is a special case of the former.

A description for the closed loop operators P ′1, P
′
2 and P ′3 shown in Figure 4.9 is given

as

P ′1 : Ln∞,e → L2n
∞,e : y′1 7→ (x′1, u

′
1)

x′1 = −y′1, u′1 =
(

0 0 z1 0
)>

,

z1 = y′1,
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where y′1 = ỹ1, and

P ′2 : Ln∞,e → Ln+1
∞,e : x′2 7→ u′2,

u′2 =
(

0 v̂2 0 z2

)>
,

z2 = x′2,

v̂2 = −C̃x′2,

the configuration for the block P ′3 is given as:

P ′3 : L2n+2
∞,e → Ln∞,e : u′3 7→ y′3,

u′3 =
(
u0 ṽ2 z̃1 z̃2

)>
y′3 = P̃ g∗(z̃1)(u0 −

1

g∗(z̃2)
ṽ2). (4.29)

While the closed loop operators P1, P2, P3 for the linear configuration shown in Figure

4.10 are given as

P1 : Ln∞,e → L2n
∞,e : y′1 7→ (x′1, u

′
1)

x′1 = −y′1, u′1 =
(

0 0 z1 0
)>

,

z1 = y′1,

and

P2 : Ln∞,e → Ln+1
∞,e : x′2 7→ u′2

u′2 =
(

0 v̂2 0 z2

)>
, z2 = x′2,

v̂2 = −C̃x′2,

also,

P3 : L2n+2
∞,e → Ln∞,e : u′3 7→ y′3,

u′3 =
(
u0 ṽ2 z̃1 z̃2

)>
,

y′3 = P̃ π(u0 − π′(ṽ2, z̃2), z̃1),

= P̃ (u0 − ṽ2). (4.30)

To apply Theorem 2.13 to this system, we must satisfy inequality (4.28). In the following

two subsections the two sides of this inequality will be evaluated, namely the linear gain

‖Π(3)‖ and the gap value ~δ(P3, P
′
3).
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4.4.1 Finding ‖Π(3)‖ for a Nonlinear System with Input Nonlinearity

Starting with the RHS of the inequality (4.28). The parallel projection Π(3) is the

mapping from the external signals (u′0, x
′
0, y
′
0) to the internal signals (u′3, 0, y

′
3) in the

configuration shown in Figure 4.10. To find the linear gain ‖Π(3)‖ consider the relation:

 u′3
0

y′3

 = Π(3)

 u′0
x′0
y′0

 ,

‖Π(3)‖ = sup
‖u′0,x′0,y′0‖6=0

‖u′3, 0, y′3‖
‖u′0, x′0, y′0‖

.

Then:

‖Π(3)‖ = sup
‖u′0,x′0,y′0‖6=0

‖u′3, y′3‖
‖u′0, x′0, y′0‖

,

= sup
‖u′0,x′0,y′0‖6=0

‖u′3, P3u
′
3‖

‖u′0, x′0, y′0‖
. (4.31)

Now to find expressions for u′3 and P3u
′
3 in terms of u′0, x

′
0, y
′
0, we start with P3u

′
3 as

follows:

P3u
′
3 = P̃ (u0 − ṽ2). (4.32)

Then ṽ2 is found as:

ṽ2 = d1 − v̂2,

= d1 + v2,

= d1 + C̃x′2,

= d1 + C̃(x′0 − x′1),

= d1 + C̃(x′0 + y′1),

= d1 + C̃(x′0 + y′0 − y′3),

= d1 + C̃(x′0 + y′0 − P̃ (u0 − ṽ2)),

(I − C̃P̃ )ṽ2 = d1 + C̃(x′0 + y′0 − P̃ u0),

ṽ2 = (I − C̃P̃ )−1(d1 + C̃(x′0 + y′0 − P̃ u0)), (4.33)

= (I − C̃P̃ )−1(−C̃P̃ I C̃ C̃)


u0

d1

x′0
y′0

 (4.34)
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Using (4.32) we have:

P3u
′
3 = P̃

u0 − (I − C̃P̃ )−1(−C̃P̃ I C̃ C̃)


u0

d1

x′0
y′0




= P̃
(
u0 + ((I − C̃P̃ )−1C̃P̃ u0 − (I − C̃P̃ )−1d1 + (I − C̃P̃ )−1C̃x′0 − (I − C̃P̃ )−1C̃y′0)

)
,

= P̃
(
I + (I − C̃P̃ )−1C̃P̃ − (I − C̃P̃ )−1 − (I − C̃P̃ )−1C̃ − (I − C̃P̃ )−1C̃

)


u0

d1

x′0
y′0

 .

Since I + (I − C̃P̃ )−1C̃P̃ = (I − C̃P̃ )−1 and let:

c =
(
P̃ ((I − C̃P̃ )−1 − (I − C̃P̃ )−1 0 0 − (I − C̃P̃ )−1C̃ − (I − C̃P̃ )−1C̃)

)
,(4.35)

then:

P3u
′
3 = c

(
u0 d1 d2 d3 x′0 y′0

)>
. (4.36)

Next we find u′3 as:

u′3 =


u0

ṽ2

z̃1

z̃2

 =


u0

ṽ2

d2 − z1

d3 − z2

 =


u0

ṽ2

d2 − (y′0 − y′3)

d3 − (x′0 − (y′0 − y′3)

 ,

using (4.34) and (4.36) and letting:

Λ =
I 0 0 0 0 0

−(I − C̃P̃ )−1C̃P̃ (I − C̃P̃ )−1 0 0 (I − C̃P̃ )−1C̃ (I − C̃P̃ )−1C̃

P̃ (I − C̃P̃ )−1 −P̃ (I − C̃P̃ )−1 I 0 −P̃ (I − C̃P̃ )−1C̃ −(I + P̃ (I − C̃P̃ )−1C̃)

P̃ (I − C̃P̃ )−1 −P̃ (I − C̃P̃ )−1 0 I −(I − P̃ (I − C̃P̃ )−1C̃) −(I + P̃ (I − C̃P̃ )−1C̃)


we have:

u′3 = Λ
(
u0 d1 d2 d3 x′0 y′0

)>
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using (4.31) and defining Q =

(
Λ

c

)
we have:

‖Π(3)‖ = sup
‖u′0,x′0,y′0‖6=0

‖u′3, P3u
′
3‖

‖u′0, x′0, y′0‖
,

≤ sup
‖u′0,x′0,y′0‖6=0

‖Q‖
∥∥∥ u0 d1 d2 d3 x′0 y′0

∥∥∥
‖u′0, x′0, y′0‖

,

since
(
u0 d1 d2 d3

)>
= u′0, then:

‖Π(3)‖ ≤ sup
‖u′0,x′0,y′0‖6=0

‖Q‖
∥∥∥ u′0 x′0 y′0

∥∥∥
‖u′0, x′0, y′0‖

,

= ‖Q‖.

The components of ‖Π(3)‖ are the closed loop transfer functions of the linear system

[P̃ , C̃], confirming that ‖Π(3)‖ is finite. Hence from (4.28) the gap between P3 and P ′3
must satisfy:

~δ(P3, P
′
3) <

1

‖Q‖
. (4.37)

4.4.2 Finding the Gap Metric for a Nonlinear System with Input Non-

linearity

In this subsection the LHS, ~δ(P3, P
′
3), of the inequality (4.28) is considered. To find

~δ(P3, P
′
3) an analogous analysis to that of Subsection 3.5.2 is carried out. First, the

graphs for P3 and P ′3 are defined to be:

GP̃ :=

{(
u

y

)
: y = P̃ u, ‖u‖ <∞, ‖y‖ <∞

}
, (4.38)

GP3 :=




u0

ṽ2

z̃1

z̃2

y′3

 :

∥∥∥∥∥∥∥∥∥∥∥∥

u0

ṽ2

z̃1

z̃2

y′3

∥∥∥∥∥∥∥∥∥∥∥∥
<∞, y′3 = P̃ (u0 − ṽ2)


, (4.39)

GP ′3 :=




u0

ṽ2

z̃1

z̃2

y′3

 :

∥∥∥∥∥∥∥∥∥∥∥∥

u0

ṽ2

z̃1

z̃2

y′3

∥∥∥∥∥∥∥∥∥∥∥∥
<∞, y′3 = P̃ g∗(z̃1)(u0 −

1

g∗(z̃2)
ṽ2)


. (4.40)
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To find a bound on the gap between GP3 and GP ′3 , a surjective map Φ is required between

these graphs. The following two lemmas are used to define the map Φ. First, consider the

nonlinear part of the plant P ′3 shown in Figure 4.11b, for this component the following

lemma is used.

Lemma 4.7. Let g∗ satisfy Assumption 4.4, and consider the following equation:

v1 = g∗(z̃1)(u0 −
1

g∗(z̃2)
ṽ2). (4.41)

Then:

‖ṽ2‖ <∞, ‖u0‖ <∞⇒ ‖v1‖ <∞,

and

‖v1‖ <∞, ‖u0‖ <∞⇒ ‖ṽ2‖ <∞.

Proof. We will first prove that:

‖ṽ2‖ <∞, ‖u0‖ <∞⇒ ‖v1‖ <∞.

Let ‖ṽ2‖ < ∞, ‖u0‖ < ∞, and using Assumption 4.4 since 1
g∗ is a bounded function,

‖ 1
g∗(z̃2)‖ <∞. Using Lemma 2.2 and since ‖ṽ2‖ <∞,

‖ 1

g∗(z̃2)
ṽ2‖ ≤ ‖

1

g∗(z̃2)
‖‖ṽ2‖ <∞.

Since ‖u0‖ <∞, it follows that:

‖u0 −
1

g∗(z̃2)
ṽ2‖ ≤ ‖u0‖+ ‖ 1

g∗(z̃2)
ṽ2‖ <∞.

Since g∗ is a bounded function, then ‖g∗(z̃1)‖ <∞, and hence by Lemma 2.2,

‖v1‖ = ‖g∗(z̃1)(u0 −
1

g∗(z̃2)
ṽ2)‖ ≤ ‖g∗(z̃1)‖‖(u0 −

1

g∗(z̃2)
ṽ2)‖ <∞.

as required.

Next we will prove that:

‖v1‖ <∞, ‖u0‖ <∞⇒ ‖ṽ2‖ <∞.

Let ‖v1‖ <∞, ‖u0‖ <∞, where ṽ2 can be obtained from equation (4.41):

ṽ2 = g∗(z̃2)(u0 −
1

g∗(z̃1)
v1).

Using Assumption 4.4 then 1
g∗ is a bounded function, then ‖ 1

g∗(z̃1)‖ < ∞, also using
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Lemma 2.2 and since ‖v1‖ <∞ then:

‖ 1

g∗(z̃1)
v1‖ ≤ ‖

1

g∗(z̃1)
‖‖v1‖ <∞.

Since ‖u0‖ <∞, it follows that

‖u0 −
1

g∗(z̃1)
v1‖ ≤ ‖u0‖+ ‖ 1

g∗(z̃1)
v1‖ <∞.

Since g∗ is a bounded function, then ‖g∗(z̃2)‖ <∞, and

‖ṽ2‖ = ‖g∗(z̃2)(u0 −
1

g∗(z̃1)
v1)‖ ≤ ‖g∗(z̃2)‖‖(u0 −

1

g∗(z̃1)
v1)‖ <∞.

as required.

In this analysis Φ is defined to be the map between stable P3 and P ′3. The plants P3

and P ′3 are stable if the plant P̃ is stable, as proved in the following lemma.

Lemma 4.8. Let P̃ be stable and let g∗ satisfy Assumption 4.4. Then P3 and P ′3 given

by Figure 4.11 and (4.30) and (4.29), respectively, are stable.

Proof. First we prove that if P̃ is stable then P3 is stable. In order to do that we

must prove that if ‖u′3‖ < ∞ then ‖P3u
′
3‖ < ∞. Also let ‖u′3‖ < ∞ and hence since

u′3 =


u0

ṽ2

z̃1

z̃2

, this implies ‖u0‖, ‖ṽ2‖, ‖z̃1‖, ‖z̃2‖ <∞. Then by definition:

‖y′3‖ = ‖P3u
′
3‖,

= ‖P̃ (u0 − ṽ2)‖,

≤ ‖P̃‖(‖u0‖+ ‖ṽ2‖),

<∞.

Hence P3 is stable.

Similarly to prove that if P̃ is stable then P ′3 is stable we must prove that if ‖u′3‖ <

∞ then ‖P ′3u′3‖ < ∞. So, let ‖u′3‖ < ∞. Since u′3 =


u′0
ṽ2

z̃1

z̃2

, it follows that
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‖u0‖, ‖ṽ2‖, ‖z̃1‖, ‖z̃2‖ <∞. By definition:

y′3 = P ′3u
′
3 = P̃ g∗(z̃1)(u0 −

1

g∗(z̃2)
ṽ2),

‖y′3‖ = ‖P̃ g∗(z̃1)(u0 −
1

g∗(z̃2)
ṽ2)‖,

Using Lemma 4.7, since ‖u0‖, ‖ṽ2‖ <∞ then:

‖v1‖ = ‖g∗(z̃1)(u0 −
1

g∗(z̃2)
ṽ2)‖ <∞.

Since P̃ is stable, it follows that:

‖y′3‖ = ‖P̃‖‖g∗(z̃1)(u0 −
1

g∗(z̃2)
ṽ2)‖ <∞.

Therefore P ′3 is stable as required.

Since P3 and P ′3 are stable, the graphs for P3 and P ′3 can be written in the form given

in the following proposition:

Proposition 4.9. Let P̃ be stable and let g∗ satisfy Assumption 4.4, for the systems P3

and P ′3 given by Figure 4.11 and (4.30) and (4.29), respectively. Then the graphs GP3

and GP ′3 satisfy:

GP3 :=





u0

ṽ2

z̃1

z̃2

 , P3


u0

ṽ2

z̃1

z̃2


 :

∥∥∥∥∥∥∥∥∥∥
u0

ṽ2

z̃1

z̃2

∥∥∥∥∥∥∥∥∥∥
<∞

 , (4.42)

GP ′3 :=





u0

ṽ2

z̃1

z̃2

 , P ′3


u0

ṽ2

z̃1

z̃2


 :

∥∥∥∥∥∥∥∥∥∥
u0

ṽ2

z̃1

z̃2

∥∥∥∥∥∥∥∥∥∥
<∞

 . (4.43)

Proof. To show that if P̃ is stable and g∗ satisfies Assumption 4.4 then GP ′3 given in

(4.40) can be written as that given in (4.43), and denote the set given in (4.43) as A.

Let



u0

ṽ2

z̃1

z̃2

 , P ′3


u0

ṽ2

z̃1

z̃2


 ∈ A, i.e ‖(u0, ṽ2, z̃1, z̃2)‖ < ∞, P̃ is stable and g∗ satisfies

Assumption 4.4. Hence using Lemma 4.8, P ′3 is stable. Since ‖(u0, ṽ2, z̃1, z̃2)‖ <∞ and

P ′3 is stable then ‖y′3‖ = ‖P ′3(u0, ṽ2, z̃1, z̃2)‖ <∞. Thus we conclude that A ⊂ GP ′3 .
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Next we prove that GP ′3 ⊂ A. Let


u0

ṽ2

z̃1

z̃2

y′3

 ∈ GP ′1 , i.e ‖(u0, ṽ2, z̃1, z̃2, y
′
3)‖ <∞ and y′3 =

P̃ g∗(z̃1)(u0 − 1
g∗(z̃2) ṽ2). Then ‖(u0, ṽ2, z̃1, z̃2)‖ < ∞ and y′3 = P̃ g∗(z̃1)(u0 − 1

g∗(z̃2) ṽ2) =

P ′3(u0, ṽ2, z̃1, z̃2).

This leads to GP ′3 ⊂ A. Hence GP ′3 = A.

To show that GP3 given by (4.42) is equivalent to that given by (4.39), set g∗ = π, 1
g∗ = π′.

In this case GP3 follows as a special case, as required.

The map Φ between GP3 and GP ′3 is defined using the following proposition:

Proposition 4.10. Let P̃ be stable and let g∗ satisfy Assumption 4.4. Let P3 and

P ′3 given by Figure 4.11 and (4.30) and (4.29), respectively. Then there exists a map

Φ : GP3 → GP ′3 given by:

Φ




u0

ṽ2

z̃1

z̃2



P3


u0

ṽ2

z̃1

z̃2




=




u0

ṽ2

z̃1

z̃2



P ′3


u0

ṽ2

z̃1

z̃2




, (4.44)

Furthermore this map is surjective.

Proof. First we prove that if

x =
(

(u′′0, ṽ
′
2, z̃
′
1, z̃
′
2) P3(u′′0, ṽ

′
2, z̃
′
1, z̃
′
2)
)>
∈ GP3 ,

then Φ(x) ∈ GP ′3 . Since x ∈ GP3 then ‖(u′′0, ṽ′2, z̃′1, z̃′2)‖, ‖y′′3‖ = ‖P3(u′′0, ṽ
′
2, z̃
′
1, z̃
′
2)‖ < ∞.

Let y =
(

(u0, ṽ2, z̃1, z̃2) P ′3(u0, ṽ2, z̃1, z̃2)
)>

= Φ(x). We need to show that y′3 =

P ′3(u0, ṽ2, z̃1, z̃2) and ‖(u0, ṽ2, z̃1, z̃2)‖ < ∞. It follows from (4.44) that (u0, ṽ2, z̃1, z̃2) =

(u′′0, ṽ
′
2, z̃
′
1, z̃
′
2) and y′3 = P ′3(u′′0, ṽ

′
2, z̃
′
1, z̃
′
2), then ‖(u0, ṽ2, z̃1, z̃2)‖ <∞.

Using Proposition 4.9 since P̃ is stable and g∗ satisfies Assumption 4.4 and ‖(u0, ṽ2, z̃1, z̃2)‖ <
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∞, then ‖y′3‖ = ‖P ′3(u0, ṽ2, z̃1, z̃2)‖ <∞, and hence:

y =
(

(u0, ṽ2, z̃1, z̃2) P ′3((u0, ṽ2, z̃1, z̃2)
)>

=
(

(u0, ṽ2, z̃1, z̃2) y′3

)>
∈ GP ′3 .

as required.

Next, to prove that Φ is surjective, let u = (u0, ṽ2, z̃1, z̃2) and using Proposition 2.14

since P3 and P ′3 are stable and since ‖(u0, ṽ2, z̃1, z̃2)‖ <∞ then the map given in (4.44)

is surjective, as required.

Using the previous results, a bound on the gap between P3 and P ′3 appearing in the

inequality (2.20) can be obtained. This is done using (4.28) as follows

Theorem 4.11. Let P̃ be stable and let g∗ satisfy Assumption (4.4). Let P3 and P ′3
be given by Figure 4.11 and (4.30) and (4.29), respectively. Then a bound on the gap

between P3 and P ′3 is

~δ(P3, P
′
3) ≤ ‖P̃‖‖Mg, Ng‖. (4.45)

where ‖g∗(z̃1)− 1‖ ≤Mg and
∥∥∥1− g∗(z̃1) 1

g∗(z̃2)

∥∥∥ ≤ Ng,

Proof. Using Proposition 4.10, since P̃ is stable and g∗ satisfies Assumption 4.4. Then

there exists a surjective map Φ : GP3 → GP ′3 given by (4.44) and the gap between P3 and

P ′3 is given as:

~δ(P3, P
′
3) ≤ sup

x∈GP1
\{0}

‖(Φ− I)x‖
‖x‖

,

≤ sup∥∥∥∥∥∥∥∥∥
u0

ṽ2

z̃1

z̃2

∥∥∥∥∥∥∥∥∥ 6=0

‖P̃ (g∗(z̃1)(u0 − 1
g∗(z̃2) ṽ2))− P̃ (u0 − ṽ2)‖

‖u0, ṽ2, z̃1, z̃2‖

≤ sup∥∥∥∥∥∥∥∥∥
u0

ṽ2

z̃1

z̃2

∥∥∥∥∥∥∥∥∥ 6=0

‖P̃‖
(
‖g∗(z̃1)− 1‖‖u0‖+ ‖1− g∗(z̃1) 1

g∗(z̃2)‖‖ṽ2‖
)

‖u0, ṽ2, z̃1, z̃2‖
. (4.46)
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Using Assumption 4.4 since g∗, 1
g∗ are bounded functions we have:

‖g∗(z̃1)− 1‖ ≤Mg ≤ ∞∥∥∥∥1− g∗(z̃1)
1

g∗(z̃2)

∥∥∥∥ ≤ Ng ≤ ∞,

using the above inequality in (4.46), gives:

~δ(P3, P
′
3) ≤ sup∥∥∥∥∥ u0

ṽ2

∥∥∥∥∥ 6=0

‖P̃‖(Mg‖u0‖+Ng‖ṽ2‖)
‖u0, ṽ2‖

,

= sup∥∥∥∥∥ u0

ṽ2

∥∥∥∥∥ 6=0

‖P̃‖‖Mg, Ng‖.‖u0, ṽ2‖
‖u0, ṽ2‖

,

≤ ‖P̃‖‖Mg, Ng‖. (4.47)

as required.

Hence according to the following proposition robust stability is preserved for the system

shown in Figure 4.7.

Proposition 4.12. Consider the nonlinear closed loop system [P ′1, P
′
2, P

′
3] shown in Fig-

ure 4.7. Suppose P̃ is stable and g∗ satisfies Assumption 4.4. Then [P ′1, P
′
2, P

′
3] has a

robust stability margin.

Proof. Let P̃ be stable and let g∗ satisfy Assumption 4.4, then by Lemmas 4.7, 4.8,

and using Proposition 4.9 for the systems P3 and P ′3 given by Figure 4.11 and (4.30)

and (4.29), respectively, the graphs GP3 and GP ′3 can be given by (4.42) and (4.43),

respectively. Using Proposition 4.10, then there exists a map Φ : GP3 → GP ′3 given by

(4.44). This leads to the presence of a finite gap value between the linear and nonlinear

configurations of this system given by (4.47). Then the system [P ′1, P
′
2, P

′
3] given by

Figure 4.7 and (4.16)-(4.21) has a robust stability margin.

The main result Theorem 4.6 easily follows from Theorem 4.13 which we establish next.

Theorem 4.13. Consider the nonlinear closed loop system shown in Figure 4.1 and

given by (4.16)-(4.21). Suppose P̃ is stable and g∗ satisfies Assumption 4.4. Then this

system has a robust stability margin bP1,C1 which satisfies the inequality

bP1,C1 ≥ ‖Q‖−1. (4.48)
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Proof. Let 1
‖Π(3)‖

= ‖Q‖−1 be a stability margin for the system [P ′1, P
′
2, P

′
3] shown in

Figure 4.7, let 1
‖Π′

(3)
‖ be a stability margin for the system [P ′1, P

′
2, P

′
3] shown in Figure

4.4, finally let bP1,C1 = 1
‖ΠP̃ //C̃‖

be a stability margin for the system shown in Figure

4.1. Then

‖Q‖ =
∥∥Π(3)

∥∥ = sup
‖u′0,x′0,y′0‖6=0

∥∥∥∥∥∥∥Π(3)

 u′0
x′0
y′0


∥∥∥∥∥∥∥

‖u′0, x′0, y′0‖
,

= sup
‖u0,d1,d2,d3,y0,x0‖6=0

∥∥∥∥Π(3)

(
u0 d1 d2 d3 y0 x0

)>∥∥∥∥
‖u0, d1, d2, d3, y0, x0‖

,

≥ sup
‖u0,0,0,0,y0,x0‖6=0

∥∥∥∥Π′(3)

(
u0 0 0 0 y0 x0

)>∥∥∥∥
‖u0, 0, 0, 0, y0, x0‖

= ‖Π′(3)‖,

‖Π′(3)‖ = sup
‖u0,y0,x0‖6=0

∥∥∥∥Π′3

(
u0 y0 x0

)>∥∥∥∥
‖u0, y0, x0‖

,

≥ sup
‖u0,y0,0‖6=0

∥∥∥∥ΠP̃ //C̃

(
u0 y0 0

)>∥∥∥∥
‖u0, y0, 0‖

,

= ‖ΠP̃ //C̃‖.

This leads to

bP1,C1 =
1

‖ΠP̃ //C̃‖
≥ 1

‖Π′(3)‖
≥ 1

‖Π(3)‖
= ‖Q‖−1.

Then the existence of a stability margin for the system shown in Figure 4.9 guarantees

the existence of a stability margin for the system [P1, C1] shown in Figure 4.1. Also, let

P̃ be stable and let g∗ satisfy Assumption 4.4, then by Proposition 4.12, the nonlinear

closed loop system [P ′1, P
′
2, P

′
3] given by Figure 4.9 and (4.16)-(4.21), has a robust stability

margin. This leads to the conclusion that the system [P1, C1] given by Figure 4.1 and

(4.16)-(4.21) also has a robust stability margin.

Based on Theorems 4.11 and 4.13 we can write the following corollary:

Corollary 4.14. Consider the nonlinear closed loop system shown in Figure 4.1 and

given by (4.16)-(4.21). Suppose that g∗(z) satisfies Assumption 4.4. Then this system

is stable if

‖P̃‖‖Mg, Ng‖ < ‖Q‖−1. (4.49)



Chapter 4 Stability Analysis for Affine Systems with Input Nonlinearity Using the
Small Gain Theorem and the Gap Metric 77

Proof. Using Theorem 4.11 inequality (4.45), since:

~δ(P3, P
′
3) ≤ ‖P̃‖‖Mg, Ng‖,

and using Theorem 4.13 inequality (4.48), since:

bP1,C1 ≥ ‖Q‖−1,

It follows that if

‖P̃‖‖Mg, Ng‖ < ‖Q‖−1,

then:
~δ(P3, P

′
3) ≤ ‖P̃‖‖Mg, Ng‖ < ‖Q‖−1 ≤ bP1,C1 .

Hence ~δ(P3, P
′
3) < bP1,C1 and the conditions hold from Theorem 2.11, hence stability.

Next we will compare the validity of the two results given in Theorem 4.5 and Corollary

4.14 for a nonlinear control system in the following example.

4.5 Example

In this example, we wish to find robust stability conditions for the following feedback

system using the small gain theorem (Theorem 4.5) and gap metric based analysis (Corol-

lary 4.14). Then we compare these conditions by examining them for this system.

P1 : L∞,e → L∞,e
: u1 7→ y1,

ẋ1 = x2,

ẋ2 = −x1 − 2x2 + (1 + δ sin(z1))u1,

y1 = x1,

z1 = y1,

where 0 < δ < 1. Comparing this system with the one given in (4.8) allows us to set

g∗(x) = (1 + δ sin(z1)), Now 0 < 1 − δ ≤ ‖g∗(x)‖ ≤ 1 + δ and it is hence clear that

Assumption 4.4 is satisfied with ε = 1 − δ and D = 1 + δ. A feedback linearizing
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controller for this system is given as:

C : L∞,e → L∞,e : (y2, z2) 7→ u2

u2 = 0.4 ∗ 1

(1 + δ sin(z2))
y2,

z2 = −y2.

First, the small gain theorem is applied to the system and using Theorem 4.5 the small

gain stability condition is given as

1 + δ

1− δ
‖P̃‖‖C̃‖ < 1.

In this example we have ‖P̃‖ = 1 and ‖C̃‖ = 0.4, then the stability condition is reduced

to

0.4 ∗ 1 + δ

1− δ
< 1. (4.50)

Next, we examine the stability condition found using the gap metric analysis. Using

Corollary 4.14 inequality (4.49) we have

‖P̃‖‖Mg, Ng‖ <
1

‖Q‖
,

let

Mg = max
z1
‖1 + δ sin(z1)− 1‖ = δ,

Ng = max
z1,z2

∥∥∥∥1− (1 + δ sin(z1))
1

1− δ sin(z2)

∥∥∥∥ ,
=

∥∥∥∥1− (1 + δ)
1

1− δ

∥∥∥∥ =

∥∥∥∥ −2δ

(1− δ)

∥∥∥∥
In this example we have ‖P̃‖ = 1 and ‖Q‖ = 1.0079, then the stability condition reduces

to

∥∥∥∥δ, 2δ

(1− δ)

∥∥∥∥ ∗ 1.0079 < 1.

where
∥∥∥δ, 2δ

(1−δ)

∥∥∥ can be found as
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∥∥∥∥δ, 2δ

(1− δ)

∥∥∥∥ =

√
δ2 +

4δ2

(1− δ)2

=

√
δ2(1− δ)2 + 4δ2

(1− δ)2

=

√
δ2(δ2 − 2δ + 5)

(1− δ)2

then in this case our stability condition will be

√
δ2(δ2 − 2δ + 5)

(1− δ)2
∗ 1.0079 < 1. (4.51)

The two conditions (4.50) and (4.51) have been plotted in Figure 4.12, where f1(δ) =

0.4 ∗ 1+δ
1−δ and f2(δ) =

√
δ2(δ2−2δ+5)

(1−δ)2 ∗ 1.0079 :

Figure 4.12: plot of the stability conditions

Let fi(δ) < σ < 1, i = {1, 2}, we note that for small σ more plant uncertainty can be
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tolerated without effecting the system stability. This plot shows that for

• 0 < δ < 0.227 the gap metric gives a better stability condition (smaller σ) than

the small gain theorem.

• δ = 0.227 both conditions gives the same result.

• 0.227 < δ < 0.32 the small gain theorem gives a better stability condition than

the gap metric.

• 0.32 < δ < 0.43 the stability condition in (4.50) is met while the stability condition

in (4.51) is not (the small gain theorem gives a better stability condition than the

gap metric).

• 0.43 < δ < 1 both conditions are violated.

4.6 Summary

This chapter had introduced two results (Theorem 4.5 and Corollary 4.14) which enable

the study of the stability of an affine nonlinear control system with input nonlinearity

using the small gain theorem and the gap metric analysis. Theorem 4.5 applies the

small gain theorem to find a stability condition for the nonlinear system. This stability

condition is similar to that given for the Hammerstein system, and states that closed

loop system is stable if the product of the system components is less than one and holds

if the linear component P of the plant is stable.

The gap analysis had followed the same procedure carried out in Chapter 3, but for a

stable affine nonlinear system which is more complicated than the Hammerstein model

considered in Chapter 3. This necessitated the use of a triple plant configuration, in

order to employ the gap metric network result introduced in (Theorem (10)) Georgiou

and Smith (1997). Using this approach the stability condition found depends on the

linear gain of the system and the bounds on the input nonlinearity and how exact the

inversion is of the nonlinear part of the plant within the nonlinear part of the controller.

To investigate the validity of each result, an example was introduced to compute the

two stability conditions found in Theorems 4.5 and 5.9 to a nonlinear control system.

This example showed that for small gap value, the gap metric gives a better stability

condition than the small gain theorem.

In Chapter 5 an unstable affine nonlinear system will be considered. The analysis un-

dertaken for this system will follow the same procedure carried out in this chapter.

However, the stability assumption on P̃ will be dropped and Proposition 4.9 will no

longer be assumed to hold. Hence, stability analysis will be more complex and the use

of coprime factors will be required.



Chapter 5

Robustness Analysis for Unstable

Affine Systems Using the Gap

Metric

5.1 Introduction

In this chapter the robustness analysis for an unstable affine nonlinear system using

the gap metric is considered. The analysis undertaken will follow the same procedure

carried out in Chapter 4, however, since the system considered is unstable, the small

gain theorem can no longer be used to find stability conditions for this system. The gap

analysis carried out in this chapter is more complicated than that of Chapter 4 as the

stability assumption on the linear part of the plant is dropped and Proposition 4.9 is no

longer assumed to hold. To address this, coprime factors will be required to represent

unstable plants in this chapter.

The gap metric will be used to study the stability of two cases of affine systems. The

first case comprises an unstable affine nonlinear system with an unstable nonlinear com-

ponent, for example, consider the system ẋ = x2 + u, y = x where x2 is an unstable

nonlinear component which we will try to cancel by control action. In this case the

nominal plant will include only the unstable linear component of the plant. The second

system is an affine nonlinear system with both stable and unstable nonlinear compo-

nents, for example, the system ẋ = x2− x3 + u, y = x, here we have two nonlinear parts

in this system, x2 which is an unstable nonlinear component also cancelled by control

action, and −x3, is a useful stable nonlinear part of the plant, which we will preserve

its stabilizing rule on the plant. Thus, the nominal plant in this case will include the

linear part of the plant and the stable nonlinear part of the plant. The motive for con-

sidering the second case is to use the inherently stabilizing nonlinearities to stabilize the

81
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plant instead of trying to cancel them by the control action, as is done in the feedback

linearization approach (this will be explained fully in Section 5.3, Example 5.1).

5.2 Robustness Analysis of a Nonlinear System with an

Unstable Nonlinear Part using the Gap Metric

This section will consider an unstable affine nonlinear system with an unstable nonlinear

part and carry out a stability analysis for this system using the gap metric.

5.2.1 Affine Nonlinear Systems With Unstable Nonlinear Part

Consider the normal form of the nonlinear system described previously in Section 4.2,

(4.5)-(4.6), this form is given by:

P : Ln+1
∞,e → Ln∞,e : (u1, z1) 7→ (y1),

ẋ∗ = Ax∗ +B(f∗(z1) + g∗(z1)u1), (5.1)

y1 = (y11, . . . , y1n) = x∗, (5.2)

z1 = (z11, . . . , z1n), (5.3)

In this system the feedback input y1 is considered as an input, z1, to the nonlinear parts

of the plant g∗(z1) and f∗(z1), A is unstable and is given by

A =



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

. . .
...

0 0 0 . . . 0 1

a1 a2 . . . an−1 an


, B =


0
...

0

1

 ,

f∗(x∗) = Lnfh(T−1(x∗)),

g∗(x∗) = LgL
n−1
f h(T−1(x∗)).

We select the form u1 = l(x∗, v) to stabilize the system in (5.1)-(5.3) and linearize the

terms in (5.1). We next choose a vector

c = (c1, . . . , cn)>,

such that Ac = A−Bc> is stable. A real function l(x∗, v) = a(x∗)+b(x∗)v is then chosen

such that this function will cancel the nonlinear terms f∗(x∗) and g∗(x∗) while stabilizing

the linear part of the plant. To do this, it follows that Ax∗+B(f∗(x∗)+g∗(x∗)l(x∗, v)) =

Acx
∗ + Bv for some input v. This leads to the conclusion that l(x∗, v) must take the
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form:

l(x∗, v) =
−c>x∗ − f∗(x∗) + v

g∗(x∗)
.

Hence, a feedback linearizing controller which generates the term l(x∗, v) is given as:

C : L2n
∞,e → L∞,e : (y2, z2) 7→ u2

u2 = −l(y2, z2) =
1

g∗(z2)
(Csy2 + f∗(z2)− C̃y2),

z2 = (z21, . . . , z2n) = −y2,

where l(x∗, v) = l(y2, z2), y2 = (y21, . . . , y2n), Cs is the linear stabilizing part of the

controller C,

Cs : Ln∞,e → L∞,e : y2 7→ vs

vs = c>y2.

The term C̃ is required to generate v using a feedback action, and is given by

C̃ : Ln∞,e → L∞,e : y2 7→ v

v = −c̃>y2,

where

c̃ = (c̃1, . . . , c̃n)>,

The feedback control connection for this system is shown in Figure 5.1.

P̃

-

?
�

6

u1

`

y1

u0

y0

+

-

+
-

u2

�

-

��

-

-

6+
+

?

6

-

+

+

v1

z1

z2
-1�

C

P

-

�

�

y2

Csvs

m

m

m

m

g∗(z1)

f∗(z1)

1/g∗(z2) f∗(z2)

�
C̃v

?
-

Figure 5.1: Nonlinear control system with input/state plant nonlinearity
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Here P̃ , is the linear potentially unstable component of the plant P . This component

can be written using linear coprime factorization as P̃ = NM−1 where N and M satisfy

NX +MY = I for some X and Y , where N,M,X and Y are stable. P̃ is given by:

P̃ : L∞,e → Ln∞,e : v1 7→ y1,

ẋ∗ = Ax∗ +Bv1, y1 = x∗,

where v1 = f∗(z1) + g∗(z1)u1. It follows that M can be written as the linear operator

from vn to v1 which give rise to

M : L∞,e → Ln∞,e : vn 7→ v1,

ẋ∗ = Acx
∗ +Bvn,

v1 = Lx∗ + vn,

z1 = (z11, . . . , z1n) = x∗,

and N is the linear operator from vn to y1:

N : L∞,e → Ln∞,e : vn 7→ y1,

ẋ∗ = Acx
∗ +Bvn,

y1 = x∗,

where vn is an external signal, and P̃ is stabilized by a linear controller of the form

v1 = vn + Lx∗, where Lx∗ = −c>x∗ (which is the linear part of our controller).

Then we can write P as

P : Ln+1
∞,e → Ln∞,e : (u1, z1) 7→ y1,

y1 = P̃ (f∗(z1) + g∗(z1)u1) (5.4)

z1 = (z11, . . . , z1n) = y1.

In addition, let v2 = vs−v so that v2 = Csy2−C̃y2 = (Cs−C̃)y2, and let CLinear = Cs−C̃
then v2 = CLineary2, then we can write

C : L2n
∞,e → L∞,e : (y2, z2) 7→ u2

u2 = −l(y2, z2) =
1

g∗(z2)
(CLineary2 + f∗(z2)),

z2 = (z21, . . . , z2n) = −y2,

This new feedback control connection for the system is shown in Figure 5.2.
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P̃
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Figure 5.2: Nonlinear control system with input/state plant nonlinearity

For the system shown in Figure 5.2 the closed loop equations can be written as:

u0 = u1 + u2, (5.5)

y0 = y1 + y2, (5.6)

v1 = f∗(z1) + g∗(z1)u1, (5.7)

v2 = CLineary2, (5.8)

y1 = P̃ v1, (5.9)

u2 = 1/g∗(z2)(f∗(z2) + v2). (5.10)

We note that the system shown in Figure 5.2 is not equivalent to the closed loop system

[P,C] shown in Figure 2.1. This is due to the presence of the two signals z1, z2 which feed

the signals y1,−y2 to the blocks P,C, respectively. Hence, we cannot apply Theorem

2.11 to find stability conditions for this system.

Following the same approach undertaken in Chapter 4, we need to consider the linear

operator ΠP̃ //CLinear
to find stability conditions for the system shown in Figure 5.2.

This operator corresponds to the closed loop system [P̃ , CLinear] which is the linear

configuration of the system shown in Figure 5.2 and can be found by replacing g∗(z1) and
1

g∗(z2) by the linear operators π : (u1, z1) 7→ v1, v1 = u1 and π′ : (v2, z2) 7→ u2, u2 = v2,

respectively, and setting f∗(z1) = f∗(z2) = 0 in this system, as shown in Figure 5.3.

The blocks π, π′ cancel the effect of the signals z1, z2 on the closed loop system [P1, C1].

Hence, the signals z1, z2 can be removed, with the mappings π, π′ unchanged as shown

in Figure 5.4.

This linear configuration corresponds to the system shown in Figure 2.1.
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P̃
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Figure 5.3: Linear configuration of the system in Figure 5.2

P̃

CLinear

-

?

6

u1 y1u0

y0
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-

+
-

y2u2
�

-

�

����

����

-

Figure 5.4: Linear configuration of the system in Figure 5.2 with z1, z2 removed and
the mappings π, π′ applied to the system

5.2.2 Gap Metric for a Nonlinear System with an Unstable Nonlinear

Part

This section undertakes robustness stability analysis for the affine nonlinear system

shown in Figure 5.2. The analysis carried out in this section will follow the approach

presented in Chapter 4. However, as was mentioned previously in Section 5.1, the

stability assumption on P̃ is dropped and Proposition 4.9 will no longer be assumed to

hold. The following assumptions on the forms of f∗(z) and g∗(z) are required in this

analysis:

Assumption 5.1. Let f∗ : Rn → R be a continuous nonlinear function, satisfying the

following condition:

∃B <∞ and |f∗(x)| ≤ B ∀x ∈ Rn. (5.11)

Assumption 5.2. Let g∗ : Rn → R be a continuous nonlinear function, satisfying the

following condition:

∃ε > 0, ∃D <∞ and ε ≤ |g∗(x)| ≤ D ∀x ∈ Rn. (5.12)
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The gap metric framework is applied to the system shown in Figure 5.2 using the fol-

lowing theorem:

Theorem 5.3. Consider the nonlinear closed loop system shown in Figure 5.2 and given

by (5.5)-(5.10). Let f∗, g∗ satisfy Assumptions 5.1, 5.2. Then this system has a robust

stability margin.

Analogous to the proof of Theorem 4.6, this proof also requires results that are developed

later in this section. This analysis will also consider the triple system configuration

shown in Figure 4.5 and apply the ‘network’ result in (Theorem 2.13) to find a stability

condition for the nonlinear system shown in Figure 5.2.

The route taken is as follows: Since the presence of nonlinear elements in multiple blocks

in the system shown in Figure 5.2 leads to significant conservatism, and to apply The-

orem 2.13 to this system, the new system configuration shown in Figure 5.5 is used. In

this configuration the nonlinear component of the plant P and the nonlinear component

of the controller C are considered to be both included in the block P ′3 and an external

input x0 is added to the system. Also the feedback input x0− y1 is considered as an in-

put, z1, to the nonlinear components of the plant f∗(z1), g∗(z1), and the feedback input

−y2 is considered as an input z2 to the nonlinear components f∗(z2), 1
g∗(z2) .

CLinear �
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+
-

y2v2
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��
��
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?
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z2 �-1
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-

f∗(z1)-

6 -

+

+
�
�� g∗(z1)

+
-

?
-

v1

P ′3

�
��1/g∗(z2)f∗(z2) �
�� -
--
-

?
+

+
-

Figure 5.5: Nonlinear system with unstable nonlinearity configuration

The linear configuration for this system is taken to comprise the system components

P1, P2, P3 with the nonlinearities g∗(z1) and 1
g∗(z2) replaced by the linear operators π :

(u1, z1) 7→ v1, v1 = u1 and π′ : (v2, z2) 7→ u2, u2 = v2, respectively. In addition, f∗(z1) =

f∗(z2) = 0. This configuration is shown in Figure 5.6.
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Figure 5.6: Linear configuration of an affine system

To apply Theoreom 2.13 we must rearrange the nonlinear and linear configurations of

the systems shown in Figures 5.5 and 5.6 in a form comparable to that given in Fig-

ure 4.5. In order to do this we consider three signal spaces U = Ln∞,e,X = Ln∞,e
and Y = Ln∞,e, together with the following augmented signals; let v̂2 = −v2 and

let u′1 =
(

0 0 z1 0
)>

and let u′2 =
(

0 v̂2 0 z2

)>
, also let the external

input u0 be changed to u′0 =
(
u0 d1 d2 d3

)>
, where d2 = (d21, . . . , d2n) and

d3 = (d31, . . . , d3n). Let u′3 = u′0−u′2−u′1 =
(
u0 d1 d2 d3

)>
−
(

0 v̂2 0 z2

)>
−(

0 0 z1 0
)>

=
(
u0 d1 − v̂2 d2 − z1 d3 − z2

)>
, let ṽ2 = d1− v̂2, z̃1 = d2−z1,

z̃2 = d3 − z2 then u′3 =
(
u0 ṽ2 z̃1 z̃2

)>
. Finally, let x′0 = y0, y′0 = x0, y′3 = y1,

x′1 = x1, x′2 = y2 and y′1 = y′0−y′3 = x0−y1. The resulting system is shown in Figure 5.7.

The corresponding linear configuration of this system is shown in Figure 5.8.

From the two systems shown in Figure 5.7 and Figure 5.8 it follows that P1 = P ′1 and

P2 = P ′2.

These configurations correspond to those of Figures 5.5 and 5.6, respectively, except for

the presence of d1, d2 and d3. Furthermore, Figures 5.7 and 5.8 correspond exactly to the

forms shown in Figures 5.9 and 5.10, respectively, which in turn have identical structure

to that of Figure 4.5. Hence, our stability condition will be applied to the systems of

Figures 5.9 and 5.10.
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Figure 5.7: Augmented affine nonlinear system

CLinear ��

y1

u0

y0

P ′2

+
-

y2v2

�

?

�
��
�

�

x0

+-
��
��

P ′1

?

-1

x1

ỹ1
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Figure 5.8: Linear configuration of affine nonlinear system

Since P1 = P ′1 and P2 = P ′2 , then

~δ(P1, P
′
1) = 0, ~δ(P2, P

′
2) = 0.

Using Theorem 2.13, the robust stability condition is given as:

3∑
i=1

~δ(Pi, P
′
i ) < ‖Π(i)‖−1,
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Figure 5.9: Nonlinear configuration of affine system with unstable nonlinearity
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Figure 5.10: Linear configuration of affine system with unstable nonlinearity

For our system this condition is:

~δ(P3, P
′
3) < ‖Π(3)‖−1. (5.13)

Then the gap metric measures the difference between the linear nominal plant P3 :

u′3 7→ y′3, y
′
3 = P̃ π(u0 − π′(ṽ2, z̃2), z̃1) = P̃ (u0 − ṽ2) and the nonlinear perturbed plant

P ′3 : u′3 7→ y′3, y
′
3 = P̃ (f∗(z̃1) + g∗(z̃1)(u0 − 1/g∗(z̃2)((f∗(z̃2) + ṽ2)))). The plants P3 and

P ′3 are shown in Figure 5.11.

Before providing a complete description of the operators P ′1, P
′
2 and P ′3 and P1, P2 and

P3 shown in Figures 5.9 and 5.10, respectively, we briefly state the motivation for the

proceeding manipulations (as was done in Chapter 4).

The stability condition (5.13) can be related to the original system configuration shown
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Figure 5.11: Nonlinear plant mapping:(a) unperturbed, (b) perturbed

in Figure 5.2 as follows: It will be shown later in the proof of Theorem 5.3 that the

stability margin for the system shown in Figure 5.7 is less than or equal to the stability

margin corresponding to the system shown in Figure 5.5 which in turn is less than or

equal to the stability margin corresponding to the original system shown in Figure 5.2.

This is because for each pair the latter is a special case of the former.

The closed loop operators P ′1, P
′
2 and P ′3 shown in Figure 5.9 are given by

P ′1 : Ln∞,e → L2n
∞,e : y′1 7→ (x′1, u

′
1), x′1 = −y′1,

u′1 =
(

0 0 z1 0
)>

, z1 = y′1,

where y′1 = ỹ1, and :

P ′2 : Ln∞,e → Ln+1
∞,e : x′2 7→ u′2, u

′
2 =

(
0 v̂2 0 z2

)>
,

z2 = x′2, v̂2 = −Clinearx′2,

and the block P ′3 is given by:

P ′3 : L2n+2
∞,e → Ln∞,e : u′3 7→ y′3, (5.14)

y′3 = P ′3u
′
3,

= P̃ (f∗(z̃1) + g∗(z̃1)(u0 − 1/g∗(z̃2)((f∗(z̃2) + ṽ2)))). (5.15)
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The linear configuration shown in Figure 5.10 comprises subsystems:

P1 : Ln∞,e → L2n
∞,e : y′1 7→ (x′1, u

′
1)

x′1 = −y′1, u′1 =
(

0 0 z1 0
)>

, z1 = y′1,

P2 : Ln∞,e → Ln+1
∞,e : x′2 7→ u′2

u′2 =
(

0 v̂2 0 z2

)>
, z2 = x′2, v̂2 = −Clinearx′2,

and

P3 : L2n+2
∞,e → Ln∞,e : u′3 7→ y′3,

y′3 = P3u
′
3 = P̃ (u0 − ṽ2). (5.16)

From the above definitions given for P1, P2, P3, we conclude that the linear configuration

shown in Figure 5.10 is equivalent to the configuration shown in Figure 4.10. This leads

to the conclusion that the linear gain ‖Π(3)‖ calculated for these systems is the same.

Similar to the approach taken in Chapter 4, to apply Theorem 2.13 to this system, we

must satisfy inequality (5.13). In the following two subsections, the two sides of this

inequality will be evaluated, namely the linear gain ‖Π(3)‖ and the gap value ~δ(P3, P
′
3).

5.2.3 Finding ‖Π(3)‖ for an Affine Nonlinear System with Unstable

Nonlinearity

We start with the RHS of inequality (5.13). Since the linear gain ‖Π(3)‖ calculated for

the system shown in Figure 5.10 is the same as the linear gain ‖Π(3)‖ for the system

shown in Figure 4.10, the procedure in Subsection 4.4.1 can be used to calculate this

value. In Subsection 4.4.1 it was found that:

‖Π3‖ ≤ sup
‖u′0,x′0,y′0‖6=0

‖Q‖
∥∥∥ u′0 x′0 y′0

∥∥∥>
‖u′0, x′0, y′0‖

= ‖Q‖.

where Q =

(
Λ

c

)
, with Λ, c matrices of dimension 4 × 6 and 1 × 6 respectively, their

terms comprising closed loop functions of system [P̃ , Clinear]. Hence from (5.13) and

since ‖Π3‖ ≤ ‖Q‖ then for the considered system, the stability condition is:

~δ(P3, P
′
3) <

1

‖Q‖
. (5.17)
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5.2.4 Finding the Gap Metric for a Nonlinear System with Unstable

Nonlinearity

In this subsection the LHS, ~δ(P3, P
′
3), of the inequality (5.13) is considered. To find

~δ(P3, P
′
3) an analogous approach to that developed in Subsection 4.4.2 is used. However,

the procedure followed in this subsection is more complicated. First, the graphs for P̃ ,

P3 and P ′3 are defined to be:

GP̃ :=

{(
u

y

)
: y = P̃ u, ‖u‖ <∞, ‖y‖ <∞

}
, (5.18)

GP3 :=




u0

ṽ2

z̃1

z̃2

y′3

 :

∥∥∥∥∥∥∥∥∥∥∥∥

u0

ṽ2

z̃1

z̃2

y′3

∥∥∥∥∥∥∥∥∥∥∥∥
<∞, y′3 = P̃ (u0 − ṽ2)


, (5.19)

GP ′3 :=


u0

ṽ2

z̃1

z̃2

y′3

 :

∥∥∥∥∥∥∥∥∥∥∥∥

u0

ṽ2

z̃1

z̃2

y′3

∥∥∥∥∥∥∥∥∥∥∥∥
<∞, y′3 = P̃ (f∗(z̃1) + g∗(z̃1)(u0 − 1/g∗(z̃2)(f∗(z̃2) + ṽ2)))


.

(5.20)

In order to find a bound on the gap between GP3 and GP ′3 , a surjective map Φ is required

between these graphs. The following lemma is used to define this map. First, consider

the nonlinear part of the plant P ′3 shown in Figure 5.11b. For this component the

following lemma is used.

Lemma 5.4. Let f∗ satisfy Assumption 5.1 and let g∗ satisfy Assumption 5.2, and

consider the following equation:

v1 = f∗(z̃1) + g∗(z̃1)(u0 − 1/g∗(z̃2)(f∗(z̃2) + ṽ2)). (5.21)

then:

‖ṽ2‖ <∞, ‖u0‖ <∞⇒ ‖v1‖ <∞,

and

‖v1‖ <∞, ‖u0‖ <∞⇒ ‖ṽ2‖ <∞.
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Proof. We will first prove that:

‖ṽ2‖ <∞, ‖u0‖ <∞⇒ ‖v1‖ <∞.

Since f∗ is a bounded function via Assumption 5.1, then ‖f∗(z̃1)‖ <∞ and ‖f∗(z̃2)‖ <
∞. Since g∗ is a bounded function via Assumption 5.2, then ‖g∗(z̃1)‖ < ∞ and

‖1/g∗(z̃2)‖ <∞ and since ‖ṽ2‖ <∞, ‖u0‖ <∞, then:

‖v1‖ = ‖f∗(z̃1) + g∗(z̃1)(u0 − 1/g∗(z̃2)(f∗(z̃2) + ṽ2))‖,

≤ ‖f∗(z̃1)‖+ ‖g∗(z̃1)‖‖u0‖+ ‖g∗(z̃1)‖‖1/g∗(z̃2)‖+ ‖f∗(z̃2)‖+

‖g∗(z̃1)‖‖1/g∗(z̃2)‖‖ṽ2‖,

<∞.

as required. Next we will prove that:

‖v1‖ <∞, ‖u0‖ <∞⇒ ‖ṽ2‖ <∞.

By (5.21):

ṽ2 = −g∗(z̃2)(1/g∗(z̃1)(v1 − f∗(z̃1))− u0)− f∗(z̃2).

Also since f∗ and g∗ are both bounded functions, and since ‖v1‖ <∞, ‖u0‖ <∞, then:

‖ṽ2‖ = ‖ − g∗(z̃2)(1/g∗(z̃1)(v1 − f∗(z̃1))− u0)− f∗(z̃2)‖,

≤ ‖g∗(z̃2)‖‖1/g∗(z̃1)‖‖v1‖+ ‖g∗(z̃2)‖‖1/g∗(z̃1)‖+ ‖f∗(z̃1)‖+

‖g∗(z̃2)‖‖u0‖+ ‖f∗(z̃2)‖,

< ∞.

as required.

The graphs for P3 and P ′3 can be written using coprime factorization functions as shown

in the following proposition:

Proposition 5.5. Let P̃ be unstable, let f∗ satisfy Assumption 5.1 and let g∗ satisfy

Assumption 5.2, for the systems P3 and P ′3 given by Figure 5.11 and (5.15) and (5.16),

respectively. Then the graphs GP3 and GP ′3 satisfy:

GP3 :=


(
u0 ṽ2 z̃1 z̃2 y′3

)>
:

(
v1

y′3

)
=

(
M

N

)
vn,

ṽ2 = u0 − v1, vn, z̃1, z̃2, u0 ∈ U

 , (5.22)
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GP ′3 :=


(
u0 ṽ2 z̃1 z̃2 y′3

)>
:

(
v1

y′3

)
=

(
M

N

)
vn,

ṽ2 = −g∗(z̃2)(1/g∗(z̃1)(v1 − f∗(z̃1))− u0)−
f∗(z̃2), vn, z̃1, z̃2, , u0 ∈ U

 . (5.23)

where M,N form a right coprime factorization of P̃ i.e. P̃ = NM−1.

Proof. To show that GP ′3 given in (5.23) is equivalent to that given in (5.20), denote the

set given in (5.23) as A.

First we prove that A ⊂ GP ′3 . Let
(
u0 ṽ2 z̃1 z̃2 y′3

)>
∈ A, i.e

(
v1 y′3

)>
=(

M N
)>

vn, ṽ2 = −g∗(z̃2)(1/g∗(z̃1)(v1 − f∗(z̃1)) − u0) − f∗(z̃2) where vn ∈ U , z̃1 ∈
U , z̃2 ∈ U , u0 ∈ U . Since u0 ∈ U , z̃1 ∈ U and z̃1 ∈ U we have ‖u0‖ < ∞, ‖z̃1‖ <
∞ and ‖z̃2‖ < ∞, respectively. Since v1 = Mvn, vn ∈ U and M is a bounded op-

erator it follows that ‖v1‖ < ∞. In the same way, since y′3 = Nvn, vn ∈ U and N

is a bounded operator it follows that ‖y′3‖ < ∞. Since ‖v1‖ < ∞ and ‖u0‖ < ∞, and

v1 = f∗(z̃1)+g∗(z̃1)(u0−1/g∗(z̃2)(f∗(z̃2)−ṽ2)), it follows from Lemma 5.4 (second state-

ment), that ‖ṽ2‖ < ∞. Also given that y′3 = Nvn = NM−1v1 = P̃ v1, it follows that

y′3 = P̃ (f∗(z̃1) + g∗(z̃1)(u0 − 1/g∗(z̃2)(f∗(z̃2) + ṽ2))). Thus we conclude that A ⊂ GP ′3 .

Next we prove that GP ′3 ⊂ A. Let
(
u0 ṽ2 z̃1 z̃2 y′3

)>
∈ GP ′3 . Then we have

‖u0‖, ‖ṽ2‖, ‖z̃1‖, ‖z̃2‖, ‖y′3‖ <∞ and y′3 = P̃ (f∗(z̃1)+g∗(z̃1)(u0−1/g∗(z̃2)(f∗(z̃2)+ ṽ2))).

We need to show that
(
v1 y′3

)>
=
(
M N

)>
vn, ṽ2 = −g∗(z̃2)(1/g∗(z̃1)(v1 −

f∗(z̃1)) − u0) − f∗(z̃2) and vn ∈ U , z̃1 ∈ U , z̃2 ∈ U , u0 ∈ U . Here u0 ∈ U , z̃1 ∈
U , z̃2 ∈ U follow from the definition of GP ′3 and since ‖y′3‖ < ∞ then ‖P̃ (f∗(z̃1) +

g∗(z̃1)(u0 − 1/g∗(z̃2)(f∗(z̃2)− ṽ2)))‖ <∞, also given that ‖u0‖, ‖ṽ2‖ <∞ and defining

v1 = f∗(z̃1)+g∗(z̃1)(u0−1/g∗(z̃2)(f∗(z̃2)+ ṽ2)), by Lemma 5.4 first statement, it follows

that ‖v1‖ < ∞, this leads to
(
v1 P̃ v1

)>
=
(
v1 y′3

)>
∈ GP̃ . Now any element in

GP̃ can be written in the form
(
M N

)>
vn for some vn ∈ U . So let:

(
M N

)>
vn =

(
v1 P̃ v1

)>
=
(
v1 y′3

)>
,

which leads to GP ′3 ⊂ A. Hence GP ′3 = A.

Similarly, to show that GP3 given in (5.19) is equivalent to that given in (5.22), set

g∗(z1) = π, 1
g∗(z1) = π′ and f∗(z1) = f∗(z2) = 0. In this case GP3 follows as a special

case, as required.

The map Φ between GP3 and GP ′3 is defined using the following proposition:

Proposition 5.6. Let P̃ be unstable, let f∗ satisfy Assumption 5.1 and let g∗ satisfy

Assumption 5.2, for the systems P3 and P ′3 given by Figure 5.11 and (5.15) and (5.16),
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respectively. Then there exists a map Φ : GP3 → GP ′3 given by:

Φ


u0

(u0 −Mvn)

z̃1

z̃2

Nvn

 =


u0

−g∗(z̃2)(1/g∗(z̃1)(Mvn − f∗(z̃1))− u0)− f∗(z̃2)

z̃1

z̃2

Nvn

 .

(5.24)

Furthermore this map is surjective.

Proof. First we need to prove that if

x =
(
u′′0 (u′′0 −Mv′n) z̃′1 z̃′2 Nv′n

)>
∈ GP3 ,

then Φ(x) ∈ GP ′3 . Since x ∈ GP3 then ‖u′′0‖, ‖ṽ′2‖ = ‖u′′0−v′1‖ = ‖(u′′0−Mv′n)‖, ‖z̃′1‖, ‖z̃′2‖, ‖y′′3‖ <

∞,
(
v′1 y′′3

)>
=
(
M N

)>
v′n, ṽ

′
2 = u′′0 − v′1.

Let y =
(
u0 ṽ2 z̃1 z̃2 y′3

)>
= Φ(x). We need to show that ṽ2 = −g∗(z̃2)(1/g∗(z̃1)(Mvn−

f∗(z̃1))−u0)−f∗(z̃2),
(
v1 y′3

)>
=
(
M N

)>
vn, vn, z̃1, z̃2, u0 ∈ U . It follows from

(5.24) that u0 = u′′0 , z̃1 = z̃′1 ,z̃2 = z̃′2, y′3 = y′′3 , ṽ2 = −g∗(z̃′2)(1/g∗(z̃′1)(Mv′n − f∗(z̃′1))−
u′′0)− f∗(z̃′2), then ‖u0‖, ‖z̃1‖, ‖z̃2‖, ‖y′3‖ <∞.

Since v′1 = u′′0 − ṽ′2, then by Proposition 5.5 (5.22) there exist v′ ∈ U such that(
v′1 y′′3

)>
=
(
M N

)>
v′n. It follows that y′′3 = Nv′n = NM−1v′1. Now let

v1 = v′1, and note that y′3 = y′′3 = NM−1v′1 = NM−1v1, then there exists vn = v′n

such that
(
v1 y′3

)>
=
(
M N

)>
vn. Since v1 = Mvn, v ∈ U and M is a

bounded operator it follows that ‖v1‖ < ∞. Using Lemma 5.4 (second statement) as

ṽ2 = −g∗(z̃2)(1/g∗(z̃1)(Mvn − f∗(z̃1))− u0)− f∗(z̃2) = −g∗(z̃2)(1/g∗(z̃1)(v1 − f∗(z̃1))−
u0)− f∗(z̃2) and since ‖u0‖, ‖v1‖ <∞ then ‖ṽ2‖ <∞. Then:

ṽ2 = −g∗(z̃′2)(1/g∗(z̃′1)(v′1 − f∗(z̃′1))− u′′0)− f∗(z̃′2),

= −g∗(z̃2)(1/g∗(z̃1)(v1 − f∗(z̃1))− u0)− f∗(z̃2),

and hence:

y =


u0

−g∗(z̃2)(1/g∗(z̃1)(Mvn − f∗(z̃1))− u0)− f∗(z̃2)

z̃1

z̃2

Nvn


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=
(
u0 ṽ2 z̃1 z̃2 y′3

)>
∈ GP ′3 .

as required.

Next, to prove that Φ is surjective, so that if y ∈ GP ′3 then there exists x ∈ GP3

such that Φ(x) = y, choose an element y =
(
u0 ṽ2 z̃1 z̃2 y′3

)>
∈ GP ′3 where

‖u0‖, ‖ṽ2‖, ‖z̃1‖, ‖z̃2‖, ‖y′3‖ <∞,
(
v1 y′3

)>
=
(
M N

)>
vn, ṽ2 = −g∗(z̃2)(1/g∗(z̃1)

(v1 − f∗(z̃1))− u0)− f∗(z̃2), vn ∈ U . Letting

x =


u0

u0 − f∗(z̃1)− g∗(z̃1)(u0 − 1/g∗(z̃2)(f∗(z̃2) + ṽ2))

z̃1

z̃2

y′3

 ,

we need to show that x ∈ GP3 i.e. vn, z̃1, z̃2, ṽ
′
2 = u0−f∗(z̃1)−g∗(z̃1)(u0−1/g∗(z̃2)(f∗(z̃2)+

ṽ2)) ∈ U , ṽ′2 = u0− v1,
(
v1 y′3

)>
=
(
M N

)>
vn. Since v1 = f∗(z̃1) + g∗(z̃1)(u0−

1/g∗(z̃2)(f∗(z̃2) + ṽ2)) then ṽ′2 = u0 − v1, Since ‖z̃1‖, ‖z̃2‖ < ∞ then z̃1, z̃2 ∈ U . Using

Assumption 5.1, since g∗, 1
g∗ is a bounded function, then ‖g∗(z̃1)‖, ‖ 1

g∗(z̃2)‖ < ∞, also

using Assumption 5.2, since f∗ is a bounded function, then ‖f∗(z̃1)‖, ‖f∗(z̃2)‖ <∞ and

since ‖u0‖, ‖ṽ2‖, ‖z̃1‖, ‖z̃2‖ <∞, it follows that:

‖ṽ′2‖ ≤ ‖u0‖+ ‖f∗(z̃1)‖+ ‖g∗(z̃1)‖(‖u0 + ‖1/g∗(z̃2)‖(‖f∗(z̃2)‖+ ‖ṽ2‖)) <∞.

Then by Proposition 5.5 (5.23) there exists vn ∈ U such that
(
v1 y′3

)>
=(

M N
)>

vn. Hence x ∈ GP3 is such that:

Φ


u0

u0 − f∗(z̃1)− g∗(z̃1)(u0 − 1/g∗(z̃2)(f∗(z̃2) + ṽ2))

z̃1

z̃2

y′3

 =


u0

ṽ2

z̃1

z̃2

y′3

 .

(5.25)

as required.

Using the previous results, a bound on the gap between P3 and P ′3 is given using the

following theorem

Theorem 5.7. Let P̃ be unstable, let f∗ satisfy Assumption 5.1 and let g∗ satisfy As-

sumption 5.2, for the systems P3 and P ′3 given by Figure 5.11 and (5.15) and (5.16),
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respectively. Then a bound on the gap between P3 and P ′3 is

~δ(P3, P
′
3) ≤ max

∣∣∣∣D− 1, 1− D

ε
,
D

ε
B−B

∣∣∣∣ . (5.26)

Proof. Since P̃ is unstable, f∗ satisfies Assumption 5.1 and g∗ satisfies Assumption 5.2,

then using Proposition 5.6 there exists a surjective map Φ : GP3 → GP ′3 given by equation

5.24. The gap between P3 and P ′3 is given as:

~δ(P3, P
′
3) ≤ sup

x∈GP3
\{0}

‖(Φ− I)x‖
‖x‖

,

≤ sup
‖ u0 u0 −Mvn z̃1 z̃2 ‖6=0

‖ − g∗(z̃2)(1/g∗(z̃1)(Mvn − f∗(z̃1))− u0)− f∗(z̃2)− (u0 −Mvn)‖
‖u0, u0 −Mvn, z̃1, z̃2‖

,

≤ sup
‖ u0 u0 −Mvn z̃1 z̃2 ‖6=0∥∥∥(g∗(z̃2)− 1)u0 +

(
1− g∗(z̃2) 1

g∗(z̃1)

)
Mvn +

(
g∗(z̃2) 1

g∗(z̃1)f
∗(z̃1)− f∗(z̃2)

)∥∥∥
‖u0, u0 −Mvn, z̃1, z̃2‖

,

Replacing u0 − Mvn, which is bounded only for ‖u0‖ < ∞, ‖M‖ < ∞, with s ∈ U
produces:

~δ(P3, P
′
3) ≤ sup

‖ u0 s z̃1 z̃2 ‖6=0∥∥∥(g∗(z̃2)− 1)u0 +
(

1− g∗(z̃2) 1
g∗(z̃1)

)
s+

(
g∗(z̃2) 1

g∗(z̃1)f
∗(z̃1)− f∗(z̃2)

)∥∥∥
‖u0, s, z̃1, z̃2‖

(5.27)

Using Assumptions 5.1 and 5.2 we have

‖f∗(z̃1)‖ , ‖f∗(z̃2)‖ ≤ B,

∥∥∥∥ 1

g∗(z̃1)

∥∥∥∥ ≤ 1

ε
, ‖g∗(z̃2)‖ ≤ D,

and using the above inequality in (5.27), a bound for the gap is

~δ(P3, P
′
3) ≤ max

∣∣∣∣D− 1, 1− D

ε
,
D

ε
B−B

∣∣∣∣ . (5.28)

as required.

This theorem states that a bound on ~δ(P3, P
′
3) depends on the upper bound on the non-

linear input part of the controller and how exact the inversion of the plant nonlinearity
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is, within the nonlinear part of the controller.

Then according to the following proposition, robust stability is preserved for the system

shown in Figure 5.9.

Proposition 5.8. Consider the nonlinear closed loop system [P ′1, P
′
2, P

′
3] shown in Figure

5.7. Let f∗(z) and g∗(z) satisfy Assumptions 5.1, 5.2, respectively. Then [P ′1, P
′
2, P

′
3]

has a robust stability margin.

Proof. Let f∗(z) and g∗(z) satisfy Assumptions 5.1 and 5.2, respectively, then by Lemma

5.4, and Proposition 5.5 for the systems P3 and P ′3 given by Figure 5.11 and equations

(5.15) and (5.16), respectively, the graphs GP3 and GP ′3 are given by (5.22) and (5.23),

respectively. Using Proposition 5.6, then there exists a map Φ : GP3 → GP ′3 given by

(5.24). This leads to the presence of a finite gap value between the linear and nonlinear

configurations of this system given by (5.26). Then the system [P ′1, P
′
2, P

′
3] shown in

Figure 5.7 has a robust stability margin.

The main result of Theorem 5.3 follows directly from Theorem 5.9 which we establish

next.

Theorem 5.9. Consider the nonlinear closed loop system shown in Figure 5.2 and given

by (5.5)-(5.10). Suppose f∗(z) and g∗(z) satisfy Assumptions 5.1 and 5.2, respectively.

Then this system has a robust stability margin bP1,C1 which satisfies the inequality

bP1,C1 ≥ ‖Q‖−1. (5.29)

Proof. Let 1
‖Π(3)‖

= ‖Q‖−1 be a stability margin for the system [P ′1, P
′
2, P

′
3] shown in

Figure 5.7, let 1
‖Π′

(3)
‖ be a stability margin for the system [P ′1, P

′
2, P

′
3] shown in Figure

5.5, finally let bP1,C1 = 1
‖ΠP̃ //CLinear

‖ be a stability margin for the system shown in Figure
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5.2. Then

‖Q‖ =
∥∥Π(3)

∥∥ = sup
‖u′0,x′0,y′0‖6=0

∥∥∥∥∥∥∥Π(3)

 u′0
x′0
y′0


∥∥∥∥∥∥∥

‖u′0, x′0, y′0‖
,

= sup
‖u0,d1,d2,d3,y0,x0‖6=0

∥∥∥∥Π(3)

(
u0 d1 d2 d3 y0 x0

)>∥∥∥∥
‖u0, d1, d2, d3, y0, x0‖

,

≥ sup
‖u0,0,0,0,y0,x0‖6=0

∥∥∥∥Π′(3)

(
u0 0 0 0 y0 x0

)>∥∥∥∥
‖u0, 0, 0, 0, y0, x0‖

= ‖Π′(3)‖,

‖Π′(3)‖ = sup
‖u0,y0,x0‖6=0

∥∥∥∥Π′3

(
u0 y0 x0

)>∥∥∥∥
‖u0, y0, x0‖

,

≥ sup
‖u0,y0,0‖6=0

∥∥∥∥ΠP̃ //CLinear

(
u0 y0 0

)>∥∥∥∥
‖u0, y0, 0‖

,

= ‖ΠP̃ //CLinear
‖.

This leads us to

bP1,C1 =
1

‖ΠP̃ //CLinear
‖
≥ 1

‖Π′(3)‖
≥ 1

‖Π(3)‖
= ‖Q‖−1.

Therefore the existence of a stability margin for the system shown in Figure 5.7 guaran-

tees the existence of a stability margin for the system [P1, C1] shown in Figure 5.2. Also,

since f∗(z) and g∗(z) satisfy Assumptions 5.1 and 5.2, respectively, then by Proposition

5.8, the nonlinear closed loop system [P ′1, P
′
2, P

′
3] shown in Figure 5.7, has a robust sta-

bility margin. This leads to the conclusion that the system [P1, C1] given by Figure 5.2

and (5.5)-(5.10) also has a robust stability margin. As required.

Based on Theorems 5.7 and 5.9 we can write the following corollary:

Corollary 5.10. Consider the nonlinear closed loop system shown in Figure 5.2 and

given by (5.5)-(5.10). Suppose f∗(z) and g∗(z) satisfy Assumptions 5.1 and 5.2, respec-

tively. Then this system is stable if∣∣∣∣D− 1, 1− D

ε
,
D

ε
B−B

∣∣∣∣ < ‖Q‖−1.
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Proof. Using Theorem 5.7 inequality (5.26), since:

~δ(P3, P
′
3) ≤

∣∣∣∣D− 1, 1− D

ε
,
D

ε
B−B

∣∣∣∣ ,
and using Theorem 5.9 inequality (5.29), since:

bP1,C1 ≥ ‖Q‖−1,

It follows that if ∣∣∣∣D− 1, 1− D

ε
,
D

ε
B−B

∣∣∣∣ < ‖Q‖−1.

we have:
~δ(P3, P

′
3) ≤

∣∣∣∣D− 1, 1− D

ε
,
D

ε
B−B

∣∣∣∣ < ‖Q‖−1 ≤ bP1,C1 ,

then ~δ(P3, P
′
3) < bP1,C1 and the conditions hold from Theorem 2.11, hence stability.

as required.

5.3 Robustness Analysis for Nonlinear Systems with Sta-

ble and Unstable Nonlinear Parts Using the Gap Met-

ric

This section will consider an affine nonlinear system which has a stable and an unstable

nonlinear components and will carry out a stability analysis for this system. The reason

for considering this case (as was mentioned in Section 5.1) is that exact feedback lin-

earization usually cancels all the nonlinearity of the plant, so it may destroy inherently

stabilizing nonlinearities that can be used to stabilize the plant. A motivating example

(from Freeman and Kokotović (2008)) which illustrates this point is given next.

Example 5.1. Consider the system:

ẋ = −x3 + u+ ωx

y = x,

where u is an unconstrained control input, ω is a disturbance which takes values in the

interval [−1, 1]. A robustly stabilizing feedback controller for this system is

u = x3 − 2x.

This control law is a result of feedback linearization, however, it is a bad choice since

it wastefully cancels a beneficial nonlinearity x3. Furthermore, considering the other
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uncertainties in the system the term x3 in this control law adds a positive feedback which

increases the risk of instability in the control system.

The need for a control law that can classify the nonlinearity in the system to stable and

unstable components so that the feedback controller cancels only the unstable nonlin-

ear component of the plant motivated Freeman and Kokotovic (Freeman and Kokotović

(2008)) to introduce an “Inverse Optimal” design in which they replaced feedback lin-

earization by robust backstepping, and achieved a form of worst case optimality, however,

using the backstepping in this approach restricts the design. This motivates the work

done in this section.

5.3.1 Nonlinear Systems with Stable and Unstable Nonlinear Parts

In this section we again consider the nonlinear system described previously in Section

4.2, equations (4.5)-(4.6), this form is given by:

P1 : Ln+1
∞,e → Ln∞,e : (u1, z1) 7→ (y1),

ẋ∗ = Ax∗ +B(f∗(z1) + g∗(z1)u1),

y1 = (y11, . . . , y1n) = x∗,

z1 = (z11, . . . , z1n) = x∗,

where the feedback input y1 is considered as an input, z1, to the nonlinear parts of the

plant g∗(z1) and f∗(z1), A =



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

. . .
...

0 0 0 . . . 0 1

a1 a2 . . . an−1 an


, B =


0
...

0

1

,

f∗(x∗) and g∗(x∗) represent the nonlinear part of the transformed system, f∗(x∗) =

Lnfh(T−1(x∗)), g∗(x∗) = LgL
n−1
f h(T−1(x∗)). In this section f∗(x∗), g∗(x∗) both have a

stable and an unstable components within them. So, we divide f∗(x∗) and g∗(x∗) into

stable and unstable components, and cancel the latter.

To achieve this last objective, a controller of the form u1 = l(x∗, v) is selected such that

it stabilizes the system ẋ∗ = Ax∗ + B(f∗(x∗) + g∗(x∗)u1), y1 = x∗ and cancels only the

unstable components of f∗(x∗), g∗(x∗).

As will be seen this controller action requires a vector:

c = (c1, . . . , cn)>,
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to be chosen such that Ac = A−Bc> is stable. We introduce the stable components of

f∗(x∗) and g∗(x∗), which we will call f∗s and g∗s , according to the following definition:

Definition 5.11. Given that Ac = A − Bc> is stable, a function g∗s : Rn → R and a

function f∗s : Rn → R are called stable if the mapping u 7→ y, with

ẋ∗ = Acx
∗ +B(f∗s (x∗) + g∗s(x

∗)u), y = x∗

is stable.

The real function l(x∗, v) = a(x∗) + b(x∗)v is chosen such that this function will cancel

only the unstable nonlinear terms of f∗(x∗) and g∗(x∗) while stabilizing the linear part

of the plant. To do this, it follows that Ax∗ + B(f∗(x∗) + g∗(x∗)l(x∗, v)) = Acx
∗ +

B(f∗s (x∗) + g∗s(x
∗)v) for some input v. This leads to the conclusion that l(x∗, v) has the

form:

l(x∗, v) =
−c>x∗ − f∗(x∗) + f∗s (x∗) + g∗s(x

∗)v

g∗(x∗)
. (5.30)

Let

f∗u(x∗) =
(f∗(x∗)− f∗s (x∗))

g∗s(x
∗)

, (5.31)

and

g∗u(x∗) =
g∗(x∗)

g∗s(x
∗)
, (5.32)

then l(x∗, v) = −c>x∗
g∗(x∗) −

1
g∗u(x∗)f

∗
u(x∗) + 1

g∗u(x∗)v. Hence, a feedback linearizing controller

which generates the term l(x∗, v) is given as:

C1 : L2n
∞,e → L∞,e : (y2, z2) 7→ u2

u2 = −l(y2, z2) =
1

g∗(z2)
CLineary2 +

1

g∗u(z2)
f∗u(z2) +

1

g∗u(z2)
C̃y2,

z2 = (z21, . . . , z2n) = −y2,

where l(x∗, v) = l(y2, z2), y2 = (y21, . . . , y2n), CLinear is the linear stabilizing part of the

controller C1,

CLinear : Ln∞,e → L∞,e : y2 7→ v2

v2 = c>y2.

and C̃ is the linear part which implements the feedback loop which is needed to generate

v, and is given by

C̃ : Ln∞,e → L∞,e : y2 7→ v

v = −c̃>y2,
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where

c̃ = (c̃1, . . . , c̃n)>,

The feedback control connection for this system is shown in Figure 5.12.

y1

u0

?

-

z1

P̃

-
- -

f∗u(z1)-
6-

+ +
g∗u(z1)

+-

6

- v1

-

C̃ �
y0

+

-y2

v

�
�

u2

� �-1

1/g∗u(z2)

f∗u(z2)
g∗u(z2)

��

6

z2

u1

+
+
j j

jj P1

C1

CLinear �
v2

�
1/g∗(z2) �

-

Figure 5.12: Nonlinear control system with stable/unstable plant nonlinearity

Compared to the case in Section 5.2 this system has a new P̃ , which includes the stable

nonlinear part as well as the linear potentially unstable part of the plant P1. This is

given by:

P̃ : L∞,e → Ln∞,e : v1 7→ y1,

ẋ∗ = Ax∗ +B(f∗s (x∗) + g∗s(x
∗)v1), (5.33)

y1 = x∗, (5.34)

It follows that P̃ can be written using nonlinear coprime factorization as P̃ = NM−1

where N and M satisfy L(M,N)> = I, and L is a causal stable mapping L : U ×Y → U
and here

M : vn 7→ v1,

ẋ∗ = Acx
∗ +B(f∗s (x∗) + g∗s(x

∗)vn), (5.35)

v1 = − 1

g∗s(x
∗)
CLinearx

∗ + vn, , (5.36)
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and

N : vn 7→ y1,

ẋ∗ = Acx
∗ +B(f∗s (x∗) + g∗s(x

∗)vn), (5.37)

y1 = x∗, (5.38)

then P̃ is stabilized by a nonlinear controller of the form v1 = vn +L1x
∗, where L1x

∗ =

− 1
g∗s (x∗)CLinearx

∗.

We can write P1 as

P1 : Ln+1
∞,e → Ln∞,e : (u1, z1) 7→ (y1),

y1 = P̃ (f∗u(z1) + g∗u(z1)u1) (5.39)

z1 = (z11, . . . , z1n) = y1.

For the system shown in Figure 5.12 the closed loop equations can be written as:

u0 = u1 + u2, (5.40)

y0 = y1 + y2, (5.41)

v1 = f∗u(z1) + g∗u(z1)u1, (5.42)

v2 = CLineary2, (5.43)

y1 = P̃ v1, (5.44)

u2 =
1

g∗(z2)
CLineary2 +

1

g∗u(z2)
f∗u(z2) +

1

g∗u(z2)
C̃y2. (5.45)

We also note that the system shown in Figure 5.12 is not equivalent to the closed loop

system [P1, C1]. This is due to the presence of the two signals z1, z2 which feed the

signals y1,−y2 to the blocks P1, C1, respectively. If z1, z2 6= 0, then the system in Figure

5.12 does not correspond exactly to the system shown in Figure 2.1. Hence, we cannot

apply Theorem 2.11 to find stability conditions for this system.

However, the linear configuration of this system, which will be needed to find stability

conditions for this system, does correspond to the system shown in Figure 2.1, since

replacing g∗u(z1), g∗s(z1) by the linear operator π : (u1, z1) 7→ v1, v1 = u1 and replacing
1

g∗u(z2) ,
1

g∗(z2) by the linear operator π′ : (v2, z2) 7→ u2, u2 = v2, and setting f∗u(z1) =

f∗s (z1) = f∗u(z2) = 0 will result in the linear system [PLinear, CLinear + C̃] shown in

Figure 5.13.

This system is equivalent to the linear system shown in Figure 5.14.
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y1
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Figure 5.13: Linear configuration of a nonlinear system with stable/unstable plant
nonlinearity
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�
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Figure 5.14: Equivalent linear configuration of a nonlinear system with stable/unsta-
ble plant nonlinearity

Here PLinear is given by

PLinear : L∞,e → Ln∞,e : u1 7→ y1,

ẋ∗ = Ax∗ +Bu1, (5.46)

y1 = x∗, (5.47)

The closed loop system [PLinear, CLinear+C̃] has a closed loop operator ΠPlinear//(CLinear+C̃),

which will be used to find stability conditions for the system shown in Figure 5.12.

5.3.2 Gap Metric for Nonlinear Systems with Stable and Unstable

Nonlinear Part

This section undertakes robustness stability analysis for the affine nonlinear system

shown in Figure 5.12. The analysis carried out in this section will follow the approach

given in Chapter 4. However, in this analysis P̃ is a potentially unstable nonlinear plant

with a stable nonlinear part.

The following assumptions on the forms of g∗u and f∗u are required in subsequent analysis:
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Assumption 5.12. Let g∗u : Rn → R be a continuous nonlinear function, satisfying the

following condition:

∃ε > 0, ∃Du <∞ and ε ≤ |g∗u(x)| ≤ Du ∀x ∈ Rn.

Assumption 5.13. Let f∗u : Rn → R be a continuous nonlinear function, satisfying the

following condition:

∃Bu <∞ and |f∗u(x)| ≤ Bu ∀x ∈ Rn.

The gap metric framework is applied to the system shown in Figure 5.12 to result in the

following theorem:

Theorem 5.14. Consider the nonlinear closed loop system shown in Figure 5.12 and

given by (5.40)-(5.45). Let g∗u satisfy Assumption 5.12, let f∗u satisfy Assumption 5.13

and let g∗ satisfy Assumption 5.2. Then this system has a robust stability margin.

Parallel to the proof of Theorem 4.6, this proof also requires results that are developed

subsequently in this section. This analysis will also consider the triple system configu-

ration shown in Figure 4.5 and apply the ‘network’ result in (Theorem 2.13) to find a

stability condition for the nonlinear system shown in Figure 5.12.

The route taken is as follows: Since the presence of nonlinear elements in multiple

blocks in the system shown in Figure 5.12 leads to significant conservatism, and to

apply Theorem 2.13 to this system, a new system configuration shown in Figure 5.15 is

used. In this configuration the unstable nonlinear component of the plant P1 and the

nonlinear component of the controller C1 are considered to be included along with the

nominal plant P̃ in the block P ′3 and an external input x0 is added to the system. Also

the feedback input x0− y1 is considered as an input, z1, to the nonlinear components of

the plant f∗u(z1), g∗u(z1), f∗s (z1) and g∗s(z1), and the feedback input −y2 is considered as

an input z2 to the nonlinear components 1
g∗u(z2)f

∗
u(z2), 1

g∗(z2) and 1
g∗u(z2) .

The nominal system configuration is taken to comprise the system components P1, P2, P3

with the nonlinearity g∗u(z1) being replaced by the linear operator π : (u1, z1) 7→ v1, v1 =

u1 and the nonlinearity 1
g∗(z2) being replaced by 1

g∗s (z2) , also 1
g∗u(z2) being replaced by

the linear operator π′ : (v2, z2) 7→ u2, u2 = v2, and setting f∗u(z1) = f∗u(z2) = 0. This

configuration is shown in Figure 5.16.

To apply Theoreom 2.13 we must put the real and the nominal nonlinear systems shown

in Figures 5.15 and 5.16 in a form comparable to that given in Figure 4.5. In order to

do this we consider three signal spaces U = Ln∞,e,X = Ln∞,e and Y = Ln∞,e, together

with the following augmented signals; let v̂2 = −v2 and let u′1 =
(

0 0 0 z1 0
)>
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Figure 5.15: Nonlinear system with stable and unstable nonlinearity configuration
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Figure 5.16: Nominal configuration of an affine system with only stable nonlinear
components

and let u′2 =
(

0 −v v̂2 0 z2

)>
also let the external input u0 be changed to

u′0 =
(
u0 d0 d1 d2 d3

)>
, where d2 = (d21, . . . , d2n) and d3 = (d31, . . . , d3n), also

let u′3 = u′0 − u′2 − u′1 =
(
u0 d0 d1 d2 d3

)>
−
(

0 −v v̂2 0 z2

)>
−(

0 0 0 z1 0
)>

=
(
u0 d0 + v d1 − v̂2 d2 − z1 d3 − z2

)>
, let ṽ = d0 + v,

ṽ2 = d1 − v̂2, z̃1 = d2 − z1, z̃2 = d3 − z2 then u′3 =
(
u0 ṽ ṽ2 z̃1 z̃2

)>
. Also let

x′0 = y0, y′0 = x0, y′3 = y1, x′1 = x1, x′2 = y2 and finally y′1 = y′0 − y′3 = x0 − y1. The

resulting system is shown in Figure 5.17.
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Figure 5.17: Augmented nonlinear system with stable and unstable nonlinear part

The corresponding nominal system is shown in Figure 5.18.
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Figure 5.18: Augmented nonlinear system with only stable nonlinear component

Note from the two systems shown in Figure 5.17 and Figure 5.18 that P1 = P ′1 and

P2 = P ′2.

These configurations correspond to those of Figures 5.15 and 5.16, respectively, except

for the presence of d0, d1, d2 and d3. Figures 5.17 and 5.18 correspond exactly to the

forms shown in Figures 5.19 and 5.20, respectively, which in turn have identical structure
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to that of Figure 4.5. Hence, the stability condition will be applied to the systems of

Figures 5.19, 5.20.
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Figure 5.19: Nonlinear configuration of affine system with unstable nonlinearity
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Figure 5.20: Nominal configuration of affine system with only stable nonlinearity

Since P1 = P ′1 and P2 = P ′2 , then

~δ(P1, P
′
1) = 0, ~δ(P2, P

′
2) = 0.

Using Theorem 2.13, the robust stability condition is given as:

3∑
i=1

~δ(Pi, P
′
i ) < ‖Π(i)‖−1,

For our system this condition becomes:

~δ(P3, P
′
3) < ‖Π(3)‖−1. (5.48)
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Then the gap metric measures the difference between the nominal plant P3 : u′3 7→
y′3, y

′
3 = P̃ π(u0−( 1

g∗s (z̃2) ṽ2 +π′(ṽ, z̃2)), z̃1) = P̃ (u0− 1
g∗s (z̃2) ṽ2− ṽ) and the perturbed plant

P ′3 : u′3 7→ y′3, y
′
3 = P̃

(
f∗u(z̃1) + g∗u(z̃1)

(
u0 −

(
1

g∗(z̃2) ṽ2 + 1
g∗u(z̃2)f

∗
u(z̃2) + 1

g∗u(z̃2) ṽ
)))

. The

plants P3 and P ′3 are shown in Figure 5.21,

y1

u0

P̃

-
-

-

f∗u(z̃1)-

6-

+

+
g∗u(z̃1)

+
-

?

6

- v1

P ′3

1/g∗(z̃2)

1
g∗u(z2)f

∗
u(z̃2)

-
-

?

++
-

6

u2 jj j
1/g∗u(z̃2)

?

?

-

6

z̃2

ṽ

ṽ2

z̃2

z̃2

z̃1

y1

u0

P̃

-
-

-

0-

6-

+

+
π

+
-

?

6

- v1
P3 :

1/g∗s(z̃2)

0

-
-

?

++
-

6

u2 jj j
π′
?

?

-

6

z̃2

ṽ

ṽ2

z̃2

z̃2

P ′3 :

(b)

(a)

z̃1

Figure 5.21: Nonlinear plant mapping:(a) unperturbed, (b) perturbed

Before providing a complete description of the operators P ′1, P
′
2 and P ′3 and P1, P2 and

P3 shown in Figures 5.19 and 5.20, respectively, we also briefly state the motivation for

the proceeding manipulations (as was done in Chapter 4).

The stability condition (5.48) can be related to the original system configuration shown

in Figure 5.12 as follows: It will be shown later in the proof of Theorem 5.14 that the

stability margin for the system shown in Figure 5.17 is less than or equal to the stability

margin corresponding to the system shown in Figure 5.15 which in turn is less than or

equal to the stability margin corresponding to the original system shown in Figure 5.12.

This is because for each pair the latter is a special case of the former.

The closed loop operators P ′1, P
′
2 and P ′3 shown in Figure 5.19 are given by
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P ′1 : Ln∞,e → L2n
∞,e : y′1 7→ (x′1, u

′
1), x′1 = −y′1,

u′1 =
(

0 0 0 z1 0
)>

, z1 = y′1,

where y′1 = ỹ1, and :

P ′2 : Ln∞,e → Ln+2
∞,e : x′2 7→ u′2, u

′
2 =

(
0 −v v̂2 0 z2

)>
,

z2 = x′2, v̂2 = −CLinearx′2, v = C̃x′2,

and the block P ′3 is given as:

P ′3 : L3n+3
∞,e → Ln∞,e : u′3 7→ y′3,

y′3 = P ′3u
′
3,

= P̃ v1,

= P̃

(
f∗u(z̃1) + g∗u(z̃1)

(
u0 −

(
1

g∗(z̃2)
ṽ2 +

1

g∗u(z̃2)
f∗u(z̃2) +

1

g∗u(z̃2)
ṽ

)))
.(5.49)

The configuration shown in Figure 5.20 comprises of the subsystems:

P1 : Ln∞,e → L2n
∞,e : y′1 7→ (x′1, u

′
1)

x′1 = −y′1, u′1 =
(

0 0 0 z1 0
)>

, z1 = y′1,

P2 : Ln∞,e → Ln+2
∞,e : x′2 7→ u′2

u′2 =
(

0 −v v̂2 0 z2

)>
, z2 = x′2, v̂2 = −Clinearx′2, v = C̃x′2,

and

P3 : L3n+3
∞,e → Ln∞,e : u′3 7→ y′3,

y′3 = P3u
′
3,

= P̃ (u0 −
1

g∗s(z̃2)
ṽ2 − ṽ), (5.50)
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In a similar manner to the approach taken in Chapter 4, to apply Theorem 2.13 to this

system, we must satisfy inequality (5.48). In the following two subsections, the two

sides of this inequality will be evaluated, namely the linear gain ‖Π(3)‖ and the gap

value ~δ(P3, P
′
3).

5.3.3 Finding ‖Π(3)‖ for an Affine Nonlinear System with Stable and

Unstable Nonlinearity

Starting with the RHS of inequality (5.48), the parallel projection Π(3) is the mapping

from the external signals (u′0, x
′
0, y
′
0) to the internal signals (u′3, 0, y

′
3) in the configuration

shown in Figure 5.20 with 1
g∗s (z̃2) replaced by π and P̃ replaced by PLinear.

Note that in this linear configuration of the system, shown in details in Figure 5.18, the

signal ṽ2 is dependent on ṽ then for this linear configuration of the system let ṽc = ṽ+ ṽ2

we can write u′3 as u′3 =
(
u0 ṽc z̃1 z̃2

)>
, also let PL = PLinear and CL = CLinear,

then to find the linear gain ‖Π(3)‖ consider the relation:

 u′3
0

y′3

 = Π(3)

 u′0
x′0
y′0

 ,

‖Π(3)‖ = sup
‖u′0,x′0,y′0‖6=0

‖u′3, 0, y′3‖
‖u′0, x′0, y′0‖

.

Then:

‖Π(3)‖ = sup
‖u′0,x′0,y′0‖6=0

‖u′3, y′3‖
‖u′0, x′0, y′0‖

,

= sup
‖u′0,x′0,y′0‖6=0

‖u′3, P3u
′
3‖

‖u′0, x′0, y′0‖
. (5.51)

To find expressions for u′3 and P3u
′
3 in terms of u′0, x

′
0 and y′0, we start with P3u

′
3 as

follows:

P3u
′
3 = PL(u0 − ṽ2 − ṽ), (5.52)

since the signals ṽ2 and ṽ in the linear configuration of the system shown in Figure 5.20

are both dependant on the y2 signal and can be summed to produce ṽc = ṽ + ṽ2. Now

we can write y′3 as

P3u
′
3 = PL(u0 − ṽc). (5.53)



114 Chapter 5 Robustness Analysis for Unstable Affine Systems Using the Gap Metric

We can find an expression for ṽc in terms of u′0, x
′
0, y
′
0 as follows:

ṽc = ṽ + ṽ2,

= d0 + d1 + v + v2,

= d0 + d1 + C̃x′2 + CLx
′
2,

= d0 + d1 + C̃(x′0 − x′1) + CL(x′0 − x′1),

= d0 + d1 + C̃(x′0 − y′1) + CL(x′0 − y′1),

= d0 + d1 + C̃(x′0 + y′0 − y′3) + CL(x′0 + y′0 − y′3),

ṽ + ṽ2 = d0 + d1 + C̃(x′0 + y′0 − PL(u0 − ṽ2 − ṽ)) +

CL(x′0 + y′0 − PL(u0 − ṽ2 − ṽ)),

(I − CLPL − C̃PL)ṽ + (I − CLPL − C̃PL)ṽ2 = d0 + d1 + C̃(x′0 + y′0 − PLu0) +

CL(x′0 + y′0 − PLu0),

ṽ + ṽ2 = (I − CLPL − C̃PL)−1(d0 + d1 + C̃(x′0 + y′0 − PLu0) + CL(x′0 + y′0 − PLu0)),

ṽc = (I − CLPL − C̃PL)−1(−(CLPL + C̃PL) I I (CL + C̃) (CL + C̃)) ∗(
u0 d0 d1 x′0 y′0

)>
(5.54)

Let (I − CLPL − C̃PL) = G. Using (5.53), we have:

P3u
′
3 = PLu0 − PL

(
G−1(−(CLPL + C̃PL) I I (CL + C̃) (CL + C̃))

)
∗(

u0 d0 d1 x′0 y′0

)>
= PL(u0 + (G−1(CLPL + C̃PL)u0 −G−1d0 −G−1d1 −G−1(CL + C̃)x′0 −

G−1(CL + C̃)y′0)),

= PL

(
I +G−1(CLPL + C̃PL) −G−1 −G−1 −G−1(CL + C̃) −G−1(CL + C̃)

)
∗(

u0 d0 d1 x′0 y′0

)>
.

Since I + (I − CLPL − C̃PL)−1(CLPL + C̃PL) = (I − CLPL − C̃PL)−1 = G−1 and let:

c =
(
PL(G−1 −G−1 −G−1 0 0 −G−1(CL + C̃) −G−1(CL + C̃))

)
, (5.55)

then:

P3u
′
3 = c

(
u0 d0 d1 d2 d3 x′0 y′0

)>
. (5.56)
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Next we find u′3 as follows:

u′3 =


u0

ṽc

z̃1

z̃2

 =


u0

ṽc

d2 − z1

d3 − z2

 =


u0

ṽc

d2 − (y′0 − y′3)

d3 − (x′0 − (y′0 − y′3)

 ,

using (5.54) and (5.56) and on letting:

Λ =


I 0 0 0 0 0 0

−G−1(CLPL + C̃PL) G−1 G−1 0 0 G−1(CL + C̃) G−1(CL + C̃)

PLG
−1 −PLG−1 −PLG−1 I 0 −PLG−1(CL + C̃) −(I + PLG

−1(CL + C̃))

PLG
−1 −PLG−1 −PLG−1 0 I −(I − PLG−1(CL + C̃)) −(I + PL(I −G−1(CL + C̃)))


we have:

u′3 = Λ
(
u0 d0 d1 d2 d3 x′0 y′0

)>
using (4.31) and defining Q =

(
Λ

c

)
we have:

‖Π(3)‖ = sup
‖u′0,x′0,y′0‖6=0

‖u′3, P3u
′
3‖

‖u′0, x′0, y′0‖
,

≤ sup
‖u′0,x′0,y′0‖6=0

‖Q‖
∥∥∥ u0 d0 d1 d2 d3 x′0 y′0

∥∥∥
‖u′0, x′0, y′0‖

.

Since
(
u0 d0 d1 d2 d3

)>
= u′0, then:

‖Π(3)‖ ≤ sup
‖u′0,x′0,y′0‖6=0

‖Q‖
∥∥∥ u′0 x′0 y′0

∥∥∥
‖u′0, x′0, y′0‖

,

= ‖Q‖.

The components of ‖Π(3)‖ are the closed loop transfer functions of the linear system

[PL, CL + C̃], confirming that ‖Π(3)‖ is finite. Hence from (5.48) the gap between P3

and P ′3 must satisfy:

~δ(P3, P
′
3) <

1

‖Q‖
. (5.57)
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5.3.4 Finding the Gap Metric for a Nonlinear System with Stable and

Unstable Nonlinearity

In this subsection the LHS, ~δ(P3, P
′
3), of the inequality (5.48) is considered. To find

~δ(P3, P
′
3) an analogous approach to that in Subsection 4.4.2 is developed. However, in

this analysis P̃ is a potentially unstable nonlinear plant. First, the graphs for P3 and

P ′3 are defined to be:

GP̃ :=

{(
u

y

)
: y = P̃ u, ‖u‖ <∞, ‖y‖ <∞

}
, (5.58)

GP3 :=


(
u0 ṽ2 z̃1 z̃2 y′3

)>
: y′3 = P̃ (u0 − 1

g∗s (z̃2) ṽ2 − ṽ),∥∥∥( u0 ṽ2 z̃1 z̃2 y′3 )>
∥∥∥ <∞

 . (5.59)

GP ′3 :=
(
u0 ṽ2 z̃1 z̃2 y′3

)>
: y′3 = P̃ (f∗u(z̃1) + g∗u(z̃1)(u0−

( 1
g∗(z̃2) ṽ2 + 1

g∗u(z̃2)f
∗
u(z̃2) + 1

g∗u(z̃2) ṽ))),
∥∥∥( u0 ṽ2 z̃1 z̃2 y′3 )>

∥∥∥ <∞
 .(5.60)

To find a bound on the gap between GP3 and GP ′3 , a surjective map Φ is required between

these graphs. The following lemma is used to define Φ. First, consider the nonlinear

part of the plant P ′3 shown in Figure 5.21b. For this component the following lemma is

used.

Lemma 5.15. Let g∗u satisfy Assumption 5.12, let f∗u satisfy Assumption 5.13, and let

g∗ satisfy Assumption 5.2 and consider the nonlinear part of the plant P ′3 shown in

Figure 5.21b, where:

v1 = (f∗u(z̃1) + g∗u(z̃1)(u0 − (
1

g∗(z̃2)
ṽ2 +

1

g∗u(z̃2)
f∗u(z̃2) +

1

g∗u(z̃2)
ṽ))). (5.61)

then:

‖ṽ2‖ <∞, ‖ṽ‖ <∞, ‖u0‖ <∞⇒ ‖v1‖ <∞,

and

‖v1‖ <∞, ‖ṽ‖ <∞, ‖u0‖ <∞⇒ ‖ṽ2‖ <∞.

Proof. We will first prove that:

‖ṽ2‖ <∞, ‖ṽ‖ <∞, ‖u0‖ <∞⇒ ‖v1‖ <∞.

Using Assumption 5.13 since f∗u is a bounded function, we have ‖f∗u(z̃1)‖, ‖f∗u(z̃2)‖ <∞,

using Assumption 5.12 since g∗u is a bounded function, we have ‖g∗u(z̃1)‖, ‖1/g∗u(z̃2)‖ <∞,

and ‖ 1
g∗u(z̃2)f

∗
u(z̃2)‖ < ∞, and using Assumption 5.2 since g∗ is a bounded function, we
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have ‖1/g∗(z̃2)‖ <∞ and since ‖ṽ2‖ <∞, ‖ṽ‖ <∞, ‖u0‖ <∞, then:

‖v1‖ =

∥∥∥∥f∗u(z̃1) + g∗u(z̃1)(u0 − (
1

g∗(z̃2)
ṽ2 +

1

g∗u(z̃2)
f∗u(z̃2) +

1

g∗u(z̃2)
ṽ))

∥∥∥∥ ,
≤ ‖f∗u(z̃1)‖+ ‖g∗u(z̃1)‖

(
‖u0‖+

∥∥∥∥ 1

g∗(z̃2)
ṽ2

∥∥∥∥+

∥∥∥∥ 1

g∗u(z̃2)
f∗u(z̃2)

∥∥∥∥+

∥∥∥∥ 1

g∗u(z̃2)
ṽ

∥∥∥∥)
≤ ‖f∗u(z̃1)‖+ ‖g∗u(z̃1)‖‖u0‖+ ‖g∗u(z̃1)‖

∥∥∥∥ 1

g∗(z̃2)

∥∥∥∥ ‖ṽ2‖+ ‖g∗u(z̃1)‖
∥∥∥∥ 1

g∗u(z̃2)

∥∥∥∥
‖f∗u(z̃2)‖+ ‖g∗u(z̃1)‖

∥∥∥∥ 1

g∗u(z̃2)

∥∥∥∥ ‖ṽ‖
<∞.

as required. Next we will prove that:

‖v1‖ <∞, ‖ṽ‖ <∞, ‖u0‖ <∞⇒ ‖ṽ2‖ <∞.

By (5.61):

ṽ2 = −g∗(z̃2)

(
1

g∗u(z̃1)
(v1 − f∗u(z̃1))− u0 +

1

g∗u(z̃2)
f∗u(z̃2) +

1

g∗u(z̃2)
ṽ

)
.

Since g∗u, f∗u , and g∗ are all bounded functions, and since ‖v1‖ <∞, ‖ṽ‖ <∞, ‖u0‖ <∞,

then:

‖ṽ2‖ =

∥∥∥∥−g∗(z̃2)

(
1

g∗u(z̃1)
(v1 − f∗u(z̃1))− u0 +

1

g∗u(z̃2)
f∗u(z̃2) +

1

g∗u(z̃2)
ṽ

)∥∥∥∥ ,
≤ ‖g∗(z̃2)‖(‖ 1

g∗u(z̃1)
‖ (‖v1‖+ ‖f∗u(z̃1)‖) + ‖u0‖+ ‖ 1

g∗u(z̃2)
‖‖f∗u(z̃2)‖+

‖ 1

g∗u(z̃2)
‖‖ṽ‖)

< ∞.

as required.

The graphs for P3 and P ′3 can be written using coprime factorization functions as shown

in the following proposition:

Proposition 5.16. Let P̃ be the unstable system given by (5.33)-(5.34), let g∗u satisfy

Assumption 5.12, let f∗u satisfy Assumption 5.13, and let g∗ satisfy Assumption 5.2, for

the systems P3 and P ′3 given by Figure 5.21 and (5.50) and (5.49), respectively. Then

the graphs GP3 and GP ′3 satisfy:

GP3 :=


(
u0 ṽ ṽ2 z̃1 z̃2 y′3

)>
:

(
v1

y′3

)
=

(
M

N

)
vn,

ṽ2 = g∗s(z̃2)(u0 − ṽ − v1), vn, z̃1, z̃2, u0, ṽ ∈ U

 , (5.62)
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GP ′3 :=


(
u0 ṽ ṽ2 z̃1 z̃2 y′3

)>
:

(
v1

y′3

)
=

(
M

N

)
vn,

ṽ2 = −g∗(z̃2)
(

1
g∗u(z̃1)(v1 − f∗u(z̃1))− u0 + 1

g∗u(z̃2)f
∗
u(z̃2) + 1

g∗u(z̃2) ṽ
)
,

vn, z̃1, z̃2, u0, ṽ ∈ U

 . (5.63)

where M,N given in equations (5.35-5.36) and (5.37-5.38), respectively, form a right

coprime factorization of P̃ i.e. P̃ = NM−1.

Proof. To show that GP ′3 given in (5.63) is equivalent to that given in (5.60), denote the

set given in (5.63) as A.

First we prove that A ⊂ GP ′3 . Let
(
u0 ṽ ṽ2 z̃1 z̃2 y′3

)>
∈ A, i.e

(
v1

y′3

)
=(

M

N

)
vn, ṽ2 = −g∗(z̃2)

(
1

g∗u(z̃1)(v1 − f∗u(z̃1))− u0 + 1
g∗u(z̃2)f

∗
u(z̃2) + 1

g∗u(z̃2) ṽ
)

where vn ∈

U , z̃1 ∈ U , z̃2 ∈ U , u0 ∈ U , ṽ ∈ U . Since u0 ∈ U , ṽ ∈ U , z̃1 ∈ U and z̃2 ∈ U we have ‖u0‖ <
∞, ‖ṽ‖ <∞, ‖z̃1‖ <∞ and ‖z̃2‖ <∞, respectively. Since v1 = Mvn, since M is as given

in (5.35)-(5.36) where ẋ∗ = Acx
∗ + B(f∗s (x∗) + g∗s(x

∗)vn), v1 = − 1
g∗s (x∗)CLinearx

∗ + vn,

since f∗s and g∗s are as defined in Definition 5.11 and Ac is stable, then M is a bounded

operator, since vn ∈ U it follows that ‖v1‖ <∞. In the same way, since y′3 = Nvn, since

N is as given in (5.37)-(refnpe) where ẋ∗ = Acx
∗ +B(f∗s (x∗) + g∗s(x

∗)vn), y1 = x∗, since

f∗s and g∗s are as defined in Definition 5.11 and Ac is stable, then N is a bounded oper-

ator, since vn ∈ U it follows that ‖y′3‖ <∞. Since ‖v1‖ <∞, ‖u0‖ <∞ and ‖ṽ‖ <∞,

and v1 = f∗u(z̃1) + g∗u(z̃1)(u0− ( 1
g∗(z̃2) ṽ2 + 1

g∗u(z̃2)f
∗
u(z̃2) + 1

g∗u(z̃2) ṽ)), it follows from Lemma

5.15 (second statement), that ‖ṽ2‖ <∞. Also given that y′3 = Nvn = NM−1v1 = P̃ v1,

it follows that y′3 = P̃ (f∗u(z̃1) + g∗u(z̃1)

(u0 − ( 1
g∗(z̃2) ṽ2 + 1

g∗u(z̃2)f
∗
u(z̃2) + 1

g∗u(z̃2) ṽ))) . Thus we conclude that A ⊂ GP ′3 .

Next we prove that GP ′3 ⊂ A. Let
(
u0 ṽ ṽ2 z̃1 z̃2 y′3

)>
∈ GP ′3 . Then we

have ‖u0‖, ‖ṽ2‖, ‖ṽ‖, ‖z̃1‖, ‖z̃2‖, ‖y′3‖ < ∞ and y′3 = P̃ (f∗u(z̃1) + g∗u(z̃1)(u0 − ( 1
g∗(z̃2) ṽ2 +

1
g∗u(z̃2)f

∗
u(z̃2) + 1

g∗u(z̃2) ṽ))).

We need to show that

(
v1

y′3

)
=

(
M

N

)
vn, ṽ2 = −g∗(z̃2)( 1

g∗u(z̃1)(v1 − f∗u(z̃1))− (u0 −

1
g∗u(z̃2)f

∗
u(z̃2) − 1

g∗u(z̃2) ṽ))) and vn ∈ U , z̃1 ∈ U , z̃2 ∈ U , ṽ ∈ U , u0 ∈ U . Here u0 ∈
U , ṽ ∈ U , z̃1 ∈ U , z̃2 ∈ U follow from the definition of GP ′3 and since ‖y′3‖ < ∞ then

‖P̃ (f∗u(z̃1)+g∗u(z̃1)(u0− 1
g∗u(z̃2)f

∗
u(z̃2)− 1

g∗u(z̃2) ṽ))‖ <∞, also given that ‖u0‖, ‖ṽ‖, ‖ṽ2‖ <∞
and defining v1 = f∗u(z̃1) + g∗u(z̃1)(u0 − ( 1

g∗(z̃2) ṽ2 + 1
g∗u(z̃2)f

∗
u(z̃2) + 1

g∗u(z̃2) ṽ))), by Lemma

5.15 first statement, it follows that ‖v1‖ < ∞, this leads to

(
v1

P̃ v1

)
=

(
v1

y′3

)
∈ GP̃ .
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Now any element in GP̃ can be written in the form

(
M

N

)
vn for some vn ∈ U . So let:

(
M

N

)
vn =

(
v1

P̃ v1

)
=

(
v1

y′3

)
.

This leads to GP ′3 ⊂ A. Hence GP ′3 = A. To show that GP3 given in (5.59) is equivalent to

that given in (5.62), set g∗(z̃2) = g∗s(z̃2), g∗u(z̃1) = π, 1
g∗u(z̃2) = π′ and f∗u(z̃1) = f∗u(z̃2) = 0.

In this case GP3 follows as a special case, as required.

The map Φ between GP3 and GP ′3 is defined using the following proposition:

Proposition 5.17. Let P̃ be the unstable system given by (5.33)-(5.34), let g∗u satisfy

Assumption 5.12, let f∗u satisfy Assumption 5.13, and let g∗ satisfy Assumption 5.2, for

the systems P3 and P ′3 given by Figure 5.21 and (5.50) and (5.49), respectively. Then

there exists a map Φ : GP3 → GP ′3 given by:

Φ



u0

ṽ

g∗s(z̃2)(u0 − ṽ −Mvn)

z̃1

z̃2

Nv


=



u0

ṽ

−g∗(z̃2)
(

1
g∗u(z̃1)(Mvn − f∗u(z̃1))− (u0 − 1

g∗u(z̃2)f
∗
u(z̃2)− 1

g∗u(z̃2) ṽ)
)

z̃1

z̃2

Nv


.

(5.64)

Furthermore this map is surjective.

Proof. First we need to prove that if

x =
(
u′′0 ṽ′ g∗s(z̃

′
2)(u′′0 −Mv′n) z̃′1 z̃′2 Nv′n

)>
∈ GP3 ,

then Φ(x) ∈ GP ′3 . Since x ∈ GP3 then ‖u′′0‖, ‖ṽ′‖‖ṽ′2‖ = ‖g∗s(z̃′2)(u′′0 − ṽ′ − v′1)‖ =

‖g∗s(z̃′2)(u′′0 − ṽ′ − Mv′n)‖, ‖z̃′1‖, ‖z̃′2‖, ‖y′′3‖ < ∞,

(
v′1
y′′3

)>
=
(
M N

)>
v′n, ṽ

′
2 =

g∗s(z̃
′
2)(u′′0 − ṽ′ − v′1).

Let y =
(
u0 ṽ ṽ2 z̃1 z̃2 y′3

)>
= Φ(x). We need to show that

ṽ2 = −g∗(z̃2)
(

1
g∗u(z̃1)(Mvn − f∗u(z̃1))− (u0 − 1

g∗u(z̃2)f
∗
u(z̃2)− 1

g∗u(z̃2) ṽ))
)

,

(
v1 y′3

)>
=
(
M N

)>
vn, vn, z̃1, z̃2, u0 ∈ U . It follows from (5.64) that u0 = u′′0,

ṽ = ṽ′, z̃1 = z̃′1, z̃2 = z̃′2, y′3 = y′′3 ,

ṽ2 = −g∗(z̃′2)
(

1
g∗u(z̃′1)

(Mv′n − f∗u(z̃′1))− (u′′0 − 1
g∗u(z̃2)f

∗
u(z̃′2)− 1

g∗u(z̃′2)ṽ′ )
)

,

then ‖u0‖, ‖ṽ‖, ‖z̃1‖, ‖z̃2‖, ‖y′3‖ <∞. Since v′1 = u′′0 − ṽ′ − 1
g∗s (z̃′2)

ṽ′2, then by Proposition

5.16 (5.62) there exist v′n ∈ U such that
(
v′1 y′′3

)>
=
(
M N

)>
v′n. It follows that
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y′′3 = Nv′n = NM−1v′1. Now let v1 = v′1, and note that y′3 = y′′3 = NM−1v′1 = NM−1v1,

then there exists vn = v′n such that
(
v1 y′3

)>
=
(
M N

)>
vn. Since v1 = Mvn,

since M is as given in (5.35)-(5.36) where ẋ∗ = Acx
∗ + B(f∗s (x∗) + g∗s(x

∗)vn), v1 =

− 1
g∗s (x∗)CLinearx

∗ + vn, since f∗s and g∗s are as defined in Definition 6.1 and Ac is stable,

then M is a bounded operator, since vn ∈ U it follows that ‖v1‖ <∞.

Using Lemma 5.15 (second statement) as ṽ2 = −g∗(z̃2)( 1
g∗u(z̃1)(Mvn − f∗u(z̃1))− (u0 −

1
g∗u(z̃2)f

∗
u(z̃2) − 1

g∗u(z̃2) ṽ)) = −g∗(z̃2)
(

1
g∗u(z̃1)(v1 − f∗u(z̃1))− (u0 − 1

g∗u(z̃2)f
∗
u(z̃2)− 1

g∗u(z̃2) ṽ)
)

and since ‖u0‖, ‖ṽ‖, ‖v1‖ <∞ then ‖ṽ2‖ <∞. Then:

ṽ2 = −g∗(z̃′2)

(
1

g∗u(z̃′1)
(v′1 − f∗u(z̃′1))− (u′′0 −

1

g∗u(z̃′2)
f∗u(z̃′2)− 1

g∗u(z̃′2)
ṽ′)

)
,

= −g∗(z̃2)

(
1

g∗u(z̃1)
(v1 − f∗u(z̃1))− (u0 −

1

g∗u(z̃2)
f∗u(z̃2)− 1

g∗u(z̃2)
ṽ)

)
,

and hence:

y =



u0

ṽ

−g∗(z̃2)
(

1
g∗u(z̃1)(Mvn − f∗u(z̃1))− (u0 − 1

g∗u(z̃2)f
∗
u(z̃2)− 1

g∗u(z̃2) ṽ)
)

z̃1

z̃2

Nvn


=
(
u0 ṽ ṽ2 z̃1 z̃2 y′3

)>
∈ GP ′3 .

as required.

Next, to prove that Φ is surjective, so that if y ∈ GP ′3 then there exists x ∈ GP3 such

that Φ(x) = y, let us choose an element:

y =
(
u0 ṽ ṽ2 z̃1 z̃2 y′3

)>
∈ GP ′3 .

where ‖u0‖, ‖ṽ2‖, ‖ṽ‖, ‖z̃1‖, ‖z̃2‖, ‖y′3‖ <∞,
(
v1 y′3

)>
=
(
M N

)>
vn,

ṽ2 = −g∗(z̃2)
(

1
g∗u(z̃1)(v1 − f∗u(z̃1))− (u0 − 1

g∗u(z̃2)f
∗
u(z̃2)− 1

g∗u(z̃2) ṽ)
)
, vn ∈ U . Let

x =



u0

ṽ

g∗s(z̃2) 1
g∗(z̃2) ṽ2 + g∗s(z̃2)

(
1

g∗u(z̃1) + 1
)
u0 − g∗s(z̃2)

(
1

g∗u(z̃1)f
∗
u(z̃1)− 1

g∗u(z̃2)f
∗
u(z̃2)− 1

g∗u(z̃2) ṽ
)

z̃1

z̃2

y′3


,

we need to show that x ∈ GP3 i.e. vn, ṽ, z̃1, z̃2, ṽ
′
2 = g∗s(z̃2) 1

g∗(z̃2) ṽ2+g∗s(z̃2)
(

1
g∗u(z̃1) + 1

)
u0−
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g∗s(z̃2)
(

1
g∗u(z̃1)f

∗
u(z̃1)− 1

g∗u(z̃2)f
∗
u(z̃2)− 1

g∗u(z̃2) ṽ
)
∈ U , ṽ′2 = g∗s(z̃2)(u0−ṽ−v1),

(
v1 y′3

)>
=(

M N
)>

vn. Since v1 = f∗u(z̃1) + g∗u(z̃1)(u0− ( 1
g∗(z̃2) ṽ2 + 1

g∗u(z̃2)f
∗
u(z̃2) + 1

g∗u(z̃2) ṽ)) then

ṽ′2 = g∗s(z̃2)(u0 − ṽ − v1), Since ‖z̃1‖, ‖z̃2‖ < ∞ then z̃1, z̃2 ∈ U . Using Assumption 5.2,

since g∗, 1
g∗ is a bounded function, using Assumption 5.12, since g∗u,

1
g∗u

is a bounded

function, also using Assumption 5.13, since f∗u is a bounded function, since g∗s(z̃2) is

a bounded function then ‖f∗u(z̃1)‖ < ∞ and since ‖u0‖, ‖ṽ2‖, ‖ṽ‖, ‖z̃1‖, ‖z̃2‖ < ∞, it

follows that:

‖ṽ′2‖ ≤
∥∥∥∥g∗s(z̃2)

1

g∗(z̃2)
ṽ2 + g∗s(z̃2)

(
1

g∗u(z̃1)
+ 1

)
u0

∥∥∥∥+∥∥∥∥g∗s(z̃2)

(
1

g∗u(z̃1)
f∗u(z̃1)− 1

g∗u(z̃2)
f∗u(z̃2)− 1

g∗u(z̃2)
ṽ

)∥∥∥∥ ,
≤ ‖g∗s(z̃2)‖

∥∥∥∥ 1

g∗(z̃2)

∥∥∥∥ ‖ṽ2‖+ ‖g∗s(z̃2)‖
(∥∥∥∥ 1

g∗u(z̃1)

∥∥∥∥+ 1

)
‖u0‖+

‖g∗s(z̃2)‖
(∥∥∥∥ 1

g∗u(z̃1)

∥∥∥∥ ‖f∗u(z̃1)‖+ ‖ 1

g∗u(z̃2)
‖‖f∗u(z̃2)‖+ ‖ 1

g∗u(z̃2)
‖‖ṽ‖

)
‖ <∞.

Then by Proposition 5.16 (5.63) there exists vn ∈ U such that
(
v1 y′3

)>
=(

M N
)>

vn.

Hence x ∈ GP3 is such that:

Φ



u0

ṽ

g∗s(z̃2) 1
g∗(z̃2) ṽ2 + g∗s(z̃2)

(
1

g∗u(z̃1) + 1
)
u0 − g∗s(z̃2)

(
1

g∗u(z̃1)f
∗
u(z̃1)− 1

g∗u(z̃2)f
∗
u(z̃2)− 1

g∗u(z̃2) ṽ
)

z̃1

z̃2

y′3



=



u0

ṽ

ṽ2

z̃1

z̃2

y′3


. (5.65)

as required.

Using the previous results, a bound on the gap between P3 and P ′3 appearing in the

inequality (5.48) is given using the following theorem:

Theorem 5.18. Let P̃ be the unstable system given by (5.33)-(5.34), let g∗u satisfy

Assumption 5.12, let f∗u satisfy Assumption 5.13, and let g∗ satisfy Assumption 5.2. Let

P3 and P ′3 given by Figure 5.21 and equations (5.50) and (5.49), respectively. Then a
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bound on the gap between P3 and P ′3 is

~δ(P3, P
′
3) ≤ Fδ2, (5.66)

where

Fδ2 = sup∥∥∥∥∥∥∥∥∥
u0

s ∈ U
z̃1

z̃2

∥∥∥∥∥∥∥∥∥6=0

∥∥∥(g∗(z̃2)−g∗s (z̃2))u0+
(
g∗s (z̃2)−g∗(z̃2) 1

g∗u(z̃1)

)
s+g∗(z̃2)

(
1

g∗u(z̃1)
f∗u(z̃1)− 1

g∗u(z̃2)
f∗u(z̃2)

)∥∥∥
‖u0,s,z̃1,z̃2‖ ,

Proof. Using Proposition 5.17, since P̃ is an unstable system, since g∗u satisfies Assump-

tion 5.12, f∗u satisfies Assumption 5.13, and since g∗ satisfies Assumption 5.2. Then

there exists a surjective map Φ : GP3 → GP ′3 given by (5.64). Then the gap between P3

and P ′3 is given as:

~δ(P3, P
′
3) ≤ sup

x∈GP3
\{0}

‖(Φ− I)x‖
‖x‖

,

≤ sup∥∥∥∥∥∥∥∥∥∥∥

u0

ṽ

g∗s (z̃2)(u0 − ṽ −Mvn)

z̃1

z̃2

∥∥∥∥∥∥∥∥∥∥∥
6=0

∥∥∥∥∥ −g∗(z̃2)
(

1
g∗u(z̃1)(Mvn − f∗u(z̃1))− (u0 − 1

g∗u(z̃2)f
∗
u(z̃2)− 1

g∗u(z̃2) ṽ)
)
−

g∗s(z̃2)(u0 − ṽ −Mvn)

∥∥∥∥∥
‖u0, g∗s(z̃2)(u0 − ṽ −Mvn), z̃1, z̃2‖

,

≤ sup∥∥∥∥∥∥∥∥∥∥∥

u0

ṽ

g∗s (z̃2)(u0 − ṽ −Mvn)

z̃1

z̃2

∥∥∥∥∥∥∥∥∥∥∥
6=0

∥∥∥∥∥∥ (g∗(z̃2)− g∗s(z̃2))u0 +
(
g∗s(z̃2)− g∗(z̃2) 1

g∗u(z̃1)

)
Mvn+

g∗(z̃2)
(

1
g∗u(z̃1)f

∗
u(z̃1)− 1

g∗u(z̃2)f
∗
u(z̃2)

)
+
(
g∗s(z̃2)− g∗(z̃2) 1

g∗u(z̃2)

)
ṽ

∥∥∥∥∥∥
‖u0, g∗s(z̃2)(u0 − ṽ −Mvn), z̃1, z̃2‖

,

Given that
(
g∗s(z̃2)− g∗(z̃2) 1

g∗u(z̃2)

)
= 0 and replacing g∗s(z̃2)(u0 − ṽ −Mvn) which is
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bounded for ‖g∗s z̃2)‖, ‖u0‖, ‖ṽ‖ <∞ and ‖M‖ <∞, with s ∈ U produces:

~δ(P3, P
′
3) ≤ sup∥∥∥∥∥∥∥∥∥

u0

s

z̃1

z̃2

∥∥∥∥∥∥∥∥∥6=0

∥∥∥(g∗(z̃2)−g∗s (z̃2))u0+
(
g∗s (z̃2)−g∗(z̃2) 1

g∗u(z̃1)

)
s+g∗(z̃2)

(
1

g∗u(z̃1)
f∗u(z̃1)− 1

g∗u(z̃2)
f∗u(z̃2)

)∥∥∥
‖u0,s,z̃1,z̃2‖

(5.67)

let

Fδ2 = sup∥∥∥∥∥∥∥∥∥
u0

s

z̃1

z̃2

∥∥∥∥∥∥∥∥∥ 6=0

∥∥∥(g∗(z̃2)−g∗s (z̃2))u0+
(
g∗s (z̃2)−g∗(z̃2) 1

g∗u(z̃1)

)
s+g∗(z̃2)

(
1

g∗u(z̃1)
f∗u(z̃1)− 1

g∗u(z̃2)
f∗u(z̃2)

)∥∥∥
‖u0,s,z̃1,z̃2‖ ,

then a bound on the gap is
~δ(P3, P

′
3) ≤ Fδ2. (5.68)

as required.

Theorem 5.18 states that a bound on the gap value depends on the difference between the

input nonlinear component and the stable part of the input nonlinear component of the

controller and on how exact the inversion of the unstable part of the plant nonlinearity

is, within the nonlinear part of the controller.

Then according to the following proposition robust stability is preserved for the system

shown in Figure 5.17.

Proposition 5.19. Consider the nonlinear closed loop system [P ′1, P
′
2, P

′
3] shown in Fig-

ure 5.17. Let g∗u satisfy Assumption 5.12, let f∗u satisfy Assumption 5.13, and let g∗

satisfy Assumption 5.2. Then [P ′1, P
′
2, P

′
3] has a robust stability margin.

Proof. Since g∗u satisfies Assumption 5.12, f∗u satisfies Assumption 5.13, and g∗ satisfies

Assumption 5.2, then by Lemma 5.15, and Proposition 5.16 for the systems P3 and P ′3
given by Figure 5.21 and (5.50) and (5.49), respectively, the graphs GP3 and GP ′3 can be

given by (5.62) and (5.63), respectively. Using Proposition 5.17, then there exists a map
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Φ : GP3 → GP ′3 given by (5.64). This leads to the presence of a finite gap value between

the perturbed and the unperturbed configurations of this system given by the inequality

(5.67). Then the system [P ′1, P
′
2, P

′
3] shown in Figure 5.17 has a robust stability margin.

The main result Theorem 5.14 easily follows from Theorem 5.20 which we establish next.

Theorem 5.20. Consider the nonlinear closed loop system shown in Figure 5.12 and

given by (5.40)-(5.45). Let g∗u satisfy Assumption 5.12, let f∗u satisfy Assumption 5.13,

and let g∗ satisfy Assumption 5.2. Then this system has a robust stability margin bP1,C1

which satisfies the inequality

bP1,C1 ≥ ‖Q‖−1. (5.69)

Proof. Let 1
‖Π(3)‖

= ‖Q‖−1 be a stability margin for the system [P ′1, P
′
2, P

′
3] shown in

Figure 5.17, let 1
‖Π′

(3)
‖ be a stability margin for the system [P ′1, P

′
2, P

′
3] shown in Figure

5.15, finally let bP1,C1 = 1
‖ΠPLinear//CLinear+C̃‖

be a stability margin for the system shown

in Figure 5.12. Then

‖Q‖ =
∥∥Π(3)

∥∥ = sup
‖u′0,x′0,y′0‖6=0

∥∥∥∥∥∥∥Π(3)

 u′0
x′0
y′0


∥∥∥∥∥∥∥

‖u′0, x′0, y′0‖
,

= sup
‖u0,d0,d1,d2,d3,y0,x0‖6=0

∥∥∥∥Π(3)

(
u0 d0 d1 d2 d3 y0 x0

)>∥∥∥∥
‖u0, d0, d1, d2, d3, y0, x0‖

,

≥ sup
‖u0,0,0,0,0,y0,x0‖6=0

∥∥∥∥Π′(3)

(
u0 0 0 0 0 y0 x0

)>∥∥∥∥
‖u0, 0, 0, 0, 0, y0, x0‖

= ‖Π′(3)‖,

‖Π′(3)‖ = sup
‖u0,y0,x0‖6=0

∥∥∥∥Π′3

(
u0 y0 x0

)>∥∥∥∥
‖u0, y0, x0‖

,

≥ sup
‖u0,y0,0‖6=0

∥∥∥∥ΠPLinear//CLinear+C̃

(
u0 y0 0

)>∥∥∥∥
‖u0, y0, 0‖

,

= ‖ΠPLinear//CLinear+C̃‖.

This leads us to

bP1,C1 =
1

ΠPLinear//CLinear+C̃

≥ 1

Π′(3)

≥ 1

Π(3)
= ‖Q‖−1.
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Therefore the existence of a stability margin for the system shown in Figure 5.17 guaran-

tees the existence of a stability margin for the system [P1, C1] shown in Figure 5.12. Also,

since g∗u satisfies Assumption 5.12, f∗u satisfies Assumption 5.13, and since g∗ satisfies

Assumption 5.2, then by Proposition 5.19, the nonlinear closed loop system [P ′1, P
′
2, P

′
3]

shown in Figure 5.17, has a robust stability margin. This leads to the conclusion that

the system [P1, C1] given by Figure 5.12 and (5.40)-(5.45) also has a robust stability

margin. as required.

Based on Theorems 5.18 and 5.20 we can write the following corollary:

Corollary 5.21. Consider the nonlinear closed loop system shown in Figure 5.12 and

given by (5.40)-(5.45). Let g∗u satisfy Assumption 5.12, let f∗u satisfy Assumption 5.13,

and let g∗ satisfy Assumption 5.2. Then this system is stable if

Fδ2 < ‖Q‖−1.

Proof. Using Theorem 5.18 inequality (5.66), since:

~δ(P3, P
′
3) ≤ Fδ2,

and using Theorem 5.20 inequality (5.69), since:

bP1,C1 ≥ ‖Q‖−1,

It follows that if

Fδ2 < ‖Q‖−1.

we have:
~δ(P3, P

′
3) ≤ Fδ2 < ‖Q‖−1 ≤ bP1,C1 ,

so ~δ(P3, P
′
3) < bP1,C1 and the conditions hold from Theorem 2.11, hence stability is

assured.

5.4 Summary

This chapter has considered two important cases of unstable affine systems. The first

case is the affine system with unstable linear and unstable nonlinear parts, where we

consider all the nonlinear terms in the plant to be unstable. The stability condition
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found for this system showed that the gap value depends on the nonlinear input part

of the controller and how exact the inversion of the plant nonlinearity is, within the

nonlinear part of the controller (equation (5.26)). This result shows that in this case the

controller realizes an inverting action to cancel all the nonlinear terms in the system,

including inherently stabilizing nonlinearities which can be used to stabilize the plant,

hence adding large positive feedback to cancel useful nonlinearities in the plant. This

increases the risk of instability in the control system.

An improved approach was developed in the second case where an affine nonlinear sys-

tem with an unstable linear and a stable and an unstable nonlinear components was

considered. In this case the system was assumed to have two nonlinear components; an

unstable nonlinear component also cancelled by control action, and a useful stable non-

linear component, which we wish to preserve within the stabilizing action. The stability

condition found for this system showed that the gap value depends on the difference

between the input nonlinear component and the stable part of the input nonlinear com-

ponent of the controller and on how exact the inversion of the unstable part of the plant

nonlinearity is, within the nonlinear part of the controller (equation (5.66)). This result

showed that the new approach prevented adding large positive feedback to cancel use-

ful nonlinearities in the plant (as was done in the previous case). On the other hand,

following this approach does not place restrictions on the control design of the system.



Chapter 6

Robustness Analysis for

Nonlinear Systems with Stable

and Unstable Plant Nonlinearities

Using the Gap Metric

6.1 Introduction

This chapter considers the robustness analysis of a special class of unstable affine systems

which have only a single nonlinear component, f∗(x∗). The linear part of the plant is

assumed to be unstable and the nonlinear part, f∗(x∗) includes a stable component,

f∗s (x∗), and an unstable component, f∗u(x∗). This system is a special case of the system

considered in Section 5.3, however, in this chapter the analysis undertaken will not follow

the procedure carried out in Section 5.3. Instead the linear stabilising component of the

controller will be used to stabilize the linear unstable part of the plant, aligning the choice

of the stabilizing linear component of the feedback with the implicit stabilizing feedback

used in the construction of the underlying coprime factors. Then, the resulting stable

linear plant is incorporated with the stable nonlinear component of the plant, f∗s (x∗), to

construct the nominal plant which will be considered in the robustness analysis carried

out in this chapter. The gap analysis for this system will follow the procedure carried

out in Chapter 4.
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6.2 Robustness Analysis of a Nonlinear System with Plant

Nonlinearity Using the Gap Metric

6.2.1 Affine Nonlinear Systems with Stable and Unstable Plant Non-

linearity

Consider the normal form of the nonlinear system described previously in Section 4.2,

given by (4.5)-(4.6), this form is:

P : Ln+1
∞,e → Ln∞,e : (u1, z1) 7→ (y1),

ẋ∗ = Ax∗ +B(f∗(z1) + g∗(z1)u1), (6.1)

y1 = (y11, . . . , y1n) = x∗, (6.2)

z1 = (z11, . . . , z1n) = x∗, (6.3)

In this system the feedback input y1 is considered as an input, z1, to the nonlinear parts

of the plant g∗(z1) and f∗(z1), A =



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

. . .
...

0 0 0 . . . 0 1

a1 a2 . . . an−1 an


, B =


0
...

0

1

,

f∗(z1) and g∗(z1) represent the nonlinear part of the transformed system, f∗(x∗) =

Lnfh(T−1(x∗)), g∗(x∗) = LgL
n−1
f h(T−1(x∗)).

In this chapter we consider the transformed plant to have only a single nonlinear plant

component, f∗(z1), which is composed of a stable and an unstable component. This

corresponds to replacing g∗(z1) by the linear operator π : (u1, z1) 7→ vi, vi = u1 , so that

the system becomes

P : Ln+1
∞,e → Ln∞,e : (u1, z1) 7→ (y1),

ẋ∗ = Ax∗ +B(f∗(z1) + u1), (6.4)

y1 = (y11, . . . , y1n) = x∗, (6.5)

z1 = (z11, . . . , z1n) = x∗,

The approach is then to select a controller of the form u1 = a(x∗) + b(x∗)v to stabilize

the system ẋ∗ = Ax∗+B(f∗(x∗) +u1), y1 = x∗ and cancel only the unstable component

of f∗(x∗). As will be seen this controller action requires a vector:

c = (c1, . . . , cn)>

to be chosen such that Ac = A−Bc> is Hurwitz. Analogous to the work done in Section



Chapter 6 Robustness Analysis for Nonlinear Systems with Stable and Unstable Plant
Nonlinearities Using the Gap Metric 129

5.3, we introduce the stable component of f∗(x∗), which we will call f∗s , according to

the following definition:

Definition 6.1. Given that Ac = A−Bc> is Hurwitz, a function f∗s : Rn → R is called

stable if the mapping u 7→ y, with

ẋ∗ = Acx
∗ +B(f∗s (x∗) + u), y = x∗

is stable.

Then to find an admissible form for f∗u(x∗), which is the unstable component of f∗(x∗),

we consider

P : (u1, z1) 7→ y1,

ẋ∗ = Ax∗ +B(f∗(z1) + u1),

= Ax∗ +Bf∗s (z1)−Bf∗s (z1) +B(f∗(z1) + u1),

= Ax∗ +Bf∗s (z1) +B(f∗(z1)− f∗s (z1) + u1),

y1 = x∗,

let f∗u(x∗) = (f∗(x∗)− f∗s (x∗)) then P can be written as

P : (u1, z1) 7→ y1, (6.6)

ẋ∗ = Ax∗ +Bf∗s (z1) +B(f∗u(z1) + u1), (6.7)

y1 = x∗. (6.8)

Since P is unstable, it can be represented using nonlinear coprime factorization as P =

NM−1 where N and M are two stable operators satisfying L(M,N)> = I, where L is

a causal stable mapping L : U × Y → U . The operator M is given by

M : (v, z1) 7→ (u1, z1),

ẋ∗ = Ax∗ +Bf∗s (z1) +B(f∗u(z1) + l(x∗) + v), (6.9)

u1 = l(x∗) + v, (6.10)

z1 = (z11, . . . , z1n) = x∗,
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and N is given by

N : (v, z1) 7→ y1,

ẋ∗ = Ax∗ +Bf∗s (z1) +B(f∗u(z1) + l(x∗) + v), (6.11)

y1 = x∗. (6.12)

Hence u1 = a(x∗) + b(x∗)v = l(x∗) + v. The real function l(x∗) is chosen such that this

function will cancel only the unstable nonlinear term f∗u(x∗) while stabilizing the linear

part of the plant so that M,N are stable. To do this, consider Ax∗+B(f∗(x∗) + l(x∗) +

v) = Acx
∗+B(f∗s (x∗) + v) for some input v. This leads to the conclusion that l(x∗) can

be given as:

l(x∗) = −c>x∗ − (f∗(x∗)− f∗s (x∗)). (6.13)

Since

f∗u(x∗) = (f∗(x∗)− f∗s (x∗)), (6.14)

then l(x∗) = −c>x∗ − f∗u(x∗).

Hence, a feedback linearizing controller which generates the term l(x∗) and adds a feed-

back loop C̃y2 to generate v is given as:

C : L2n
∞,e → L∞,e : (y2, z2) 7→ u2

u2 = −l(y2, z2) + C̃y2 = f∗u(z2)− Clineary2 − C̃y2,

z2 = (z21, . . . , z2n) = −y2,

where l(x∗) = l(y2, z2), y2 = (y21, . . . , y2n), Clinear is the linear stabilizing part of the

controller C,

Clinear : Ln∞,e → L∞,e : y2 7→ vs

vs = c>y2.

and C̃ is the linear part which adds a feedback loop to generate v, is given as

C̃ : Ln∞,e → L∞,e : y2 7→ v2

v2 = −c̃>y2,

where v2 = v and

c̃ = (c̃1, . . . , c̃n)>,

In the presence of disturbances, l(x∗) stabilizes the linear part of the plant P . This is
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because the linear part of this function, c>x∗, is employed as the stabilizing feedback

to the underlying coprime factors of this system to produce a new plant with a stable

linear part. To show that, consider (6.7) and proceed as follows:

ẋ∗ = Ax∗ +Bf∗s (z1) +B(f∗u(z1) + u1),

= Ax∗ +Bf∗s (z1) +B(f∗u(z1) + u0 − u2)

= Ax∗ +Bf∗s (z1) +B(f∗u(z1) + u0 − f∗u(z2) + Clineary2 + C̃y2),

= Ax∗ +Bf∗s (z1) +B(f∗u(z1)− f∗u(z2) + Clinear(y0 − y1) + C̃y2 + u0),

= (A−BClinear)x∗ +Bf∗s (z1) +B(f∗u(z1)− f∗u(z2) + Clineary0 + C̃y2 + u0),

= Acx
∗ +Bf∗s (z1) +B(f∗u(z1)− f∗u(z2) + Clineary0 + C̃y2 + u0),

Note the link to the coprime factor construction given in (6.9)-(6.12), where the above

the equation is the stabilized version of the dynamic equation (6.9). Then given that

P̃ : L∞,e → Ln∞,e : (v1, z1) 7→ y1,

ẋ∗ = Acx
∗ +B(f∗s (z1) + v1),

z1 = (z11, . . . , z1n) = y1,

y1 = x∗,

where v1 = (u0 + Clineary0) + f∗u(z1) − f∗u(z2) + C̃y2 and let ũ1 = ũ0 − ũ2 where

ũ0 = u0 + Clineary0 and ũ2 = f∗u(z2)− C̃y2. Hence P is given as:

P1 : Ln+1
∞,e → Ln∞,e : (ũ1, z1) 7→ (y1),

y1 = P̃ v1, (6.15)

= P̃ (f∗u(z1) + ũ1) (6.16)

z1 = (z11, . . . , z1n) = y1.

For this new plant, a feedback controller is given as

C1 : L2n
∞,e → L∞,e : (y2, z2) 7→ ũ2

ũ2 = f∗u(z2)− C̃y2,

z2 = (z21, . . . , z2n) = −y2,

The feedback control connection for this system is shown in Figure 6.1. Note that in

this configuration, CLinear operator is not shown in the block diagram of the system,
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z1

Figure 6.1: Nonlinear control system with stable/unstable plant nonlinearity

this is because CLinear has been included in the stabilized nominal plant P̃ . For the

system shown in Figure 6.1 the closed loop equations can be written as:

ũ0 = ũ1 + ũ2, (6.17)

y0 = y1 + y2, (6.18)

v1 = f∗u(z1) + ũ1, (6.19)

v2 = C̃y2, (6.20)

y1 = P̃ v1, (6.21)

ũ2 = f∗u(z2)− C̃y2. (6.22)

Next, to derive conditions for robust stability for the system shown in Figure 6.1, we

note that this system is not equivalent to the closed loop system [P1, C1]. This is due to

the presence of the two signals z1, z2 which feed the signals y1,−y2 to the blocks P1, C1,

respectively. If z1, z2 6= 0, then the system in Figure 6.1 does not correspond exactly to

the system shown in Figure 2.1. Hence, we cannot apply Theorem 2.11 to find stability

conditions for this system.

However, the linear configuration of this system, which will be needed to find stability

conditions for this system, does correspond to the system shown in Figure 2.1, since

setting f∗u(z1) = f∗u(z2) = f∗s (z1) = 0 will result in the linear system [PLinear, C̃] shown

in Figure 6.2.

This system is equivalent to the linear system shown in Figure 6.3, where PLinear is

given by

PLinear : L∞,e → Ln∞,e : ũ1 7→ y1,

ẋ∗ = Acx
∗ +Bũ1, (6.23)

y1 = x∗, (6.24)
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Figure 6.2: Linear configuration of a nonlinear system with stable/unstable plant
nonlinearity
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Figure 6.3: Equivalent linear configuration of a nonlinear system with stable/unstable
plant nonlinearity

The closed loop system [PLinear, C̃] has a closed loop operator ΠPlinear//C̃
, which will be

used to find stability conditions for the system shown in Figure 6.1.

6.3 Gap Metric for Nonlinear Systems with Stable and

Unstable Plant Nonlinearities

This section undertakes robustness stability analysis for the nonlinear system shown in

Figure 6.1. The analysis carried out in this section will follow the approach presented

in Chapter 4 since the system considered in this analysis is stable, however, P̃ is now a

stable nonlinear plant with stable linear and nonlinear plant components.

The following assumptions on the form of f∗u is required in subsequent analysis:

Assumption 6.2. Let f∗u : Rn → R be a continuous nonlinear function, satisfying the

following conditions:

∃Qu <∞ and |f∗u(x)| ≤ Qu ∀x ∈ Rn. (6.25)

The gap metric framework is applied to the system shown in Figure 6.1 to result in the
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following theorem:

Theorem 6.3. Consider the nonlinear closed loop system shown in Figure 6.1 and given

by (6.17)-(6.22). Let f∗u satisfy Assumption 6.2, then this system has a robust stability

margin.

Parallel to the proof of Theorem 4.6, this proof also requires results that are developed

subsequently in this section. This analysis will also consider the triple system configu-

ration shown in Figure 4.5 and apply the ‘network’ result in (Theorem 2.13) to find a

stability condition for the nonlinear system shown in Figure 6.1.

The route taken is as follows: Since the presence of nonlinear elements in multiple

blocks in the system shown in Figure 6.1 leads to significant conservatism, and to apply

Theorem 2.13 to this system, a new system configuration shown in Figure 6.4 is used.

In this configuration the unstable nonlinear part of the plant P1 and the nonlinear part

of the controller C1 along with the plant P̃ are considered to be included in the block

P ′3 and an external input x0 is added to the system. Also the feedback input x0 − y1 is

considered as an input, z1, to the nonlinear components of the plant f∗u(z1),f∗s (z1), and

the feedback input −y2 is considered as an input z2 to the nonlinear component f∗u(z2).

P̃

v1

y1

ũ0

P ′3

- -

?

x0

+-
��
��
P ′1

-1

ỹ1

z1

-
+

-

6

+

+
�
��-
-
?N

C̃
�

y0

P ′2

+

-y2v2 �?

x1
z2

�-1

f∗u(z2)

f∗u(z1)

Figure 6.4: Nonlinear system with stable and unstable plant nonlinearity configura-
tion

The nominal system configuration is taken to comprise the system components P1, P2

and P3 with setting f∗u(z1) = f∗u(z2) = 0. This configuration is shown in Figure 6.5.

To apply Theoreom 2.13 we must put the real and the nominal nonlinear systems shown

in Figures 6.4 and 6.5 in a form comparable to that given in Figure 4.5. In order to
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Figure 6.5: Linear configuration of an affine system with stable and unstable plant
nonlinear part

do this we consider three signal spaces U = Ln∞,e,X = Ln∞,e and Y = Ln∞,e, together

with the following augmented signals; let v̂2 = −v2 and let u′1 =
(

0 0 z1 0
)>

and let u′2 =
(

0 v̂2 0 z2

)>
also let the external input u0 be changed to u′0 =(

ũ0 d1 d2 d3

)>
, where d2 = (d21, . . . , d2n) and d3 = (d31, . . . , d3n), also let u′3 =

u′0 − u′2 − u′1 =
(
ũ0 d1 d2 d3

)>
−
(

0 v̂2 0 z2

)>
−
(

0 0 z1 0
)>

=(
ũ0 d1 − v̂2 d2 − z1 d3 − z2

)>
, let ṽ2 = d1 − v̂2, z̃1 = d2 − z1, z̃2 = d3 − z2 then

u′3 =
(
ũ0 ṽ2 z̃1 z̃2

)>
. Also let x′0 = y0, y′0 = x0, y′3 = y1, x′1 = x1, x′2 = y2 and

finally y′1 = y′0 − y′3 = x0 − y1. The resulting system is shown in Figure 6.6.

The corresponding nominal system is shown in Figure 6.7.

From the two systems shown in Figure 6.6 and Figure 6.7 it follows that P1 = P ′1 and

P2 = P ′2.

These configurations correspond to those of Figures 6.4 and 6.5, respectively, except for

the presence of d1, d2 and d3. Figures 6.6 and 6.7 correspond exactly to the forms shown

in Figures 6.8 and 6.9, respectively, which in turn have identical structure to that of

Figure 4.5. Hence, our stability condition will be applied to the systems of Figures 6.8

and 6.9.
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Figure 6.6: Augmented nonlinear system with plant nonlinearity
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Figure 6.7: Nominal system with plant nonlinearity

Since P1 = P ′1 and P2 = P ′2 , then

~δ(P1, P
′
1) = 0, ~δ(P2, P

′
2) = 0.

Using Theorem 2.13, the robust stability condition is given as:

3∑
i=1

~δ(Pi, P
′
i ) < ‖Π(i)‖−1,
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Figure 6.8: Nonlinear configuration of affine system with plant nonlinearity
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Figure 6.9: Nominal configuration of affine system with unstable nonlinearity

For this system the stability condition is:

~δ(P3, P
′
3) < ‖Π(3)‖−1. (6.26)

Then the gap metric measures the difference between the nominal plant P3 : u′3 7→
y′3, y

′
3 = P̃ (ũ0 − ṽ2) and the perturbed plant P ′3 : u′3 7→ y′3, y

′
3 = P̃ (f∗u(z̃1) − f∗u(z̃2) +

(ũ0 − ṽ2)). The plants P3 and P ′3 are shown in Figure 6.10.

Before providing a complete description of the operators P ′1, P
′
2 and P ′3 and P1, P2 and

P3 shown in Figures 6.8 and 6.9, respectively, we also briefly state the motivation for

the proceeding manipulations (as was done in Chapter 4).

The stability condition (6.26) can be related to the original system configuration shown

in Figure 6.1 as follows: It will be shown later in the proof of Theorem 6.3 that the
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ũ0

Figure 6.10: Nonlinear plant mapping:(a) unperturbed, (b) perturbed

stability margin for the system shown in Figure 6.6 is less than or equal to the stability

margin corresponding to the system shown in Figure 6.4 which in turn is less than or

equal to the stability margin corresponding to the original system shown in Figure 6.1.

This is because for each pair the latter is a special case of the former.

The closed loop operators P ′1, P
′
2 and P ′3 shown in Figure 6.8 are given by

P ′1 : Ln∞,e → L2n
∞,e : y′1 7→ (x′1, u

′
1), x′1 = −y′1,

u′1 =
(

0 0 z1 0
)>

, z1 = y′1,

where y′1 = ỹ1, and :

P ′2 : Ln∞,e → Ln+1
∞,e : x′2 7→ u′2, u

′
2 =

(
0 v̂2 0 z2

)>
,

z2 = x′2, v̂2 = −C̃x′2,
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and

P ′3 : L2n+2
∞,e → Ln∞,e : u′3 7→ y′3,

y′3 = P ′3u
′
3,

= P̃ v1,

= P̃ (f∗u(z̃1)− f∗u(z̃2) + (ũ0 − ṽ2)). (6.27)

The configuration shown in Figure 6.9 comprises the subsystems:

P1 : Ln∞,e → L2n
∞,e : y′1 7→ (x′1, u

′
1)

x′1 = −y′1, u′1 =
(

0 0 z1 0
)>

, z1 = y′1,

P2 : Ln∞,e → Ln+1
∞,e : x′2 7→ u′2

u′2 =
(

0 v̂2 0 z2

)>
, z2 = x′2, v̂2 = −C̃x′2,

and

P3 : L2n+2
∞,e → Ln∞,e : u′3 7→ y′3,

y′3 = P3u
′
3,

= P̃ (ũ0 − ṽ2), (6.28)

From the above definitions given for P1, P2 and P3, we conclude that with P̃ = PLinear

the resulting linear configuration of the system shown in Figure 6.9 is equivalent to the

configuration shown in Figure 4.10. This leads to the conclusion that the linear gain

‖Π(3)‖ calculated for these systems is the same.

Similarly to the approach taken in Chapter 4, to apply Theorem 2.13 to this system,

we must satisfy inequality (6.26). In the following two subsections, the two sides of this

inequality will be evaluated, namely the linear gain ‖Π(3)‖ and the gap value ~δ(P3, P
′
3).

6.3.1 Finding ‖Π(3)‖ for an Affine Nonlinear System with Stable and

Unstable Plant Nonlinearity

We start with the RHS of inequality (6.26), with f∗s (z1) removed, PLinear given by

(6.23) − (6.24) corresponds to P̃ given by (4.10) − (4.11). Then the linear gain ‖Π(3)‖
calculated for the system shown in Figure 6.9 is the same as the linear gain ‖Π(3)‖ for the

system shown in Figure 4.10. In this subsection the reader is also referred to Subsection

4.4.1 for the procedure followed to calculate this value. In Subsection 4.4.1 it was found

that:
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‖Π3‖ ≤ sup
‖u′0,x′0,y′0‖6=0

‖Q‖
∥∥∥ u′0 x′0 y′0

∥∥∥>
‖u′0, x′0, y′0‖

= ‖Q‖.

where Q =

(
Λ

c

)
, with Λ, c matrices of dimension 4 × 6 and 1 × 6 respectively, their

terms comprising closed loop functions of system [PLinear, C̃]. Hence from (6.26) the

gap between perturbed and unperturbed plants must satisfy:

~δ(P3, P
′
3) <

1

‖Q‖
. (6.29)

6.3.2 Finding the Gap Metric for a Nonlinear System with Stable and

Unstable Plant Nonlinearity

In this subsection the LHS, ~δ(P3, P
′
3), of the inequality (6.26) is considered. To find

~δ(P3, P
′
3) an analogous approach to that in Subsection 4.4.2 is used. Consider the plants

P3 and P ′3 shown in Figure 6.10, the graphs for P̃ , P3 and P ′3 are defined to be:

GP̃ :=

{(
u

y

)
: y = P̃ u, ‖u‖ <∞, ‖y‖ <∞

}
, (6.30)

GP3 :=




ũ0

ṽ2

z̃1

z̃2

y′3

 :

∥∥∥∥∥∥∥∥∥∥∥∥

ũ0

ṽ2

z̃1

z̃2

y′3

∥∥∥∥∥∥∥∥∥∥∥∥
<∞, y′3 = P̃ (ũ0 − ṽ2)


, (6.31)

GP ′3 :=




ũ0

ṽ2

z̃1

z̃2

y′3

 :

∥∥∥∥∥∥∥∥∥∥∥∥

ũ0

ṽ2

z̃1

z̃2

y′3

∥∥∥∥∥∥∥∥∥∥∥∥
<∞, y′3 = P̃ (f∗u(z̃1)− f∗u(z̃2) + (ũ0 − ṽ2))


.(6.32)

In order to find a bound on the gap between GP3 and GP ′3 , a surjective map Φ is required

between these graphs. The following lemma is used to define this map. First, consider

the nonlinear part of the plant P ′3 shown in Figure 6.10b, for this component the following

lemma is used.

Lemma 6.4. Let f∗u satisfy Assumption 6.2, and consider the following equation:

v1 = f∗u(z̃1)− f∗u(z̃2) + ũ0 − ṽ2. (6.33)
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Then:

‖ṽ2‖ <∞, ‖ũ0‖ <∞⇒ ‖v1‖ <∞,

and

‖v1‖ <∞, ‖ũ0‖ <∞⇒ ‖ṽ2‖ <∞.

Proof. We will first prove that:

‖ṽ2‖ <∞, ‖ũ0‖ <∞⇒ ‖v1‖ <∞.

Let ‖ṽ2‖ <∞, ‖ũ0‖ <∞, and Assumption 6.2 since f∗u is a bounded function, we have

‖f∗u(z̃1)‖ <∞ and ‖f∗u(z̃2)‖ <∞, since ‖ṽ2‖ <∞ and ‖ũ0‖ <∞,

‖v1‖ = ‖f∗u(z̃1)− f∗u(z̃2) + ũ0 − ṽ2‖,

≤ ‖f∗u(z̃1)‖+ ‖f∗u(z̃2)‖+ ‖ṽ2‖+ ‖ũ0‖,

<∞.

as required.

Next we will prove that:

‖v1‖ <∞, ‖ũ0‖ <∞⇒ ‖ṽ2‖ <∞.

Let ‖v1‖ <∞, ‖ũ0‖ <∞, here ṽ2 can be obtained from (6.33):

ṽ2 = f∗u(z̃1)− f∗u(z̃2) + ũ0 − v1.

Also since f∗u is a bounded function, and since ‖v1‖ <∞, ‖ũ0‖ <∞, then:

‖ṽ2‖ = ‖f∗u(z̃1)− f∗u(z̃2) + ũ0 − v1‖,

≤ ‖f∗u(z̃1)‖+ ‖f∗u(z̃2)‖+ ‖v1‖+ ‖ũ0‖,

<∞.

as required.

In this analysis Φ is defined to be the map between stable P3 and P ′3. The plants P3

and P ′3 are stable if the plant P̃ is stable, as shown by the following lemma.

Lemma 6.5. Suppose P̃ is BIBO stable and let f∗u satisfy Assumption 6.2. Then P3

and P ′3 given by Figure 6.10 and (6.27) and (6.28), respectively, are stable.

Proof. First we prove that if P̃ is stable then P3 is stable. In order to do that we must
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prove that if ‖u′3‖ < ∞ then ‖P3u
′
3‖ < ∞. So, let ‖u′3‖ < ∞. While u′3 =


ũ0

ṽ2

z̃1

z̃2

, so

‖ũ0‖, ‖ṽ2‖, ‖z̃1‖, ‖z̃2‖ <∞.

Then by definition:

‖y′3‖ = ‖P3u
′
3‖,

= ‖P̃ (ũ0 + y0 − ṽ2)‖,

≤ ‖P̃‖(‖ũ0‖+ ‖ṽ2‖),

<∞.

Hence P3 is stable.

Similarly to prove that if P̃ is stable then P ′3 is stable we must prove that if ‖u′3‖ <∞

then ‖P ′3u′3‖ < ∞. Let ‖u′3‖ < ∞. While u′3 =


ũ0

ṽ2

z̃1

z̃2

, then ‖ũ0‖, ‖ṽ2‖, ‖z̃1‖, ‖z̃2‖ <

∞.

By definition:

y′3 = P ′3u
′
3 = P̃ (f∗u(z̃1)− f∗u(z̃2) + ũ0 − ṽ2),

‖y′3‖ = ‖P̃ (f∗u(z̃1)− f∗u(z̃2) + ũ0 − ṽ2)‖,

Using Lemma 6.4, since ‖ũ0‖ <∞ and ‖ṽ2‖ <∞ then:

‖v1‖ = ‖f∗u(z̃1)− f∗u(z̃2) + ũ0 − ṽ2‖ <∞.

Since P̃ is stable, it follows that:

‖y′3‖ = ‖P̃‖‖f∗u(z̃1)− f∗u(z̃2) + ũ0‖ <∞.

Then P ′3 is stable.

Since P3 and P ′3 are stable, the graphs for P3 and P ′3 can be written in the form given

in the following proposition:

Proposition 6.6. Let P̃ be stable and let f∗u satisfy Assumption 6.2. Let P3 and P ′3 be

given by Figure 6.10 and (6.27) and (6.28), respectively. Then the graphs GP3 and GP ′3
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satisfy:

GP3 :=





ũ0

ṽ2

z̃1

z̃2

 , P3


ũ0

ṽ2

z̃1

z̃2


 :

∥∥∥∥∥∥∥∥∥∥
ũ0

ṽ2

z̃1

z̃2

∥∥∥∥∥∥∥∥∥∥
<∞

 , (6.34)

GP ′3 :=





ũ0

ṽ2

z̃1

z̃2

 , P ′3


ũ0

ṽ2

z̃1

z̃2


 :

∥∥∥∥∥∥∥∥∥∥
u0

ṽ2

z̃1

z̃2

∥∥∥∥∥∥∥∥∥∥
<∞

 . (6.35)

Proof. To show that if P̃ is stable and f∗u satisfies Assumption 6.2 then GP ′3 given in

(6.32) can be written as that given in (6.35), let us denote the set given in (6.35) as A.

Let



ũ0

ṽ2

z̃1

z̃2

 , P ′3


ũ0

ṽ2

z̃1

z̃2


 ∈ A, i.e ‖(ũ0, ṽ2, z̃1, z̃2)‖ < ∞, P̃ is stable and f∗u satisfy

Assumption 6.2, then using Lemma 6.5, P ′3 is stable. Since ‖(u0, ṽ2, z̃1, z̃2)‖ < ∞ and

P ′3 is stable then ‖y′3‖ = ‖P ′3(ũ0, ṽ2, z̃1, z̃2)‖ <∞. Thus we conclude that A ⊂ GP ′3 .

Next we prove that GP ′3 ⊂ A. Let


ũ0

ṽ2

z̃1

z̃2

y′3

 ∈ GP ′1 , i.e ‖(ũ0, ṽ2, z̃1, z̃2, y
′
3)‖ < ∞ and

y′3 = P̃ (f∗u(z̃1) − f∗u(z̃2) + ũ0 − ṽ2). Then ‖(u0, ṽ2, z̃1, z̃2)‖ < ∞ and y′3 = P̃ (f∗u(z̃1) −
f∗u(z̃2) + ũ0 − ṽ2) = P ′3(ũ0, ṽ2, z̃1, z̃2).

This leads to GP ′3 ⊂ A. Hence GP ′3 = A.

To show that GP3 given by (6.34) is equivalent to that given by (6.31), set f∗u(z1) =

f∗u(z2) = 0. In this case GP3 follows as a special case, as required.

The map Φ between GP3 and GP ′3 is defined using the following proposition:

Proposition 6.7. Let P̃ be stable and let f∗u satisfy Assumption 6.2. Let P3 and P ′3
be given by Figure 6.10 and (6.27) and (6.28), respectively. Then there exists a map
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Φ : GP3 → GP ′3 given by:

Φ




ũ0

ṽ2

z̃1

z̃2



P3


ũ0

ṽ2

z̃1

z̃2




=




ũ0

ṽ2

z̃1

z̃2



P ′3


ũ0

ṽ2

z̃1

z̃2




, (6.36)

Furthermore this map is surjective.

Proof. First we prove that if

x =
(

(u′′0, ṽ
′
2, z̃
′
1, z̃
′
2) P3(u′′0, ṽ

′
2, z̃
′
1, z̃
′
2)
)>
∈ GP3 ,

then Φ(x) ∈ GP ′3 . Since x ∈ GP3 then ‖(u′′0, ṽ′2, z̃′1, z̃′2)‖, ‖y′′3‖ = ‖P3(u′′0, ṽ
′
2, z̃
′
1, z̃
′
2)‖ < ∞.

Let y =
(

(ũ0, ṽ2, z̃1, z̃2) P ′3(ũ0, ṽ2, z̃1, z̃2)
)>

= Φ(x). We need to show that y′3 =

P ′3(ũ0, ṽ2, z̃1, z̃2), ‖(ũ0, ṽ2, z̃1, z̃2)‖ < ∞. It follows from (6.36) that (ũ0, ṽ2, z̃1, z̃2) =

(u′′0, ṽ
′
2, z̃
′
1, z̃
′
2) and y′3 = P ′3(u′′0, ṽ

′
2, z̃
′
1, z̃
′
2), then ‖(ũ0, ṽ2, z̃1, z̃2)‖ <∞.

Using Proposition 6.6 since P̃ is stable and f∗u satisfies Assumption 6.2 and ‖(ũ0, ṽ2, z̃1, z̃2)‖ <
∞, then ‖y′3‖ = ‖P ′3(ũ0, ṽ2, z̃1, z̃2)‖ <∞, and hence:

y =
(

(ũ0, ṽ2, z̃1, z̃2) P ′3((ũ0, ṽ2, z̃1, z̃2)
)>

=
(

(ũ0, ṽ2, z̃1, z̃2) y′3

)>
∈ GP ′3 .

as required.

Next, to prove that Φ is surjective, let u = (ũ0, ṽ2, z̃1, z̃2) and using Proposition 2.14

since P3 and P ′3 are stable and since ‖(ũ0, ṽ2, z̃1, z̃2)‖ <∞ then the map given in 6.36 is

surjective, as required.

Using the previous results, a bound on the gap between P3 and P ′3 is given using the

following theorem

Proposition 6.8. Let P̃ be stable and let f∗u satisfy Assumption 6.2. Let P3 and P ′3
be given by Figure 6.10 and (6.27) and (6.28), respectively. Then a bound on the gap
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between P3 and P ′3 is

~δ(P3, P
′
3) ≤ sup∥∥∥∥∥ z̃1

z̃2

∥∥∥∥∥ 6=0

‖P̃‖‖f∗u(z̃1)− f∗u(z̃2)‖
‖z̃1, z̃2‖

. (6.37)

Proof. Since P̃ is stable and since f∗u satisfies Assumption 6.2 then using Proposition

6.7 there exists a surjective map Φ : GP3 → GP ′3 given by (6.36). Then the gap between

P3 and P ′3 is given by:

~δ(P3, P
′
3) ≤ sup

x∈GP3
\{0}

‖(Φ− I)x‖
‖x‖

,

= sup∥∥∥∥∥∥∥∥∥
ũ0

ṽ2

z̃1

z̃2

∥∥∥∥∥∥∥∥∥ 6=0

‖P̃ ((f∗u(z̃1)− f∗u(z̃2)) + ũ0)− ṽ2)− P̃ (ũ0 − ṽ2)‖
‖ũ0, ṽ2, z̃1, z̃2‖

,

≤ sup∥∥∥∥∥∥∥∥∥
ũ0

ṽ2

z̃1

z̃2

∥∥∥∥∥∥∥∥∥6=0

‖P̃‖‖f∗u(z̃1)− f∗u(z̃2)‖
‖ũ0, ṽ2, z̃1, z̃2‖

.

Hence:

~δ(P3, P
′
3) ≤ sup∥∥∥∥∥ z̃1

z̃2

∥∥∥∥∥ 6=0

‖P̃‖‖f∗u(z̃1)− f∗u(z̃2)‖
‖z̃1, z̃2‖

.

as required.

The bound on the gap given in (6.37) is related to the Lipschitz condition given in the

following lemma:

Lemma 6.9. Let f : Rn → Rn be a continuous function. Suppose that [∂f/∂x] exists

and is continuous. Suppose there is a constant L ≥ 0 and that∥∥∥∥∂f∂x (x)

∥∥∥∥
∞
≤ L ∀x.

Then

‖f(x)− f(y)‖ ≤ L‖x− y‖

for all x and y.
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Proof. See Khalil (2002).

where L is called the Lipschitz constant.

Using the previous results, a bound on the gap between P3 and P ′3 is given using the

following theorem

Theorem 6.10. Let P̃ be stable and let f∗u satisfy Assumption 6.2. Let P3 and P ′3
be given by Figure 6.10 and (6.27) and (6.28), respectively. Then a bound on the gap

between P3 and P ′3 is

~δ(P3, P
′
3) ≤ ‖P̃‖

√
3L. (6.38)

Proof. Using Proposition 6.8 we have:

~δ(P3, P
′
3) ≤ sup∥∥∥∥∥ z̃1

z̃2

∥∥∥∥∥ 6=0

‖P̃‖‖f∗u(z̃1)− f∗u(z̃2)‖
‖z̃1, z̃2‖

.

This result can be related to the Lipschitz condition. Using Lemma 6.9, we can write:

‖f∗u(z̃1)− f∗u(z̃2)‖ ≤ L‖z̃1 − z̃2‖, ∀(z̃1 − z̃2) ∈ W.

Then a gap bound can be further simplified as:

~δ(P3, P
′
3) ≤ sup∥∥∥∥∥ z̃1

z̃2

∥∥∥∥∥ 6=0

‖P̃‖‖f∗u(z̃1)− f∗u(z̃2)‖
‖z̃1, z̃2‖

,

≤ sup∥∥∥∥∥ z̃1

z̃2

∥∥∥∥∥ 6=0

‖P̃‖L‖z̃1 − z̃2‖
‖z̃1, z̃2‖

,

≤ sup∥∥∥∥∥ z̃1

z̃2

∥∥∥∥∥ 6=0

‖P̃‖L(‖z̃1‖+ ‖z̃2‖)
‖z̃1, z̃2‖

≤ sup∥∥∥∥∥ z̃1

z̃2

∥∥∥∥∥ 6=0

‖P̃‖
√

3L‖z̃1, z̃2‖
‖z̃1, z̃2‖

≤ ‖P̃‖
√

3L.

as required.
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Then according to the following proposition robust stability is preserved for the system

shown in Figure 6.6.

Proposition 6.11. Consider the nonlinear closed loop system [P ′1, P
′
2, P

′
3] shown in Fig-

ure 6.6. Suppose P̃ is stable and let f∗u satisfy Assumption 6.2. Then [P ′1, P
′
2, P

′
3] has a

robust stability margin.

Proof. Let P̃ be stable and let f∗u satisfy Assumption 6.2, then by Lemmas 6.4, 6.5,

and using Proposition 6.6 for the systems P3 and P ′3 given by Figure 6.10 and equations

(6.27) and (6.28), respectively, the graphs GP3 and GP ′3 can be given by (6.34) and (6.35),

respectively. Using Proposition 6.7, then there exists a map Φ : GP3 → GP ′3 given by

(6.36). This leads to the presence of a finite gap value between the linear and nonlinear

configurations of this system given by the inequality (6.38). Then the system [P ′1, P
′
2, P

′
3]

given by Figure 6.6 and (6.17)-(6.22) has a robust stability margin.

The main result Theorem 6.3 easily follows from Theorem 6.12 which we establish next.

Theorem 6.12. Consider the nonlinear closed loop system shown in Figure 6.1 and

given by (6.17)-(6.22). Suppose P̃ is stable and let f∗u satisfy Assumption 6.2. Then this

system has a robust stability margin bP1,C1 which satisfies the inequality

bP1,C1 ≥ ‖Q‖−1. (6.39)

Proof. Let 1
‖Π(3)‖

= ‖Q‖−1 be a stability margin for the system [P ′1, P
′
2, P

′
3] shown in

Figure 6.6, let 1
‖Π′

(3)
‖ be a stability margin for the system [P ′1, P

′
2, P

′
3] shown in Figure

6.4, finally let bP1,C1 = 1
‖ΠPLinear//C̃

‖ be a stability margin for the system shown in Figure
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6.1. Then

‖Q‖ =
∥∥Π(3)

∥∥ = sup
‖u′0,x′0,y′0‖6=0

∥∥∥∥∥∥∥Π(3)

 u′0
x′0
y′0


∥∥∥∥∥∥∥

‖u′0, x′0, y′0‖
,

= sup
‖u0,d1,d2,d3,y0,x0‖6=0

∥∥∥∥Π(3)

(
ũ0 d1 d2 d3 y0 x0

)>∥∥∥∥
‖u0, d1, d2, d3, y0, x0‖

,

≥ sup
‖u0,0,0,0,y0,x0‖6=0

∥∥∥∥Π′(3)

(
ũ0 0 0 0 y0 x0

)>∥∥∥∥
‖u0, 0, 0, 0, y0, x0‖

= ‖Π′(3)‖,

‖Π′(3)‖ = sup
‖u0,y0,x0‖6=0

∥∥∥∥Π′3

(
ũ0 y0 x0

)>∥∥∥∥
‖u0, y0, x0‖

,

≥ sup
‖u0,y0,0‖6=0

∥∥∥∥ΠPLinear//C̃

(
ũ0 y0 0

)>∥∥∥∥
‖ũ0, y0, 0‖

,

= ‖ΠPLinear//C̃
‖.

This leads us to

bP1,C1 =
1

‖ΠPLinear//C̃
‖
≥ 1

‖Π′(3)‖
≥ 1

‖Π(3)‖
= ‖Q‖−1.

Then the existence of a stability margin for the system shown in Figure 6.6 guarantees

the existence of a stability margin for the system [P1, C1] shown in Figure 6.1. Also,

since P̃ is stable and f∗u satisfies Assumption 6.2, then by Proposition 6.11, the nonlinear

closed loop system [P ′1, P
′
2, P

′
3] shown in Figure 6.6, has a robust stability margin. This

leads to the conclusion that the system [P1, C1] given by Figure 6.1 and (6.17)-(6.22)

also has a robust stability margin.

Based on Theorems 6.10 and 6.12 we can write the following corollary:

Corollary 6.13. Consider the nonlinear closed loop system [P1, C1] shown in Figure

6.1 and given by (6.17)-(6.22). Let P̃ be stable and let f∗u satisfy Assumption 6.2. Then

this system is stable if

‖P̃‖
√

3L < ‖Q‖−1.

Proof. Using Theorem 6.10 inequality (6.38), since:

~δ(P3, P
′
3) ≤ ‖P̃‖

√
3L,
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and using Theorem 6.12 inequality (6.39), since:

bP1,C1 ≥ ‖Q‖−1,

It follows that if

‖P̃‖
√

3L < ‖Q‖−1,

we have:
~δ(P3, P

′
3) ≤ ‖P̃‖

√
3L < ‖Q‖−1 ≤ bP1,C1 ,

then ~δ(P3, P
′
3) < bP1,C1 and the conditions hold from Theorem 2.11, hence stability.

as required.

6.4 Summary

The gap analysis in this chapter was carried out for a special class of the unstable affine

systems considered in Section 5.3, where the linear part of the plant is assumed to be

unstable. Moreover, the system is assumed to have only a single nonlinear component,

f∗(x∗) which includes a stable component, f∗s (x∗), and an unstable component, f∗u(x∗).

The configuration used in the analysis undertaken in this chapter has employed the linear

part of the controller, as a stabilizing feedback to the underlying coprime factors of the

plant to produce a new stabilized plant with a stable linear part. The results showed

that the stability for this system relies on the norm of the stabilized nominal plant and

a Lipschitz constant which represents an upper bound on the difference between the

nonlinear components of the plant and the controller (equation (6.38)).





Chapter 7

Conclusions and Future Work

7.1 Summary

This thesis focuses on control analysis that is based on robust stability theory and

uses the feedback linearization method to control a nonlinear model. The feedback

linearization approach is a method based on linearizing the input-output relation of a

nonlinear system. However, to cancel the nonlinearity in the system perfect knowledge

of the state equation of the system is needed. Since perfect knowledge is not available in

practice, the degree to which modelling error affects performance becomes an important

issue. In the presence of model uncertainty, the limitations associated with feedback

lineaization has prompted the work done in this thesis.

Two main approaches were undertaken to investigate the robustness of feedback control

designs and study the robust stability conditions for these systems. One approach is

using the small gain theorem which despite its simplicity forms a fundamental basis for

many robustness results, but unfortunately does not give desirable results in the case of

having an unstable plant in the system.

The other approach is to use the gap metric introduced in Georgiou and Smith (1997)

to study the robustness stability for nonlinear systems. In this approach, the presence

of the nonlinear elements in multiple blocks in a nonlinear system leaded to a significant

conservatism problem. To solve this problem, the procedure carried out included using

new configurations for the considered systems to allow the nonlinear parts of the plant

and controller to be taken into account in calculating a bound for the gap value. Using

these new configurations, minimizing the gap value makes the nonlinear system resemble

its nominal model. In this approach, robustness and performance margins were estab-

lished for these systems. This thesis introduced the nonlinear gap metric and employed

a ‘network’ result (Theorem (10)) Georgiou and Smith (1997) to undertake stability

analysis for nonlinear systems.

151



152 Chapter 7 Conclusions and Future Work

In this thesis, new tools that have potential to provide reduced conservatism were de-

veloped, for example, the gap metric approach undertaken in this thesis provided better

stability conditions than the small gain theorem in the case of a small gap value for

stable systems (as demonstrated in Example 4.5) and unlike the small gain theorem the

gap metric approach provided stability conditions for unstable systems.

Robustness analysis using the gap metric for unstable affine systems was carried out

in Chapter 5. This analysis involved using coprime factors to represent these systems.

Here, two cases of affine systems were considered. The first case introduced a control law

which followed the feedback linearzation approach and carried out an inverting action

to cancel all the nonlinear terms in the system, including the inherently stabilizing

nonlinearities which can be used to stabilize the plant. The stability condition for this

case showed that the stability for this system depends on the nonlinear input part of

the controller and on how exact the inversion of the plant nonlinearity is, within the

nonlinear part of the controller.

Conversely, an improved control law which classified the nonlinearity in the system into

stable and unstable components was introduced in the second case. This controller

preserved the stabilizing rule of the inherently stabilizing nonlinearities in the plant

instead of aiming to cancel them and cancels only the unstable nonlinear part of the

plant. The stability condition for this system showed that the stability for this system

depends on the difference between the input nonlinear component and the stable part of

the input nonlinear component of the controller and on how exact the inversion of the

unstable nonlinear of the plant is within the nonlinear part of the controller.

In the case of having only a plant nonlinear part in the system, the linear stabilising

component of the controller was used to stabilize the linear unstable part of the plant.

The stability condition for the stabilized system showed that the stability for this system

depends on the gain of the stabilized linear part of the system and a Lipschitz constant

which represents a bound on the difference between the nonlinear components of the

plant and the controller.

Using the gap metric approach it was shown that the existence of a stability margin for

a transformed configuration of a nonlinear system guarantees the existence of a stability

margin for the original configuration of this system.

Using this approach, more general cases were considered, such as robustness analysis

for feedback linearizing controllers in the presence of output unstructured uncertainties

(inverse muliplicative uncertainties).
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7.2 Future Work

The work done in this thesis can be further extended in the following directions:

• Improving the gain bounds for the results given in this thesis which are obtained

under strong assumptions on boundedness of nonlinearities to give the simplest

global results, but these results should be generalisable to local and semi-global

results in the absence of such assumptions. Gain bounds can be lightened by using

normalized nonlinear coprime factors to represent the affine nonlinear systems in

the robustness analysis. This can lead to more complicated analysis, however,

using this kind of representation for nonlinear systems has been discussed in many

publications (for example, see Scherpen and Van der Schaft (1994)) and can lead

to improved stability conditions.

• Further generalization for the robustness analysis undertaken in this thesis to

cover more system classes. Since the feedback linearizable systems considered in

this thesis are fully linearizable systems (where the relative degree equals the state

dimension of the system), the robustness analysis undertaken can be generalized

to include partially linearizable systems (where the relative degree is less than the

state dimension of the system), including many important topics related to the

feedback linearization method such as internal states and zero dynamics. Since

the relative degree and the zero dynamics cannot be altered by feedback, systems

with unstable zero dynamics are harder to control than systems with stable zero

dynamics. Moreover, in the presence of modelling errors these concepts may be

non-robust Kokotović and Arcak (2001). Therefore, it is important that feed-

back linearizing controllers for these systems should be designed with the help of

analytical tools (such as the gap metric) to guarantee robust stability for these

systems.

• To confirm the utility of the tools developed in this thesis, the gap metric robust

stability analysis carried out in Chapter 3 can be applied to design a linearizing

feedback controller for an isometric stimulated muscle model and find a robust

stability condition based on the nonlinear gap given in Georgiou and Smith (1997)

(Theorem 1). This model represents an accurate model of the response of muscle

to electrical stimulation and is structured as a Hammerstein model, and is well

known in the literature Le et al. (2010). This is likely to require a biased notion

of stability (see Bradley (2010)). Moreover, These analytical results should be

confirmed by implementing the controller designed using this approach into robot

models which are used to assist the rehabilitation of patients after suffering a

stroke.
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