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Abstract— We consider in this work stability of singularly
perturbed systems with time delays. It is shown that if the
boundary layer system is robustly globally asymptotically stable
and if the reduced slow system admits a Lyapunov-Razumikhin
function, then the singularly perturbed system has certain
“practical and semi-global” asymptotic stability property as
the parameter of singular perturbation reduces to zero.

I. INTRODUCTION

Singularly perturbed systems arise naturally in applica-
tions where a process evolves in different time scales. Such
processes appear commonly in various fields ranging from
physical and chemical systems to systems biology, see for
instance, [1], [6], [12], [15] and references therein. Due to
their wide applications, stability analysis for such systems
has received much attention in a context of control theory,
starting with the early work [5], see also [4]. Some more re-
cent results were obtained in [1], [12], [15], [16] to deal with
complex structures due to disturbances, unknown parameters,
multi-stability, and modular behavior. However, much of the
past work was on systems not affected by time delays, and
most work for systems with time delays either focused on
linear systems, or was based on linear approaches such as
linearizations and exponential stability, see, for instance [6],
[7]. For singularly perturbed linear functional-differential
systems, a spectrum analysis approach was used to study
exponential stability in [2]. For nonlinear systems, a method
based on a small-gain approach was proposed in [17].

In this work we consider robust stability for singularly
perturbed systems affected by both disturbances and time
delays. Motivated by the ideas in [1], we establish sufficient
conditions for a system to have certain type of practical and
semi-global stability property based on stability properties of
the boundary layer system and the reduced slow subsystems
(see Theorem 1 in Section III). For the special case when the
system is delay-free, our work extended the main result in
[1] by removing the uniform property from the asymptotic
stability assumption for the boundary layer system. Our work
is also related to [12], where a unified framework for input-
to-state stability was established for delay free systems with
two time scales. The work [12] dealt with a very general
case that covers various classical two time-scale problems,
including the type of singularly perturbed systems studied in
this current work for the spacial case when delays are not
presented. On the other hand, in [12], the stability assumption
for the boundary layer system is of a uniform nature in the
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sense that the stability estimate is in “one measure”, while
in this current work, we relaxed this stability condition in
“one measure” to a stability condition in “two measures”
(which can also be phrased as output stability, see [10] and
[13]). In the recent work [17], stability analysis for systems
with delays was carried out based on a small-gain condition
on the interconnections of the fast and slow subsystems.
Comparing to the results obtained in [17], the results in this
note are more applicable since the conditions are based on
the decoupled reduced slow- and fast-subsystems. As initial
steps for nonlinear systems, we consider in this work systems
that are affected by delays only on slow variables. The more
general cases remain to be topics for future studies.

A commonly used tool for systems with time-delays is
the Lyapunov-Krasovskii theory. However, constructing a
Lyapunov-Krasovskii functional can be much harder than
constructing a Lyapunov function in the delay-free case
(which already can be a challenging task). In this work, we
will develop our result based on a Lyapunov-Razumikhin
method, which is related to the small-gain theory. The con-
nection between the classic Lyapunov-Razumikhin method
and the small-gain theory in the context of input-to-state
stability was initially recognized in the work [11]. The
advantage of the Lyapunov-Razumikhin method is that it
allows one to convert analysis of a system with delays to
robust analysis of a delay-free system.

This note is organized as follows. In Section II we briefly
discuss some preliminary results in stability analysis for
systems with delays. We present our main results in Section
III, and the main ideas of proofs in Section IV. Though our
main theorem is only stated for systems with a single discrete
delay, our result can be routinely generalized to the case of
multi-discrete delays.

Notations. Throughout this note, we use | · | to denote the
Euclidean norm of vectors, and ‖ · ‖I to denote the L∞
norm of measurable functions on the interval I , and ‖·‖
means the L∞ norm on [0,∞). For q = (q1, · · · , qk), we
let ‖q‖I = max

1≤i≤k
{‖qi‖I}. A function α : R≥0 → R≥0 is

of class K if it is continuous, positive definite, and strictly
increasing; and is of class K∞ if it is also unbounded. A
function β : R≥0 × R≥0 → R≥0 is said to be of class
KL if for each fixed t ≥ 0, β(·, t) is of class K, and for
each fixed s ≥ 0, β(s, t) decreases to 0 as t → ∞. For
any K-function κ, we say that κ < id if κ(s) < s for all
s > 0. For a function of the form Q(w1, w2, . . . wm), we use
DiQ(w1, w2, . . . , wm) to denote the partial derivative of Q
in the ith variable wi.
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II. PRELIMINARIES

In this section we briefly review some basic results in
stability analysis. Consider a system with time delays as in
the following:

ẋ(t) = f(x(t), x(t− θ), d(t)), (1)
x(t) = xo(t), t ∈ [−θ, 0],

where for each t ∈ R, x(t) ∈ Rn and d(t) ∈ Rm. The
parameter θ > 0 denotes the delay constant of the system.
Assume that f : Rn×Rn×Rnz× → Rnx is locally Lipschitz.
The function d : R≥0 → Rm, assumed to be measurable
and locally essentially bounded, represents external inputs
or disturbances.

Solutions of (1) are absolutely continuous functions that
satisfy the equation almost everywhere. Under the assump-
tions stated above, the usual regularity conditions such as
existence, uniqueness, and maximum extensions of solutions
hold (see [3] and [14]). More precisely, for each continuous
function xo(·) defined on [−θ, 0] and each d, a unique
solution of (1) satisfying the initial condition x = xo is
defined on a maximum interval [0, T ) for some T > 0.

A system as in (1) is said to be input-to-state stable (ISS)
if there exists some β ∈ KL and γ ∈ K such that

|x(t)| ≤ max
{
β(‖xo‖[−θ,0], t), γ(‖d‖)

}
. (2)

For a system without delay, the ISS property is defined as
in (2) with ‖x‖[−θ,0] replaced by |x(0)|. Various equivalent
characterizations of the ISS property are known for systems
without delays, in particular the Lyapunov description, see
for instance [8] and [9]. For system with delays, there are two
commonly used approaches: Lyapunov-Krasovskii method
and Lyapunov-Razumikin method. In this work, we will
follow the Lyapunov-Razumikin method, as discussed below.

For a system as in (1), we treat x(t − θ) as disturbances
to the system, denoted by w, as in the following:

ẋ(t) = f(x(t), w(t), d(t)). (3)

The following was shown in [14]:
Lemma 2.1: Consider a system as in (1). Assume that (3)

corresponding to (1) satisfies an ISS estimate with (w, d) as
input:

|x(t)| ≤ max{β(|x(0)| , t), κ(‖w‖), γ(‖d‖)}

for all t ≥ 0. If κ < id, then (1) is ISS.
The next result was rooted in the Razumikhin theorem,

whose connection to the ISS theory was established in [11]:
Lemma 2.2: Suppose that a system as in (1) admits a C1

Lyapunov function Rn → R≥0 such that the following holds:
• for some α, α ∈ K∞, it holds that

α(|x|) ≤ V (x) ≤ α(|x|) ∀x;

• for some κ, γ ∈ K∞, it holds that

V (x) ≥ max{κ(V (w)), γ(|d|)} (4)
⇒ DV (x)f(x,w, d) ≤ −α(V (x)).

If κ < id, then (1) is ISS. 2

We will use frequently the following intermediate result
between Lemma 2.1 and Lemma 2.2: Assume that (4) holds
for some κ ∈ K, then there exists β ∈ KL such that along
every trajectory of (1),

|V (x(t))| ≤ max{β(V (x(0)), t), κ(‖V (x)‖[−θ,t]), γ(‖d‖}

on the maximum interval of the trajectory.
Below we consider a delay-free system:

ẋ(t) = f(x(t), p), (5)

where p is a time invariant parameter, taking values in Rm,
and the map f : Rn × Rm is locally Lipschitz.

Definition 2.3: A system as in (5) is said to be robustly
globally asymptotically stable (robustly GAS) if there exists
some β ∈ KL such that

|x(t)| ≤ β (|(x(0), p)| , t) (6)

for all t ≥ 0 and all p ∈ P . 2

For a give system as in (5), associate with it the following
system:

ẋ(t) = f(x(t), p(t)), ṗ(t) = 0, (7)

with an output map y = h(x, p) = x. Observe that the system
(5) is robustly GAS if and only if the system (7) (with the
state variable x̃ := (x, p)) is robustly output stable in the
following sense:

|y(t)| ≤ β (|x̃(0)| , t) ∀ t ≥ 0.

The following result can be derived from the main results in
[13] (see also [10]):

Lemma 2.4: A system as in (5) is robustly GAS if and only
if there exists a smooth Lyapunov function V : Rn×Rm →
R≥0 that satisfies the following:
• for some α, α ∈ K∞,

α(|x|) ≤ V (x, p) ≤ α(|(x, p)|)

for all x; and
• there exists some α ∈ K∞ and some σ ∈ K such that

DxV (x, p)f(x, p) ≤ −α(V (x, p))

for all (x, p). 2

In fact, it was shown in [13] that the function α can be
chosen as α(s) = s. We use the more general function α for
convenience of applications.

III. MAIN RESULTS

Consider a singularly perturbed nonlinear system with a
time delay as in the following:

ẋ(t) = f(x(t), x(t− θ), z(t), d(t), ε),
εż(t) = g(x(t), x(t− θ), z(t), d(t), ε),

(8)

where for each t ∈ R, (x(t), z(t)) ∈ Rnx×Rnz , d(t) ∈ Rm.
The small parameter ε takes values in [0, ε̄], and θ denotes
the delay constant of the system. We assume that f : Rnx ×
Rnx×Rnz ×Rm× [0, ε̄]→ Rnx and g : Rnx×Rnx×Rnz ×
Rm × [0, ε̄] → Rnz are locally Lipschitz. The function d :
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R≥0 → Rm, assumed to be absolutely continuous, represents
external inputs or disturbances.

Under the above assumption, the regularity properties such
as existence, uniqueness, and maximum extension holds for
solutions of (8). More precisely, for each continuous (xo, zo)
defined on [−θ, 0] and each input d, there is a unique solution
(x, z), satisfying (x(t), z(t)) = (xo(t), zo(t)) on [−θ, 0],
defined on a maximum interval.

Assumption I. The algebraic system

g(σ1, σ2, σ3, d, 0) = 0

has a solution σ3 = h (σ1, σ2, d), where h : Rnx × Rnx ×
Rm → Rnz is a C2 (i.e., twice continuously differentiable)
function. 2

Under Assumption I, when ε = 0, system (8) reduces to

ẋ(t) = f(x(t), x(t− θ), z(t), d(t), 0),
z(t) = h(x(t), x(t− θ), d(t)).

(9)

Let y (t) = z(t) − h(x(t), x(t − θ), d(t)), and consider the
dynamics of the system in terms of the “fast time scale” τ ,
where

τ =
t

ε
.

Let ϕ (τ) = x (ετ), ψ (τ) = y (ετ). The x-subsystem of (8)
becomes

d

dt
x(t) = F (x(t), x(t− θ), y(t), d(t), ε), (10)

or equivalently,

d

dτ
ϕ(τ) = εF (ϕ(τ), ϕθε(τ), ψ(τ), d(τ), ε), (11)

and the z-subsystem of (8) is transferred to

d

dτ
ψ(τ) = G (ϕ(τ), ϕθε(τ), ψ(τ), λ1(τ), ε) (12)

− εq(ϕ(τ), ϕθε(τ), ϕ2θε(τ), ψ(τ), ψθε(τ), λ(τ), ε),

for all τ ≥ θε, where θε = θ/ε, ϕs(τ) = ϕ(τ − s),

λ(τ) =
(
λ1(τ), λ2(τ), λ3(τ)

)
=

(
d(ετ), d(ετ − θ), ḋ(ετ)

)
,

F (µ0, µ1, ν0, λ1, ε) = f(µ0, µ1, ν0 + h(µ0, µ1, λ1), λ1, ε),

G(µ0, µ1, ν0, λ1, ε) = g(µ0, µ1, ν0 + h(µ0, µ1, λ1), λ1, ε),

and

q(µ0, µ1, µ2, ν0, ν1, λ, ε) = D1hF (µ0, µ1, ν0, λ1, ε)

+D2hF (µ1, µ2, ν1, λ2, ε) +D3h(µ0, µ1, λ1)λ3 .

Note that (12) is only valid for τ ≥ θε. On [0, θ], the
ψ-subsystem becomes

d

dτ
ψ(τ) = G(ϕ(τ), ϕ(τ − θε), ψ(τ), λ1(τ), ε)

− εq̂(ϕ(τ), ϕ(τ − θε), ψ(τ), ψ(τ − θε), λ1(τ), λ3(τ), ε)

− εζ(τ)q̃(ϕ(τ), ϕ(τ − θε), λ1(τ)),

where ζ(τ) = ẋ(ετ − θ), q̂(µ0, µ1, µ2, v0, v2, λ1, λ3, ε) is
given by

D1h (µ0, µ1, λ1)F (µ0, µ1, ψ, λ1, ε) +D3h (µ0, µ1, λ1)λ3,

and q̃ (µ0, µ1, λ1) = D2h (µ0, µ1, λ1).
When ε = 0 and when y ≡ 0, the x-subsystem (10)

becomes the so called reduced slow system:

ẋ(t) = Fo(x(t), x(t− θ), d(t)), (13)

where Fo(µ0, µ1, d) = F (µ0, µ1, 0, d, 0).
Assumption II. The reduced slow system (13) is ISS with d
as inputs and admits a C1 Lyapunov-Razumikhin function
V that satisfies the following:
• for some αx, αx ∈ K∞,

αx(|x|) ≤ V (x) ≤ αx(|x|) ∀x ∈ Rn; (14)

• for some κ, ρx ∈ K, and some αx ∈ K∞, it holds that

V (x) ≥ max {κ(V (w)), ρx (|d|)}
⇒ DV (x)Fo(x,w, d) ≤ −αx (V (x)) ;

• κ(s) < s for all s > 0. 2

When ε = 0, the ψ-subsystem (12) system reduces to
the following system (which is referred as boundary layer
system):

d

dτ
ψ(τ) = G0(µ0, µ1, ψ(τ), d), (15)

where µ0, µ1 and d are time invariant parameters, and
G0(µ0, µ1, ψ, d) = G(µ0, µ1, ψ, d, 0).
Assumption III. The boundary layer system (15) with time
invariant parameters (µ0, µ1, d) ∈ Rn×Rn×Rm is robustly-
GAS. 2

By Lemma 2.4, Assumption III implies that (15) admits a
smooth Lyapunov function W : Rnx ×Rnx ×Rnz ×Rm →
R≥0 satisfying the following:
• for some αy, αy ∈ K∞,

αy(|ψ|) ≤W (µ0, µ1, ψ, λ1) ≤ αy(|(µ0, µ1, ψ, λ)|), (16)

• there exists αy ∈ K∞ such that

D3WG0(µ0, µ1, ψ, λ1) ≤ −αy(W (µ0, µ1, ψ, λ1)). (17)

Below we state our main result:
Theorem 1: Consider a system as in (8) and suppose

Assumptions I-III hold. Then there exist βx, βy ∈ KL,
χx, χy ∈ K such that for each pair of positive numbers
(R, δ), there is some ε∗ > 0 so that if

max
{
‖x‖[−θ,0] , ‖ẋ‖[−θ,0] , ‖y‖[−θ,0] , ‖d‖ , ‖ḋ‖

}
≤ R,

and if ε ∈ [0, ε∗), it holds that

|x(t)| ≤ max
{
βx
(
‖x‖[−θ,0]+ |y(0)| , t

)
, χx (‖d‖) , δ

}
,

|y(t)| ≤ max
{
βy
(
‖x‖[−θ,0]+ |y(0)| , t

ε

)
, χy (‖d‖) , δ

}
for all t ≥ 0.
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Remark 3.1: Note that the presence of ‖ẋ‖[−θ,0] in the
boundedness condition of the theorem is caused by the
change of variables y(t) = z(t) − h(x(t), x(t − θ), d(t)).
The y-system is affected by values of ẋ(t − θ) when t ∈
[0, θ]. If the map h(σ1, σ2, d) (as given in Assumption I)
is independent of σ2 (which happens, for instance, when
the nominal z-subsystem is not affected by x(t − θ)), the
boundedness condition on ‖ẋ‖[−θ,0] can be removed, and
Theorem 1 will apply to all trajectories whose initial values
are given by continuous functions.

Similarly, if the map h(σ1, σ2, d) is independent of d, then
the restriction on ‖ḋ‖ can be removed, and Theorem 1 will
apply to inputs that are measurable and locally essentially
bounded. 2

IV. PROOF OF THEOREM 1

In this section, we sketch the main ideas and steps of the
proofs of Theorem 1.

A. The ψ-subsystem

Consider the ψ-subsystem in (12). Let W be as in (16)-
(17), and let Ĝ be a continuous function such that

|G(µ0, µ1, ν0, ν1, λ, ε)−G0(µ0, µ1, ν0, ν1, λ)|
≤ εĜ(µ0, µ1, ν0, ν1, λ, ε)

for all (µ0, µ1, ν0, ν1, λ, ε). Along a trajectory of (10)-(12),
one has

d

dτ
W (ϕ(τ), ϕ(τ − θε), ψ(τ), λ1(τ))

= D1W ·
d

dτ
ϕ(τ) +D2W ·

d

dτ
ϕ(ετ − θε)

+D3W ·
d

dτ
ψ(τ) +D4W ·

d

dτ
d(ετ)

≤ −αy(W (ϕ(τ), ϕ(τ − θε), ψ(τ), λ1(τ)))

+ εQ(ϕ̂(τ), ψ̂(τ), λ(τ)), ε) (18)

for τ ≥ θε, where

ϕ̂(τ) = (ϕ(τ), ϕ(τ − θε), ϕ(τ − 2θε)),

ψ̂(τ) = (ψ(τ), ψ(t− θε)),

and the function Q(µ̂, ζ, ν̂, λ, ε) is given by

D1WF (µ0, µ1, ν0, λ1, ε) +D2WF (µ1, µ2, ν1, λ2, ε)

−D3Wq(µ0, µ1, µ3, ν0, ν1, λ, ε) +D4Wλ3

+D3WĜ(µ0, µ1, ν, ν1, λ, ε),

with µ̂ = (µ0, µ1, µ2), ν̂ = (ν0, ν1).
For τ ∈ [0, θε],

d

dτ
W (ϕ(τ), ϕ1(τ), ψ(τ), λ1(τ))

≤ −αy(W (ϕ(τ), ϕ1(τ), ψ(τ), λ1(τ)))

+ εQ0(ϕ̂(τ), ϕ̇(τ − θε), ψ̂(τ), λ(τ)), ε),

where Q0(µ̂, ζ, ν̂, λ, ε) is the function given by

D1WF (µ0, µ1, ν0, λ1, ε) +D2W · ζ +D4W · λ3

−D3W · (q̂ + ζq̃) +D3WĜ(µ0, µ1, ν, ν1, λ, ε).

For any δ > 0 given, let εδ,R > 0 be given so that

max {ε |Q0(µ̂, ζ, ν̂, λ, ε)| , ε |Q(µ̂, ν̂, λ, ε)|} < δ

for all (µ̂, ζ, ν̂, λ) ∈ DR, all ε ∈ (0, εδ,R), where DR is the
set defined by where

max
{
V (µ0), V (µ1), V (µ2), |ζ| ,

W (µ0, µ1, ν0, λ1), |λ|
}
≤ R.

This is possible since DR is compact in the variables µ̂, ζ, ν̂
and the functions Q0 and Q1 are continuous.

Let (ϕ,ψ) be a trajectory of (11)-(12) for some ε ≤ εδ,R
and some d. Let ξ(τ) = V (ϕ(τ)) and

η(τ) = W (ϕ(τ), ϕ(τ − θε), ψ(τ), λ1(τ)).

Correspondingly, let X (t) = V (x(t)), and

Y(t) = W (x(t), x(t− θ), y(t), d(t)),

(so that ξ(τ) = X (ετ) and η(τ) = Y(ετ)).
Assume that max{||V (x)||[−θ,0], ‖ẋ‖[−θ,0]} ≤ R, and

assume that for some T > 0, it holds that

max
0≤τ<T

{
ξ(τ), η(τ), |λ(τ)|

}
≤ R, (19)

then it holds on [0, T ) that

d

dτ
η(τ) ≤ −αy(η(τ)) + δ,

which in turn implies that on [0, T ),

η(τ) ≤ max {βy(η(0), τ), πy(δ)} ,

where βy ∈ KL, πy ∈ K.
Hence, we get the following result:
Lemma 4.1: Let 0 < δ < R and ε ∈ (0, εδ,R) be given.

Consider a trajectory (x(t), y(t)) of (8). Assume that for
some T > 0, the following holds on [0, T ),

max
0≤t<T

{
X (t),Y(t), ||ẋ||[−θ,0], |d(t)| , |ḋ(t)|

}
≤ R. (20)

Then

Y(t) ≤ max
{
βW (Y(0), t/ε), πW (δ)

}
(21)

for all t ∈ [0, T ). 2

Note that (21) leads to the following for t ∈ [0, T ):

|y(t)| ≤ max {βy(Y(0), t/ε), πy(δ)} , (22)

where

βy(r, s) = (αy)−1(βW (r, s)), πy(r) = (αy)−1(πW (r)).
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B. The x-subsystem

To adopt the Razumikhin approach, we treat the x-
subsystem (10) as

ẋ(t) = F (x(t), w(t), y(t), d(t), ε), (23)

where w is an input to the system. The delayed system (10)
is resulted in under the feedback w(t) = x(t− θ).

Let V be given as in Assumption II. It holds that

DV (x)F (x,w, v, d, ε) = DV (x)F0(x,w, d) (24)

+DV (x)
(
F (x,w, v, d, ε)− F (x,w, 0, d, 0)

)
.

It can be shown that there exist some K-functions σ, γx1 , and
ρx and a continuous positive definite function H such that

|DV (x)(F (x,w, v, d, ε)− F (x,w, 0, d, 0))|
≤ max

{
σ(V (x)) · |v| , σ(V (w)) · |v| , γx(|v|),

ρx1(|d|), εH(x,w, v, d)
}

for all x,w, v, d and ε ∈ [0, ε̄]. It follows from (24) and
Assumption II that

V (x) ≥ max{κ(V (w)), ρx(|d|)}
⇒ DV (x)F (x,w, v, d, ε) ≤ −αx(V )

+ max
{
σ(V (x)) |v| , σ(V (w)) |v| , γx(|v|),

ρx1(|d|), εH(x,w, v, d)
}
.

Reducing εδ,R if necessary, one may assume that for any
0 < δ < R, it holds that εH(x,w, v, d) < δ for all ε ≤ εδ,R,
all (x,w, v, d) such that

max{V (x), V (w),W (x,w, v, d), |d|} ≤ R. (25)

One can then show that there exist some βx ∈ KL and
K∞-functions γx1 ,γx2 , ρx2 , and πx such that for any given
0 < δ < R and ε ∈ (0, εδ,R), if a trajectory (x(t), y(t)) of
(8) satisfies (20) for some T > 0, then

V (x(t)) ≤ max
{
βx(V (x(0)), t), κ

(
‖V (x)‖[−θ,t]

)
,

γx1

(
‖σ(V (x))‖[−θ,t) · ‖y‖[0,t]

)
, (26)

γx2

(
‖y‖[0,t]

)
, ρx2(‖d‖), πx(δ)

}
for all t ∈ [0, T ).

C. Boundedness of trajectories

For a given pair (δ,R), let

Γ(R) = 2 max
{
βW (R, 0), βx(2R, 0), βy(R, 0)), (27)

γx2 (βy(R, 0)), γx1 (σ(2R)βy(R, 0)), ρx2(R)
}
.

Choose δ1 > 0 such that

max
{
πx(δ1), πy(δ1), πW (δ1), γx2 (πy(δ1))

}
≤ δ,

and
γx1

(
πy(δ1)) · σ(s)

)
≤ max

{s
2
, δ
}

(28)

for all s ∈ [0,Γ(R)]. Since βx(R, 0) ≥ R, it follows that
Γ(R) ≥ 2R. We also assume that δ ≤ R.

Consider a trajectory (x(t), y(t)) of (8). Let X ,Y be
defined the same as in Section IV-A. Suppose the following
holds:

max
{
‖X‖[−θ,0] , ‖Y‖[−θ,0] , (29)

||ẋ||[−θ,0], ‖d‖ , ||ḋ||
}
≤ R.

It is not hard to show that that there exists some tR > 0
such that for all ε ≤ εδ,Γ(R),

V (x(t)) ≤ 2R ∀ t ∈ [0, tR].

Let ε̃R > 0 be such that for all ε ≤ ε̃R

γx1

(
σ(Γ(R)) · βy

(
R,

tR
ε

))
≤ R,

and
γx1

(
σ(s) · βy

(
R,

tR
ε

))
≤ max

{s
2
, δ
}

for all 0 ≤ s ≤ Γ(R).
Modifying εδ,R if necessary, we assume that εδ1,Γ(R) ≤

ε̃R for all 0 < δ < R. The following can be proved:
Lemma 4.2: For 0 < δ < R given, let ε ∈ (0, εδ1,Γ(R)).

If a trajectory (x(t), y(t)) of (8) satisfies (29), then the
trajectory is defined on [0,∞) and

max {X (t), Y(t)} ≤ Γ(R) (30)

for all t ≥ 0. 2

D. The convergence property

As a consequence of Lemma 4.2, if ε < εδ1,Γ(R), and if
(29) holds for a trajectory (x(t), y(t)), then the trajectory is
defined on [0,∞), and (26) holds for x and (21) holds for
y for all t ≥ 0. Furthermore, one can refine estimate (26) as
in the following.

Let ε ∈ (0, εδ1,Γ(R)), and consider a trajectory (x(t), y(t))
for which (29) holds. Let

R̂ = max{‖X‖[−θ,0], Y(0), ‖d‖},

and let

MR̂ = max
{
βx

(
2R̂, 0

)
, γx2 (βy(R̂, 0)), ρx2(R̂),

}
.

Note that R̂ ≤ R and MR̂ ≤ Γ(R). Then one can show the
following fact:

V (x(t)) ≤ max{MR̂, δ} ∀ t ≥ 0.

This implies that there exists some σ0 ∈ K∞ such that

V (x(t)) ≤ max
{
σ0

(
‖x‖[−θ,0] + |y(0)|

)
,

σ0(‖d‖), δ
}

(31)

for all t ≥ 0.
To complete the proof of Theorem 1, let 0 < δ < R be

given and let ε ∈ (0, εδ1,Γ(R)). Let (x(t), y(t)) be a trajectory
for which (29) holds. By Lemmas 4.1 and 4.2, the estimate
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(22) for y holds for all t ≥ 0. By (16), one concludes that
there exists some β̂y ∈ KL such that

|y(t)| ≤ max
{
β̂y(q(‖x‖[−θ,0], |y(0)| , ‖d‖), t

ε
), δ

}
(32)

for all t ≥ 0, where q(r, s, t) = max{r, s, t}.
For the x-component, (26) implies that

V (x(t)) ≤ max
{
βx(V (x(t/2)), t/2), κ(‖V ‖[−θ,t]),

γx1

(
‖σ(V )‖[(t/2)−θ,t] · ‖y‖[t/2,t]

)
,

γx2 (‖y‖[t/2,t]), ρ
x
2(‖d‖), πx(δ1)

}
(33)

for all t ≥ 0. By (31),

βx(V (x(t/2)), t/2) ≤ max
{
σx1 (‖d‖), σx2 (δ),

β̂x

(
‖x‖[−θ,0] + |y(0)| , t

)}
for all t ≥ 0, where β̂ ∈ KL, σx1 ∈ K, and σx2 ∈ K. By (32),
‖y‖[t/2,t] is bounded by

max

{
β̂y

(
q(‖x‖[−θ,0], |y(0)| , |d(0)|), t

2ε

)
, πy(δ1)

}
for all t ≥ 0.

One then can show that there exist some β̂x ∈ KL, ρ̂x ∈
K, and π̂ ∈ K such that

γx1

(
‖σ(V )‖[(t/2)−θ,t] · ‖y‖[t/2,t]

)
≤ max

{
β̂x(‖x‖[−θ,0] + |y(0)| , t), ρ̂x(‖d‖), π̂(δ)

}
for all t ≥ 0. Combining with the decay estimate for
‖y‖[t/2,t), one sees that it follows from (33) that

V (x(t)) ≤ max
{
β̃x(‖x‖[−θ,0] + |y(0)| , t),

κ(‖V ‖[−θ,t)), ρ̃x(‖d‖), π̃x(δ)
}

(34)

for all t ≥ 0, where β̃x ∈ KL, ρ̃x, π̃x ∈ K.
Hence, we have proved the following:
Lemma 4.3: For 0 < δ < R given, let ε ∈ (0, εδ1,Γ(R).

If a trajectory (x(t), y(t)) satisfies (29), then (34) and (22)
hold for all t ≥ 0. 2

Finally, observe that (22) imlies that

|y(t)| ≤ max
{
β̃y(‖x‖[−θ,0] + |y(0)| , t

ε
), ρ̃y(‖d‖), π̃y(δ)

}
for all t ≥ 0, where where β̃y ∈ KL, ρ̃y, π̃y ∈ K. In
particular, by assuming ε < 1, one has

|y(t)| ≤ max
{
β̃y(‖x‖[−θ,0] + |y(0)| , t), ρ̃y(‖d‖ , π̃y(δ)

}
for all t ≥ 0. By Theorem 1 in [14], one concludes that there
exist βx, βy ∈ KL, χx, χy ∈ K, and π ∈ K such that

|x(t)| ≤ max
{
βx
(
‖x‖[−θ,0]+ |y(0)| , t

)
, χx (‖d‖) , π(δ)

}
for all t ≥ 0.

V. CONCLUSIONS

We showed in this note that the ISS property of the reduced
slow-system and the robust-GASproperty of the boundary
layer system hold robustly for a singularly perturbed system
in the sense that for any given upper bounds on the magni-
tudes of the initial states, disturbances, and their derivatives;
and a residual set of any given size, the trajectory will
converge to the residual set if the perturbation parameter
is small enough. It remains to be a future topic to relax the
boundedness property on the derivatives of the functions that
define the initial values of the trajectories.
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