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On the Stability of Hybrid Limit Cycles and Isolated Equilib ria
in a Genetic Network with Binary Hysteresis

Qin Shu and Ricardo G. Sanfelice

Abstract— A mathematical model for a two-gene regulatory included in models of such networks. Hysteresis is characte
network is derived and several of its properties are analyze.  jzed by behavior in which, for instance, once a gene has been
Due to the presence of continuous dynamics and binary hyster —;,inited due to the concentration of cellular protein téag

sis, we propose a hybrid system model. Binary hysteresis wit ticularly | | hiah | f cellul tei
different thresholds captures the interaction between thegenes. & Particuiarly low vaiue, a higher value of cellular protein

We analyze properties of the solutions and asymptotic staliiy ~ concentration is required to express it. In his survey paper
of equilibria in the system as a function of its parameters. @r  on the impact of genetic modeling on tumorigenesis and drug
analysis reveals the presence of limit cycles for a certainange  discovery [9], Huang stated th#iysteresis is a feature that
of parameters, a behavior that is associated with the prese® 5 gy nihetic model has to captur@hrough experiments, Das
of binary hysteresis. The set of points defining the limit cyle is . .
characterized and its asymptotic stability properties arestudied. and coaut.hors [10] demo_nStrateq the eX'St?nce of hysi;e_re5|
Numerical simulations are presented to illustrate some oftie  iN lymphoid cells and the interaction of continuous evanti
results. of some cellular proteins. Hysteresis was also found to be
present in mammalian genetic regulatory networks; see, e.g
. INTRODUCTION [11], [12]. More importantly, hysteresis is a key mechanism

. . contributing to oscillatory behavior in biological mod§ls],
Several mathematical models have been proposed in t ] outing ! y viorin biotog Hs]

literature for the study of genetic regulatory networkse se

[1] fgrta sur\{ey. Itr;] pa(;t'cu'ar’ boc;'z"?‘” mf)dels.tarr(]a typwa" captures both continuous and discrete dynamics of a genetic
used 1o capture the dynamics of discrete Switches In Sug, gulatory network with binary hysteresis. We combine the

networks. As iqtroduceq by Glt_a\ss and Kauffman_ in [_Z]methodology of piecewise linear modeling of genetic reg-
Boolean regulation functions, typically modeled as sigiabi latory networks with the framework of hybrid dynamical

or step functions, can be combined with linear system mOdei%tems in [15], and construct a hybrid system model for
to enforce certain logic rules. The properties of such ascla '

. L S enetic network with two genes; see Secfidn II. Unlike
of piecewise linear models have been studied in the mat 9 g i

tical biol literat 31 141 151 [6]. Snesi iecewise linear models, our model incorporates hysteresi
ematical biology literature, e.g., [3], [4], [5], [6]. Snssi explicitly. We prove existence of solutions to the genetic

pres_ent_ed a discr_ete mapping app_roach in [3]_ fo study trilf:(ﬁ.twork, a property that is typically overlooked or diffictd
qualitative properties of the dynamics of genetic regulato rove due to the discontinuity in the dynamics introduced by

networks. In his work, the properties of a discrete mappinEoolean variables. In Sectign]lll, we compute the equéibri
were studied to determine stable isolated steady stateslhs Wit the system in terms of its p'arameters We analyze the

as "F‘?'t cycles. Ir_1 [4], Gouz and. Sari _emplloy the concept asymptotic stability of the isolated equilibrium pointsdan
of Filippov solution to study piecewise linear models of

i It works with di dnuiti i determine conditions under which a limit cycle exists. It is
genetic reguiatory networks with discontinuities ocavgron ¢, that, for a particular set of parameters, hysteredisd

hyperplanes defined by thresholds on the variables. Chay mechanism leading to oscillations, as without hystsses
and coauthors [5] studied the robustness of Boolean mod(? 2 limit cycle converges to an isolated equilibrium poft (

of gene control networks. In [6], de Jong and coauthory, "t “sianility of the limit cycle is established using a

presented a method for qualitative simulation of geneti vel approach consisting of measuring the distance betwee

regulatory_networks based on the piecewise linear mode_lg lutions of hybrid systems (rather than the distance to
[2]. Genetic regulatory networks with continuous dynam|c§ne limit cycle as in classical continuous-time systems). |

coupled with switching can be written as a hybrid system. I(%ectionl]ﬂ, simulations validating some of our results are

In this paper, we propose a hybrid system model that

[7] and [8], the authors apply hybrid systems tools to mod

) . resented.
a variety of cell biology problems.

Although it is an important phenomenon present in ge-  Il. AHYBRID SYSTEMS MODEL FORGENETIC
netic regulatory networks, hysteresis behavior is not lisua REGULATORY NETWORKS WITHHYSTERESIS

Models of genetic regulatory networks given by piecewise-

Q. Shu and R. G. Sanfelice are with the Department of Aer@spad  |inegr differential equations have been proposed in [8).[1
Mechanical Engineering, University of Arizona 1130 N. Mdain E‘
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YIP Grant no. FA9550-12-1-0366. 1The notationz > 0 is equivalent tax; > 0 for eachi.



wherex = [z1, 22, ..., az:n]T and z; represents the concen-is expressed at a rate whenx; is above the thresholé .
tration of the protein in theé-th cell, f = [f1, f2,..., f»]|  Degradations of both proteins are assumed to be propottiona
is a function,y = [y1,72,...,7,] | is a vector of constants, to their own concentrations, a mechanism that is captured by
and1 < i < n. For eachi, f; is a function representing the —v,2; and —y.x5, respectively.
rate of synthesis, while; represents the degradation rate Note that the model in[{3) capturing the interaction
constant of the protein. The functiofy is typically defined between genea and geneb does not incorporate binary
as the linear combinatiorf;(x) = >, ; kiebie(x) Where hysteresis. Furthermore, due to the discontinuities éhtoed
ki is the nonzero and nonnegative growth rate constantsy the Boolean regulation functions, it is not straightfard/
b;e is a Boolean regulation function that describes the gerne argue that solutions t@1(3) exist from every initial vahfe
regulation logic, and. = {1,2...,n} is the set of indices . In order to overcome such limitations, we propose a hybrid
of regulation functions. system with hysteresis for this two gene genetic regulatory
The modeling strategy for the Boolean regulation funcnetwork, to which hybrid systems tools for analysis of exis-
tions b; is a key element that captures the behavior of gnce of solutions and asymptotic stability can be applied.
particular genetic regulatory network. A major feature of a \We model the genetic network il (3) as a hybrid sys#&m
genetic regulatory network is the presence of threshétel-li ithin the formalism of [17], [15], where hybrid systems are
relationships between the system variables, i.e., if satéi given in terms of a flow mag, a flow setC, a jump map
x; is above (or below) a certain level, it could cause little;;, and a jump setD, and solutions are parameterized by
or no effect on another variable;, whereas ifz; is below  flow time ¢ and jump timej. To this end, two discrete logic
(or above) this certain value, the effect opwould become  variables,qg; and g, are introduced. The dynamics of these
more significant (for example, it may increase the value,of variables depend on the thresholés,and 6,, respectively.
or inhibit the growth of the value of ;). Boolean regulation As one of our goals is to introduce binary hysteresis in the
functions can be modeled by sigmoidal or step functions, afodel in @), we define hysteresis level constahtsand
approach that was first proposed by Glass and Kauffmany} associated with gena and geneb, respectively. In this
[2]. When modeling as a step function, the functiensare way, ¢; is governed by dynamics such that the evolution in

given by the combination (linear or nonlinear) of Figure[2 holds.
sT(x;,0) = { (1) :; iz i z ;s (24,0) =1 —5T(24,0), qi
@) ! | !
where s*(z;,0) represents the logic for gene expression Y ‘
when the protein concentration exceeds a threstolghile : |
s~ (;,0) represents the logic for gene inhibition. 0 6 —h > 0,1 h i

To illustrate this modeling approach, let us consider the

genetic regulatory network shown in Figui¢ 1. Geres Fig. 2. The update mechanism @f as a function ofz; and previous values
and b encode proteindA and B, respectively. When the of ¢;.
concentration of proteid is below certain threshold, it will
inhibit geneb. Similarly, proteinB inhibits genea when The state of the hybrid system is defined as
the concentration of proteiB is above certain threshold.
In this way, a set of piecewise-linear differential equasio 2= [x1,22,q1,¢2] ",
representing the behavior in Figure 1 is given by
wherez € Z := R% <0 x {0, 1}2; a1, 2 are (nonnegative)
continuous states representing protein concentratiowisj;a
q2 are discrete variables. HefRy := [0, +00). We specify
constantsd; and 6, usually inferred from biological data,
satlsfymgo < O <070 < 0y < 052, wheref** and
65> are the maX|maI value of the concentration of protein
A and of the proteirB, respectively.

B To define the continuous dynamics of the hybrid system
A capturing the evolution oF{3), we rewrite the piecewiseshr
—— differential equation[{3) by replacing the™ term with the
’—‘ ’—‘ logic variablesy;, and thes™ term with the complement of

the logic variabley;, i.e., 1 — ¢;. Note that the discrete logic

variablesq; only change at jumps, i.e., they are constants
Fig. 1. A genetic regulatory network of two genes (a and b), eachaingo during flows. Theng; = 0. In this way, the continuous

for a protein (A and B). Lines ending in arrows represent gienexpression  dynamics are governed by the differential equation
triggers, while lines ending in flatheads refer to genetikilition triggers.

&y = k15~ (w2,02) — w1, @2 = kosT(21,601) — Yo,

3)
wherex is representing the concentration of protajrwhile
2o is the concentration of proteiB. The constant®,, 0
are the thresholds associated with concentrations of iprote
A andB, respectively. In this model, gerzeis expressed at a

a b

&1 = ki(1 - q2) — M2, T2 = kaq1 — Y212,
ratek; whenzs is below the threshold,. Similarly, geneb 41 = g2 =0,



from where we obtain the flow map The above definitions determine a hybrid system for (3),

which is given b
k1(1—q2) — mm g y

P(z) = kaqq 6 Y22 ' &) k1 (]i ; qQ)W_x’lel
. - 241 — Y2Z2
0 H:zeZ E=F(2) = 0 zed
Now, we describe the discrete update of the state vegtor n 0
: . : . . 2T e G(z) zeD,
i.e., we defineGG and D. To illustrate this construction, we

(8)
whereC'is in (8), G is in (@), andD is in (). Its parameters
are given by the positive constants, ko, 71, 72, 01, 02,
¢ =0 and ;=060 +M hi, hy, which satisfyf, + hy < 012%, 0y + hy < X,
01 —hy > 0,0, —hy > 0.

explain how to model the mechanism in Figlide 2 for
When

the stateg; is updated to 1. We write this update law as

er =1 [1l. DYNAMICAL PROPERTIES OF THETWO-GENE
HYBRID SYSTEM MODEL
When
gg=1 and x; =0, — hy, A. Existence of solutions
then the state; is updated to 0, i.e., A solutionz to H is said to be nontrivial iflom z contains
at least two points, complete ifom z is unbounded, Zeno
g =0. if it is complete and the projection afom z onto RY is

bounded, and maximal if there does not exist another solutio
2’ to H such thatdom 2’ is a proper subset afom z, and
2'(t,7) = z(t,5) for all (¢,7) € dom 2.

It follows that the mechanism of; in Figure[2 can be
captured by triggering jumps whenbelongs to

{z:q1=0,m1 =0+ }U{z:q1=1,20 =601 — 1 }. Proposition 3.1: From every point in’ U D, there exists
. o a nontrivial solution for the hybrid systef in (8). Further-
Note that the update mechanism fgris similar to that of more, every maximal solution is complete and the projection

1 just discussed. of its hybrid time domain ofR>, is unbounded, i.e., every
We can define the flow and jump sets in a compact forgg|ution is not Zeno.

by defining functions The proof of this result uses the conditions for the exis-

m(zy,q) = 2q — 1)(—=21 + 61 + (1 — 2¢1)h1) tence of solutions t@ in [15] for general hybrid systems.
n2(22, ¢2) = (2g2 — 1) (=22 + 02 + (1 — 2q2)h2). B. Characterization of equilibria
In this way, the flow set is given by We compute the set of isolated equilibrium points

as well as (nonisolated, dense) sets of equilibria for the
C:={z€ Z:m(z1,q1) <0,m2(22,92) <0} (5)  hybrid systen? in @). For general hybrid systems, isolated
equilibrium points are points that are an isolated equtlitor
point of 2 € F(z),z € C or of 27 € G(z),z € D. On the
other hand, an equilibrium set (not necessarily an isolated
D={zeC:nlz1,q)=0}U{z€C:nalzs,g)=0} (G)equillibrium point) for a hy_brid systerpl is defined as a set
that is (strongly) forward invariant.

To define the jump map, first note that at jumps, the pefinition 3.2 (Equilibrium set):A setS c C' U D is an
continuous statesr; and x, do not change. Then, we gqyilibrium set ofH if for every initial conditionz(0,0) € S,
conveniently define every solutionz to 4 satisfiesz(t, j) € S for all (¢, ;) € S.

and the jump set is given by

1 1 The following results determine the equilibria bf (8) for a
x x range of parameters of the system.
a2 = ee=| | e o > |
a a Proposition 3.3: The equilibria of the hybrid system
72 1—q in @) is given in Tabld]ll in terms of the positive constants
so that the jump mag: is given by k1, k2, vi, v2, bh, 07, 02, 05, hq, and hy satisfying
the conditions therein. The sétC C' U D in case 5 is an
91(2) if m(z1,q1) =0,m2(x2,¢92) <0  equilibrium set and is given by
G(z) == < 92(2) if m1(w1,q1) < 0,m2(22,q2) =0 A
{91(2), 92(2)} if m(21,q1) = 0,m2(22,92) = 0. S = U Sis 9

() i=1



WherE
S = {zeR:z= e (% —po(l)) exp(—715) ’
Po(2) exp(—2s)
s €[0,t1]} x {(0,0)}
52 = €T E R2 ']j/_i o % - pl(l) eXp(_’YlS)
B (B2 -p(@) ep(—s)
s €[0,t5]} x {(1,0)}
p2(1) exp(—715)
S - S RQ : = ’
’ {I ’ Ef_(ﬁ—Pﬂ%)wm—wﬁ
s € [0, 5]} x {(1, 1)}
1)eXP(—71S)
! {$ ! L%(2)exp(—vas)
x{(0,1)}
and po, p1,pa, p3 € R? are the vertices of the set, where
b py(1) 17T b2 1%
-t — P 1 o 2 —p 2 Y2
ty =In k“—o ) = 1In kvz—l
7—1—(91—|—h1) 7_2_(92+h2)
1 1
p2(1) 17, p3(2) 72
th =1 =1
’ n{el—hl} e n[@g—hg ’
and
1
O>—h V2
po = | (=) ( 53(2)2) 7
0o — ho
91 +h1
’Y_2
Pi= (01+h1) s
(62 = ha) (7“)
k1 Ky 00+ 1 2 —(03+h2) W
po= | B () (5550)
92 +h2
01 —
p3 = 2

ko
2

(B~ 02+ hz)) ()™

Moreover, the period of the limit cycle is given by

T =1t) +th+t5+t).

2p;(4) is the j-th component op;.

)

TABLE |
EQUILIBRIA OF THE HYBRID SYSTEM (8).

Conditions on constants Equilibria
13
1 91+h1<#<9max Z*.:[k_l k2 O]T
0<% <02+h 1l
k1 [ k1 T
2 o<k <o —m =8 0 0 0]
_ L%
3 01 h1k< o <61+ h P
0< % < 02 + ha 1 2
4 91—h1<l€71<91+h1 .
z
02 + ha < 2 < 070" 2
01+ h1 < BL < ppax o L
5 01 hl g; erlnax equilibrium setS defined in [®)
2+ he < Y2 < 05

e 0, . .
[0,%] } C. Stability analysis

For convenience in the following analysis, we rewrite the
flow setC asC = J;_, C; , where

Ci = {2€Z2:q1=0,q2=0,21 <01 + Iy,

xy < 02+ ho},
Cy = {z€Z:q1=1,¢0=0,217 > 61 — hq,

xy < 02+ ho},
C3 == {z€eZ:q=1Lqg=1x>00—h,

xy > 0a — ho},
Cy = {2€Z:q1=0,2=1,21 <01 + Iy,

X9 > 0y — ha}.

1) Asymptotic stability of isolated equilibrium point§he
following propositions determine the stability propestief
the isolated equilibrium points in Tab[e I.

Proposition 3.4: For case 1, 2, and 4 in Tablk I, the
corresponding equilibrium points t@{ in (8) are globally
asymptotically stable.

Proposition 3.5: For case 3 in Tabl@é I, #(0,0) € Cs,
then we have thdim, ;. z(t,j) = 27; if 2(0,0) € C4 or
2(0,0) € Cy, thenlim, ;o 2(¢, j) = 2z5. If 2(0,0) € Cs,
thenlim ;o 2(t, j) = 2{ or z3. Furthermore,z{ and =3
are stable.

2) Stability properties of the limit cycleNow, we de-
termine conditions on the parameters under which the limit
cycle S defined in [[9) is asymptotically stable. As shown in
Figure 3(D), the natural metric (shown in dashed line) deffine
by the distance between the trajectoriesf 4 and the set
is not necessarily decreasing, even though Figuré 3(a)show
that the trajectory converges f In fact, as depicted in the
figures, the trajectory approaches for some time and then
gets far away from it (around the corners), until a jump to a
new value ofg occurs.

To overcome this issue, we augment the hybrid systém

with a state{ € R? and with continuous dynamics governed

by a flow map given by a copy of the one for that is,

ki(1—g2)
kaqu

-mnG

< - - 72(2



The discrete dynamics af are chosen so that jumps occur Theorem 3.6: For positive constants, k2, 71, V2, 01,
when jumps of occur and, at such jumpg,is updated via 672*, 65, 65***, hq, and hy such that
the difference inclusion

N mo= 2 =7 (12)
(" € G(x,q,0). Imy| < min{|mal, |mal}, (13)
Ims| < min{|mal, |mal}, (14)

To define the jump maﬁ, we consider the casg = v»
and we extend t@R? the set of pointsS;, i € {1,2,3,4}, where, for eachi € {1,2,3,4}, m; are given in(d), the

that is, we define the (unbounded) set following holds:
4 1) The setS is globally asymptotically stable foi. In
S — U S, (10) particular, each maximal solution té/ satisfies
1=1 . . =
d((z(t,7),q(t,5)),5) < _ as)
where exp(—1)d((2(0,0), (0, 0)), 5)
S1 = {zeR?: zp=mz —mapi(1) +p1(2) } X N
{(0,0)}, for all (t,7) € dom(z,q), where d((z,q),S) =
SQ = {CC S R2 LTy = Mo — m2p1(1) +p1(2) } X min(<7q)e§ |.I' — C|
{(1,0)}, 2) The setS in case 5 of Tablgl | is globally attractive for
S; = {zeR? : z3 =mgz1 —maps(1) +p3(2) } x H, i.e., every solution t&{ converges ta5.
{(1, D)},
Sy = {zeR? : z3=myz1 —maps(1) +p3(2) } X g
{(0,1)}. The constantsn; are defined as §\\
my - po(2) —P1(2)’ my — p2(2) —p1(2)7 22,6, s
poglg —p151; nglg - plgli (11) R
m3:p22—p32 m4:p02—]932 G
p2(1) = ps(1)’ po(1) — ps(1) i1
_ R R T R
During flows, the setS is forward invariant for the state (a) Trajectoriesz and ¢ on the (b) Distance between trajectory
component¢ (both during flows and jumps) along the Plane. andg (solid), and distance between

dynamics ofg governed by#. This is the reason we restrict @ and 5 (dashed).

¢ to belong toS for the current value of;. Then, due to Fig. 3. Trajectoriesz and ¢ on the plane, and distance betweerand ¢
the stability properties of the error system with state z, ~c°mpared fo distance betweenand the sets (dashed).
the distance betweenand( strictly decreases during flows.
With this useful property of the trajectories while flowirsd, Figure[3 shows trajectoriesand(¢ as well as the distance
jumps due tdgH, which occur wherz(t, j), ¢(t,7)) € D and between them obtained from the hybrid system augmented
mapq(t, j) to q(t, j+1) (following the definition ofG in (@), with the statel. As Figure 3(0) indicates, this distance (solid)
the jump mapG is constructed to map the stajeto satisfy ~decreases to zero while, as pointed out earlier, the natural
(C(t,j+1),q(t,j+1)) € S such that, if(¢(t,),q(t,5)) € distance betweem and S (dashed) does not.
Sq(t,j) before the jump, ther(((z,j + 1),q(t,j + 1)) € Due to the regularity properties of the data Hf the
Sq(t.j+1) and with the property that asymptotic stability guaranteed by Theoreml 3.6 is robust to
small perturbations.
dist(a(t, 7+ 1),¢(t, 5 + 1)) < dist(x(t, 5),((t, 5))
IV. NUMERICAL RESULTS
where dist is the Euclidean distance between two points
in R2. In this way, the new value of at jumps can be

H 2
dée(iverc;n Igr;e-dzfor cach < 17, from fhe set When the parameters are in the regdn+ h; < j—i <

. . = gmax g, 4+ hy, < k2 < gmax the set of pointsS in (@)
’. 1 < o , ! 1 2 2 Ry 72 ) i )
{C dI.St(."T’< ) < dISt(x’O’. (') € Sq (2,4) € G(x’ql} defines the eqwhgfna. First, we compute this set of points
(when it is not empty). Since the distance betwaeand for ky = ks = 1, 91 = o = 1, 61 = 0.6, Oy = 0.5, hy =
¢ decreases _during flows, asymptotic stability .d; hs = 0.01. Figu’re@) shows, the set o,f poirﬁSprénjected
can be established whegi(z,q,() is nonempty since to R? for these parameters. For the same parameter values,

th|s_ guarantees that the _dlstance b_etweenand C IS ihe period of the limit cycle obtained from Propositlon] 33 i
nonincreasing. The following result imposes Condltlon% — 0.8230 sec where, = 0.2552 sec,, = 0.2359 sec
on the parameters guaranteeing tldatis nonempty and, = 01594 sec.t — 0_11724 sec Figurelﬁﬁ[) confirms thi’s
furthermore, extends the attractivy property to the Set rgsult T

We illustrate numerically the more interesting case when
the parameters lead to a limit cycle.



xst ot TN [Sec]
) (@ s (b) 1 component
Fig. 4. SetS for parametersk; = ko
02 = 0.5, hy = hg = 0.01.

=17 =v =1, 6 = 0.6,

V. CONCLUSION

In this paper, a mathematical model of a genetic reg-
ulatory network has been developed under the formalism
of hybrid dynamical systems. The model presented in this
paper permits a quantitative analysis of the cellular pro-
tein dynamics under the influence of protein concentration
thresholds and initial conditions. The analysis of the iybr
model with two genes determines conditions guaranteeing
the existence of solutions, the equilibria of the systend an
the stability properties of the equilibria (and its robuests).

In particular, we have revealed conditions on the pararaeter
that, when hysteresis is present, the interaction between t
concentrations of two proteins leads to oscillatory betwavi
Such a behavior is impossible in a two-gene network without

0% o

- R B
(@) hy = 0.015, ha = 0.015

R S
Ty

' (1]
(b) hy = 0.01, hy = 0.01

(2]

(3]

(4]

0% o 0% o

D S
Ty

(©) h1 = 0.006, hy = 0.006

D R
Ty

@) hi =0 ho=0 (5]

Fig. 5. Solutions approaching the sét with different initial conditions of  [6]
z and parameter®); = 0.6, 02 = 0.5, y1 =v2 =1, k1 = ko = 1.

Figure[® shows simulations with several initial conditions|7]
and common parametets = 0.6,05 = 0.5,7, = 72 =
1,k = ko = 1, but decreasingh, ho. Each solution 8
converges to the limit cycl®. The size of the limit cycle is
reduced a%1, ho gets smaller. From our results we know that
the size of the limit cycle depends on the value of hysteresiég]
parameters. When the magnitude of hysteresis tends to zero,
the setS approaches a point, which is given W (6,) (see [10]
similar case shown in Figufe 5{d).)

Finally, Figure[® shows the case when # ~,. In this
case, the trajectories approach the limit cycle giveriin (9) [11]

. [12]
[13]
X055

[14]
04 [15]
e T [16]

Fig. 6. Solutions approaching the sét with different initial conditions of
xz; and fixed parameters. Values of parametéts:= 0.6,02 = 0.5,vy1 = [17]

572 = 1,k1 =5,ka = 1,h; = 0.01, h1 = 0.01. The blue line is the set
S. The symbols: denote the initial points.

] R. Ghosh and C. J. Tomlin.

hysteresis.
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