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On the Stability of Hybrid Limit Cycles and Isolated Equilib ria
in a Genetic Network with Binary Hysteresis

Qin Shu and Ricardo G. Sanfelice

Abstract— A mathematical model for a two-gene regulatory
network is derived and several of its properties are analyzed.
Due to the presence of continuous dynamics and binary hystere-
sis, we propose a hybrid system model. Binary hysteresis with
different thresholds captures the interaction between thegenes.
We analyze properties of the solutions and asymptotic stability
of equilibria in the system as a function of its parameters. Our
analysis reveals the presence of limit cycles for a certain range
of parameters, a behavior that is associated with the presence
of binary hysteresis. The set of points defining the limit cycle is
characterized and its asymptotic stability properties arestudied.
Numerical simulations are presented to illustrate some of the
results.

I. I NTRODUCTION

Several mathematical models have been proposed in the
literature for the study of genetic regulatory networks; see
[1] for a survey. In particular, boolean models are typically
used to capture the dynamics of discrete switches in such
networks. As introduced by Glass and Kauffman in [2],
Boolean regulation functions, typically modeled as sigmoidal
or step functions, can be combined with linear system models
to enforce certain logic rules. The properties of such a class
of piecewise linear models have been studied in the math-
ematical biology literature, e.g., [3], [4], [5], [6]. Snoussi
presented a discrete mapping approach in [3] to study the
qualitative properties of the dynamics of genetic regulatory
networks. In his work, the properties of a discrete mapping
were studied to determine stable isolated steady states as well
as limit cycles. In [4], Gouźe and Sari employ the concept
of Filippov solution to study piecewise linear models of
genetic regulatory networks with discontinuities occurring on
hyperplanes defined by thresholds on the variables. Chaves
and coauthors [5] studied the robustness of Boolean models
of gene control networks. In [6], de Jong and coauthors
presented a method for qualitative simulation of genetic
regulatory networks based on the piecewise linear model of
[2]. Genetic regulatory networks with continuous dynamics
coupled with switching can be written as a hybrid system. In
[7] and [8], the authors apply hybrid systems tools to model
a variety of cell biology problems.

Although it is an important phenomenon present in ge-
netic regulatory networks, hysteresis behavior is not usually
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included in models of such networks. Hysteresis is character-
ized by behavior in which, for instance, once a gene has been
inhibited due to the concentration of cellular protein reaching
a particularly low value, a higher value of cellular protein
concentration is required to express it. In his survey paper
on the impact of genetic modeling on tumorigenesis and drug
discovery [9], Huang stated that“hysteresis is a feature that
a synthetic model has to capture.”Through experiments, Das
and coauthors [10] demonstrated the existence of hysteresis
in lymphoid cells and the interaction of continuous evolution
of some cellular proteins. Hysteresis was also found to be
present in mammalian genetic regulatory networks; see, e.g.,
[11], [12]. More importantly, hysteresis is a key mechanism
contributing to oscillatory behavior in biological models[13],
[14].

In this paper, we propose a hybrid system model that
captures both continuous and discrete dynamics of a genetic
regulatory network with binary hysteresis. We combine the
methodology of piecewise linear modeling of genetic reg-
ulatory networks with the framework of hybrid dynamical
systems in [15], and construct a hybrid system model for
a genetic network with two genes; see Section II. Unlike
piecewise linear models, our model incorporates hysteresis
explicitly. We prove existence of solutions to the genetic
network, a property that is typically overlooked or difficult to
prove due to the discontinuity in the dynamics introduced by
boolean variables. In Section III, we compute the equilibria
of the system in terms of its parameters. We analyze the
asymptotic stability of the isolated equilibrium points and
determine conditions under which a limit cycle exists. It is
found that, for a particular set of parameters, hysteresis is the
key mechanism leading to oscillations, as without hysteresis,
the limit cycle converges to an isolated equilibrium point (cf.
[3]). The stability of the limit cycle is established using a
novel approach consisting of measuring the distance between
solutions of hybrid systems (rather than the distance to
the limit cycle as in classical continuous-time systems). In
Section IV, simulations validating some of our results are
presented.

II. A H YBRID SYSTEMS MODEL FORGENETIC

REGULATORY NETWORKS WITH HYSTERESIS

Models of genetic regulatory networks given by piecewise-
linear differential equations have been proposed in [8], [16].
Such models take the form1

ẋ = f(x)− γx, x ≥ 0, (1)

1The notationx ≥ 0 is equivalent toxi ≥ 0 for eachi.



wherex = [x1, x2, . . . , xn]
⊤ andxi represents the concen-

tration of the protein in thei-th cell, f = [f1, f2, . . . , fn]
⊤

is a function,γ = [γ1, γ2, . . . , γn]
⊤ is a vector of constants,

and1 ≤ i ≤ n. For eachi, fi is a function representing the
rate of synthesis, whileγi represents the degradation rate
constant of the protein. The functionfi is typically defined
as the linear combinationfi(x) =

∑
ℓ∈L kiℓbiℓ(x) where

kiℓ is the nonzero and nonnegative growth rate constants,
biℓ is a Boolean regulation function that describes the gene
regulation logic, andL = {1, 2 . . . , n} is the set of indices
of regulation functions.

The modeling strategy for the Boolean regulation func-
tions bil is a key element that captures the behavior of a
particular genetic regulatory network. A major feature of a
genetic regulatory network is the presence of threshold-like
relationships between the system variables, i.e., if a variable
xi is above (or below) a certain level, it could cause little
or no effect on another variablexj , whereas ifxi is below
(or above) this certain value, the effect onxj would become
more significant (for example, it may increase the value ofxj

or inhibit the growth of the value ofxj ). Boolean regulation
functions can be modeled by sigmoidal or step functions, an
approach that was first proposed by Glass and Kauffmann
[2]. When modeling as a step function, the functionsbiℓ are
given by the combination (linear or nonlinear) of

s+(xi, θ) =

{
1 if xi ≥ θ

0 if xi < θ
, s−(xi, θ) = 1− s+(xi, θ),

(2)
where s+(xi, θ) represents the logic for gene expression
when the protein concentration exceeds a thresholdθ, while
s−(xi, θ) represents the logic for gene inhibition.

To illustrate this modeling approach, let us consider the
genetic regulatory network shown in Figure 1. Genesa
and b encode proteinsA and B, respectively. When the
concentration of proteinA is below certain threshold, it will
inhibit geneb. Similarly, protein B inhibits genea when
the concentration of proteinB is above certain threshold.
In this way, a set of piecewise-linear differential equations
representing the behavior in Figure 1 is given by

ẋ1 = k1s
−(x2, θ2)− γ1x1, ẋ2 = k2s

+(x1, θ1)− γ2x2,

(3)
wherex1 is representing the concentration of proteinA, while
x2 is the concentration of proteinB. The constantsθ1, θ2
are the thresholds associated with concentrations of protein
A andB, respectively. In this model, genea is expressed at a

a b

A

B

Fig. 1. A genetic regulatory network of two genes (a and b), each encoding
for a protein (A and B). Lines ending in arrows represent genetic expression
triggers, while lines ending in flatheads refer to genetic inhibition triggers.

ratek1 whenx2 is below the thresholdθ2. Similarly, geneb

is expressed at a ratek2 whenx1 is above the thresholdθ1.
Degradations of both proteins are assumed to be proportional
to their own concentrations, a mechanism that is captured by
−γ1x1 and−γ2x2, respectively.

Note that the model in (3) capturing the interaction
between genea and geneb does not incorporate binary
hysteresis. Furthermore, due to the discontinuities introduced
by the Boolean regulation functions, it is not straightforward
to argue that solutions to (3) exist from every initial valueof
x. In order to overcome such limitations, we propose a hybrid
system with hysteresis for this two gene genetic regulatory
network, to which hybrid systems tools for analysis of exis-
tence of solutions and asymptotic stability can be applied.

We model the genetic network in (3) as a hybrid systemH
within the formalism of [17], [15], where hybrid systems are
given in terms of a flow mapF , a flow setC, a jump map
G, and a jump setD, and solutions are parameterized by
flow time t and jump timej. To this end, two discrete logic
variables,q1 andq2, are introduced. The dynamics of these
variables depend on the thresholds,θ1 and θ2, respectively.
As one of our goals is to introduce binary hysteresis in the
model in (3), we define hysteresis level constantsh1 and
h2 associated with genea and geneb, respectively. In this
way, qi is governed by dynamics such that the evolution in
Figure 2 holds.

qi

0
xi

1

θi − hi θi + hi θmax
i

Fig. 2.The update mechanism ofqi as a function ofxi and previous values
of qi.

The state of the hybrid system is defined as

z = [x1, x2, q1, q2]
⊤,

wherez ∈ Z := R
2
≥0 × {0, 1}2; x1, x2 are (nonnegative)

continuous states representing protein concentrations; and q1,
q2 are discrete variables. Here,R≥0 := [0,+∞). We specify
constantsθ1 and θ2, usually inferred from biological data,
satisfying0 < θ1 < θmax

1 , 0 < θ2 < θmax
2 , whereθmax

1 and
θmax
2 are the maximal value of the concentration of protein

A and of the proteinB, respectively.
To define the continuous dynamics of the hybrid system

capturing the evolution of (3), we rewrite the piecewise-linear
differential equation (3) by replacing thes+ term with the
logic variablesqi, and thes− term with the complement of
the logic variableqi, i.e.,1− qi. Note that the discrete logic
variablesqi only change at jumps, i.e., they are constants
during flows. Then,q̇i = 0. In this way, the continuous
dynamics are governed by the differential equation

ẋ1 = k1(1 − q2)− γ1x1, ẋ2 = k2q1 − γ2x2,

q̇1 = q̇2 = 0,



from where we obtain the flow map

F (z) =




k1(1− q2)− γ1x1

k2q1 − γ2x2

0
0


 . (4)

Now, we describe the discrete update of the state vectorz,
i.e., we defineG andD. To illustrate this construction, we
explain how to model the mechanism in Figure 2 forq1.
When

q1 = 0 and x1 = θ1 + h1

the stateq1 is updated to 1. We write this update law as

q+1 = 1.

When

q1 = 1 and x1 = θ1 − h1,

then the stateq1 is updated to 0, i.e.,

q+1 = 0.

It follows that the mechanism ofq1 in Figure 2 can be
captured by triggering jumps whenz belongs to

{z : q1 = 0, x1 = θ1 + h1} ∪ {z : q1 = 1, x1 = θ1 − h1}.

Note that the update mechanism forq2 is similar to that of
q1 just discussed.

We can define the flow and jump sets in a compact form
by defining functions

η1(x1, q1) := (2q1 − 1)(−x1 + θ1 + (1− 2q1)h1)

η2(x2, q2) := (2q2 − 1)(−x2 + θ2 + (1 − 2q2)h2).

In this way, the flow set is given by

C := {z ∈ Z : η1(x1, q1) ≤ 0, η2(x2, q2) ≤ 0} (5)

and the jump set is given by

D = {z ∈ C : η1(x1, q1) = 0} ∪ {z ∈ C : η2(x2, q2) = 0} (6)

To define the jump map, first note that at jumps, the
continuous statesx1 and x2 do not change. Then, we
conveniently define

g1(z) :=




x1

x2

1− q1
q2


 , g2(z) :=




x1

x2

q1
1− q2


 ,

so that the jump mapG is given by

G(z) :=





g1(z) if η1(x1, q1) = 0, η2(x2, q2) < 0

g2(z) if η1(x1, q1) < 0, η2(x2, q2) = 0

{g1(z), g2(z)} if η1(x1, q1) = 0, η2(x2, q2) = 0.
(7)

The above definitions determine a hybrid system for (3),
which is given by

H : z ∈ Z






ż = F (z) =




k1(1− q2)− γ1x1

k2q1 − γ2x2

0
0


 z ∈ C

z+ ∈ G(z) z ∈ D,
(8)

whereC is in (5),G is in (7), andD is in (6). Its parameters
are given by the positive constantsk1, k2, γ1, γ2, θ1, θ2,
h1, h2, which satisfyθ1 + h1 < θmax

1 , θ2 + h2 < θmax
2 ,

θ1 − h1 > 0, θ2 − h2 > 0.

III. D YNAMICAL PROPERTIES OF THETWO-GENE

HYBRID SYSTEM MODEL

A. Existence of solutions

A solutionz to H is said to be nontrivial ifdom z contains
at least two points, complete ifdom z is unbounded, Zeno
if it is complete and the projection ofdom z onto R

n
≥0 is

bounded, and maximal if there does not exist another solution
z′ to H such thatdom z′ is a proper subset ofdom z, and
z′(t, j) = z(t, j) for all (t, j) ∈ dom z.

Proposition 3.1: From every point inC ∪D, there exists
a nontrivial solution for the hybrid systemH in (8). Further-
more, every maximal solution is complete and the projection
of its hybrid time domain onR≥0 is unbounded, i.e., every
solution is not Zeno.

The proof of this result uses the conditions for the exis-
tence of solutions toH in [15] for general hybrid systems.

B. Characterization of equilibria

We compute the set of isolated equilibrium pointsz∗

as well as (nonisolated, dense) sets of equilibria for the
hybrid systemH in (8). For general hybrid systems, isolated
equilibrium points are points that are an isolated equilibrium
point of ż ∈ F (z), z ∈ C or of z+ ∈ G(z), z ∈ D. On the
other hand, an equilibrium set (not necessarily an isolated
equilibrium point) for a hybrid systemH is defined as a set
that is (strongly) forward invariant.

Definition 3.2 (Equilibrium set):A set S ⊂ C ∪D is an
equilibrium set ofH if for every initial conditionz(0, 0) ∈ S,
every solutionz to H satisfiesz(t, j) ∈ S for all (t, j) ∈ S.

The following results determine the equilibria of (8) for a
range of parameters of the system.

Proposition 3.3: The equilibria of the hybrid systemH
in (8) is given in Table I in terms of the positive constants
k1, k2, γ1, γ2, θ1, θmax

1 , θ2, θmax
2 , h1, and h2 satisfying

the conditions therein. The setS ⊂ C ∪ D in case 5 is an
equilibrium set and is given by

S =

4⋃

i=1

Si, (9)



where2

S1 :=

{
x ∈ R

2 : x =

[
k1

γ1

−
(

k1

γ1

− p0(1)
)
exp(−γ1s)

p0(2) exp(−γ2s)

]
,

s ∈ [0, t′1]} × {(0, 0)}

S2 :=



x ∈ R

2 : x =




k1

γ1

−
(

k1

γ1

− p1(1)
)
exp(−γ1s)

k2

γ2

−
(

k2

γ2

− p1(2)
)
exp(−γ2s)



 ,

s ∈ [0, t′2]} × {(1, 0)}

S3 :=

{
x ∈ R

2 : x =

[
p2(1) exp(−γ1s)

k2

γ2

−
(

k2

γ2

− p2(2)
)
exp(−γ2s)

]
,

s ∈ [0, t′3]} × {(1, 1)}

S4 :=

{
x ∈ R

2 : x =

[
p3(1) exp(−γ1s)
p3(2) exp(−γ2s)

]
, s ∈ [0, t′4]

}

×{(0, 1)}

and p0, p1, p2, p3 ∈ R
2 are the vertices of the setS, where

t′1 = ln

[
k1

γ1

− p0(1)

k1

γ1

− (θ1 + h1)

] 1

γ1

, t′2 = ln

[
k2

γ2

− p1(2)

k2

γ2

− (θ2 + h2)

] 1

γ2

,

t′3 = ln

[
p2(1)

θ1 − h1

] 1

γ1

, t′4 = ln

[
p3(2)

θ2 − h2

] 1

γ2

,

and

p0 =


 (θ1 − h1)

(
θ2−h2

p3(2)

) γ1
γ2

θ2 − h2


 ,

p1=




θ1 + h1

(θ2 − h2)

(
k1
γ1

−(θ1+h1)
k1
γ1

−p0(1)

) γ2
γ1



 ,

p2 =


 k1

γ1

−
(

k1

γ1

− (θ1 + h1)
)(

k2
γ2

−(θ2+h2)
k2
γ2

−p1(2)

) γ1
γ2

θ2 + h2


 ,

p3 =




θ1 − h1

k2

γ2

−
(

k2

γ2

− (θ2 + h2)
)(

θ1−h1

p2(1)

) γ2
γ1


 .

Moreover, the period of the limit cycle is given by

T = t′1 + t′2 + t′3 + t′4.

2pi(j) is the j-th component ofpi.

TABLE I

EQUILIBRIA OF THE HYBRID SYSTEM (8).

Conditions on constants Equilibria

1
θ1 + h1 <

k1

γ1
< θmax

1

0 <
k2

γ2
< θ2 + h2

z∗
1
:=

[

k1

γ1

k2

γ2
1 0

]⊤

2 0 < k1

γ1
< θ1 − h1 z∗

2
:=

[

k1

γ1
0 0 0

]⊤

3
θ1 − h1 <

k1

γ1
< θ1 + h1

0 <
k2

γ2
< θ2 + h2

z∗
1

or z∗
2

4
θ1 − h1 < k1

γ1
< θ1 + h1

θ2 + h2 < k2

γ2
< θmax

2

z∗
2

5
θ1 + h1 <

k1

γ1
< θmax

1

θ2 + h2 <
k2

γ2
< θmax

2

equilibrium setS defined in (9)

C. Stability analysis

For convenience in the following analysis, we rewrite the
flow setC asC =

⋃4
i=1 Ci , where

C1 := {z ∈ Z : q1 = 0, q2 = 0, x1 ≤ θ1 + h1,

x2 ≤ θ2 + h2},

C2 := {z ∈ Z : q1 = 1, q2 = 0, x1 ≥ θ1 − h1,

x2 ≤ θ2 + h2},

C3 := {z ∈ Z : q1 = 1, q2 = 1, x1 ≥ θ1 − h1,

x2 ≥ θ2 − h2},

C4 := {z ∈ Z : q1 = 0, q2 = 1, x1 ≤ θ1 + h1,

x2 ≥ θ2 − h2}.

1) Asymptotic stability of isolated equilibrium points:The
following propositions determine the stability properties of
the isolated equilibrium points in Table I.

Proposition 3.4: For case 1, 2, and 4 in Table I, the
corresponding equilibrium points toH in (8) are globally
asymptotically stable.

Proposition 3.5: For case 3 in Table I, ifz(0, 0) ∈ C2,
then we have thatlimt+j→∞ z(t, j) = z∗1 ; if z(0, 0) ∈ C1 or
z(0, 0) ∈ C4, then limt+j→∞ z(t, j) = z∗2 . If z(0, 0) ∈ C3,
then limt+j→∞ z(t, j) = z∗1 or z∗2 . Furthermore,z∗1 and z∗2
are stable.

2) Stability properties of the limit cycle:Now, we de-
termine conditions on the parameters under which the limit
cycleS defined in (9) is asymptotically stable. As shown in
Figure 3(b), the natural metric (shown in dashed line) defined
by the distance between the trajectoriesz of H and the setS
is not necessarily decreasing, even though Figure 3(a) shows
that the trajectory converges toS. In fact, as depicted in the
figures, the trajectoryx approachesS for some time and then
gets far away from it (around the corners), until a jump to a
new value ofq occurs.

To overcome this issue, we augment the hybrid systemH
with a stateζ ∈ R

2 and with continuous dynamics governed
by a flow map given by a copy of the one forx, that is,

ζ̇ =

[
k1(1− q2)− γ1ζ1

k2q1 − γ2ζ2

]
.



The discrete dynamics ofζ are chosen so that jumps occur
when jumps ofH occur and, at such jumps,ζ is updated via
the difference inclusion

ζ+ ∈ G̃(x, q, ζ).

To define the jump map̃G, we consider the caseγ1 = γ2
and we extend toR2 the set of pointsSi, i ∈ {1, 2, 3, 4},
that is, we define the (unbounded) set

S̃ =

4⋃

i=1

S̃i, (10)

where
S̃1 =

{
x ∈ R

2 : x2 = m1x1 −m1p1(1) + p1(2)
}

×
{(0, 0)},
S̃2 =

{
x ∈ R

2 : x2 = m2x1 −m2p1(1) + p1(2)
}

×
{(1, 0)},
S̃3 =

{
x ∈ R

2 : x2 = m3x1 −m3p3(1) + p3(2)
}

×
{(1, 1)},
S̃4 =

{
x ∈ R

2 : x2 = m4x1 −m4p3(1) + p3(2)
}

×
{(0, 1)}. The constantsmi are defined as

m1 =
p0(2)− p1(2)

p0(1)− p1(1)
, m2 =

p2(2)− p1(2)

p2(1)− p1(1)
,

m3 =
p2(2)− p3(2)

p2(1)− p3(1)
, m4 =

p0(2)− p3(2)

p0(1)− p3(1)

(11)

During flows, the setS̃ is forward invariant for the state
componentζ (both during flows and jumps) along the
dynamics ofq governed byH. This is the reason we restrict
ζ to belong toS̃ for the current value ofq. Then, due to
the stability properties of the error system with stateζ − x,
the distance betweenx andζ strictly decreases during flows.
With this useful property of the trajectories while flowing,at
jumps due toH, which occur when(x(t, j), q(t, j)) ∈ D and
mapq(t, j) to q(t, j+1) (following the definition ofG in (7)),
the jump mapG̃ is constructed to map the stateζ to satisfy
(ζ(t, j + 1), q(t, j + 1)) ∈ S̃ such that, if(ζ(t, j), q(t, j)) ∈
S̃q(t,j) before the jump, then(ζ(t, j + 1), q(t, j + 1)) ∈

S̃q(t,j+1) and with the property that

dist(x(t, j + 1), ζ(t, j + 1)) ≤ dist(x(t, j), ζ(t, j))

where dist is the Euclidean distance between two points
in R

2. In this way, the new value ofζ at jumps can be
determined for eachx ∈ R

2, from the set
G̃(x, q, ζ) :={
ζ′ : dist(x, ζ′) ≤ dist(x, ζ), (ζ′, q′) ∈ S̃q′ , (x, q

′) ∈ G(x, q)
}

(when it is not empty). Since the distance betweenx and
ζ decreases during flows, asymptotic stability of̃S
can be established wheñG(x, q, ζ) is nonempty since
this guarantees that the distance betweenx and ζ is
nonincreasing. The following result imposes conditions
on the parameters guaranteeing thatG̃ is nonempty and,
furthermore, extends the attractivy property to the setS.

Theorem 3.6: For positive constantsk1, k2, γ1, γ2, θ1,
θmax
1 , θ2, θmax

2 , h1, andh2 such that

γ1 = γ2 = γ, (12)

|m1| ≤ min{|m2|, |m4|}, (13)

|m3| ≤ min{|m2|, |m4|}, (14)

where, for eachi ∈ {1, 2, 3, 4}, mi are given in(11), the
following holds:

1) The setS̃ is globally asymptotically stable forH. In
particular, each maximal solution toH satisfies

d((x(t, j), q(t, j)), S̃) ≤

exp(−γt)d((x(0, 0), q(0, 0)), S̃)
(15)

for all (t, j) ∈ dom(x, q), where d((x, q), S̃) =
min(ζ,q)∈S̃

|x− ζ|.
2) The setS in case 5 of Table I is globally attractive for

H, i.e., every solution toH converges toS.
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Fig. 3. Trajectoriesx and ζ on the plane, and distance betweenx and ζ
compared to distance betweenx and the setS (dashed).

Figure 3 shows trajectoriesx andζ as well as the distance
between them obtained from the hybrid system augmented
with the stateζ. As Figure 3(b) indicates, this distance (solid)
decreases to zero while, as pointed out earlier, the natural
distance betweenx andS (dashed) does not.

Due to the regularity properties of the data ofH, the
asymptotic stability guaranteed by Theorem 3.6 is robust to
small perturbations.

IV. N UMERICAL RESULTS

We illustrate numerically the more interesting case when
the parameters lead to a limit cycle.

When the parameters are in the regionθ1 + h1 < k1

γ1

<

θmax
1 , θ2 + h2 < k2

γ2

< θmax
2 , the set of pointsS in (9)

defines the equilibria. First, we compute this set of points
for k1 = k2 = 1, γ1 = γ2 = 1, θ1 = 0.6, θ2 = 0.5, h1 =
h2 = 0.01. Figure 4(a) shows the set of pointsS projected
to R

2 for these parameters. For the same parameter values,
the period of the limit cycle obtained from Proposition 3.3 is
T = 0.8230 sec, wheret′1 = 0.2552 sec,t′2 = 0.2359 sec,
t′3 = 0.1594 sec,t′4 = 0.1724 sec. Figure 4(b) confirms this
result.
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(a) h1 = 0.015, h2 = 0.015
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(c) h1 = 0.006, h2 = 0.006
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Fig. 5. Solutions approaching the setS with different initial conditions of
z and parametersθ1 = 0.6, θ2 = 0.5, γ1 = γ2 = 1, k1 = k2 = 1.

Figure 5 shows simulations with several initial conditions
and common parametersθ1 = 0.6, θ2 = 0.5, γ1 = γ2 =
1, k1 = k2 = 1, but decreasingh1, h2. Each solution
converges to the limit cycleS. The size of the limit cycle is
reduced ash1, h2 gets smaller. From our results we know that
the size of the limit cycle depends on the value of hysteresis
parameters. When the magnitude of hysteresis tends to zero,
the setS approaches a point, which is given by (θ1, θ2) (see
similar case shown in Figure 5(d).)

Finally, Figure 6 shows the case whenγ1 6= γ2. In this
case, the trajectories approach the limit cycle given in (9).
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Fig. 6. Solutions approaching the setS with different initial conditions of
xi and fixed parameters. Values of parameters:θ1 = 0.6, θ2 = 0.5, γ1 =
5, γ2 = 1, k1 = 5, k2 = 1, h1 = 0.01, h1 = 0.01. The blue line is the set
S. The symbols∗ denote the initial points.

V. CONCLUSION

In this paper, a mathematical model of a genetic reg-
ulatory network has been developed under the formalism
of hybrid dynamical systems. The model presented in this
paper permits a quantitative analysis of the cellular pro-
tein dynamics under the influence of protein concentration
thresholds and initial conditions. The analysis of the hybrid
model with two genes determines conditions guaranteeing
the existence of solutions, the equilibria of the system, and
the stability properties of the equilibria (and its robustness).
In particular, we have revealed conditions on the parameters
that, when hysteresis is present, the interaction between the
concentrations of two proteins leads to oscillatory behavior.
Such a behavior is impossible in a two-gene network without
hysteresis.
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