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Abstract—In many control applications, nonlinear plants  method is proposed to design fixed-order LPV controllers
can be modeled as linear parameter-varying (LPV) systems, in an |0 form using experimental data directly. In fact,
by which the dynamic behavior is assumed to be linear, but i corresponds of designing controllers without deriyvin

also dependent on some measurable signalg,g., operating h . .
conditions. When a measured data set is available, LPV model & model of the systenThis approach permits to avoid the

identification can provide low complexity linear models that can ~ cfitical (and time-consuming) approximation steps relate
embed the underlying nonlinear dynamic behavior of the plant. to modeling and state-space realization and it results in a
For such models, powerful control synthesis tools are available, fully automatic procedure, where only the desired closed-
but the way the modeling error and the conservativeness of loop behavior has to be specified by the user. Moreover,
the embedding affect the control performance is still largely N .

unknown. Therefore, it appears to be attractive to directly although t.he ppt|m|zat.|on problem to solve the.deS|gn of the
synthesize the controller from data without modeling the —controller is bi-convex in the general case, the final praced

plant. In this paper, a novel data-driven synthesis scheme is turns out to be convex, when the problem is reformulated
proposed to lay the basic foundations of future research on ysing suitable instrumental variables.

this challenging problem. The effectiveness of the proposed Direct controller tuning using a single set of 10 data,

approach is illustrated by a numerical example. also known as non-iterative data-driven control, has been
I. INTRODUCTION first studied in t_helinear time-invariant (LTI) fram_ework
[2]. Well established approaches have been introduced,
In many control applications, nonlinear plants can b§ke Virtual Reference Feedback TuniyRFT) [4] and
modeled adinear parameter-varyindLPV) systems, where Non-iterative Correlation-based TuningCbT) [14]. A
the dynamic behavior is characterized by linear relationggt attempt to extend VRFT to LPV systems has been
which vary depending on some measurable time-varyingresented in [7], where data-driven gain-scheduled cbetro
signals, called scheduling signals. For example, the value design has been proposed to realize a user-defined LTI
these variables can represent the actual operating poiheof closed-loop behavior. Although satisfactory performance
system. In the literature, it has been shown that accurate apss peen shown for slowly varying scheduling trajectories,
low complexity models of LPV systems can be efficientlyihis methodology is far from being generally applicable to
derived from data usingnput-output (I0) representation | py systems. As a matter of fact, in the method presented
based model structures [10], while state-space approachgs|7] “the controller must be linearly parameterized and
appear to be affected by the curse of dimensionality anfle reference behavior must be LTI. The latter requirement
other approach-specific problems [15]. However, most Qgpresents a strict limitation, since an LTI behavior might
the control synthesis approaches are based on a state-spg€e€yifficult to realize in practice, as it may require too
representation of the system dynami_cs _(except a few recef8manding input signals and dynamic dependence of the
works [1] [S]) and state space realization of complex IQgntroller on the scheduling signal. On the other hand, the
models is difficult to accomplish in practice. This transf@* | py/ extension of Non-iterative CbT has been found to
tion can result in a non minimal parameter dependency Withe ynfeasible, as the derivation of this approach is based
time-shifted versions of the scheduling parameters or in §, the commutation of the plant and the controller in the
non state-minimal state-space realization, for which ieffit ning scheme [8]. Unfortunately, such a commutation does
model reduction is largely an open issue [12]. Moreover, thgt generally hold for parameter-varying transfer opesato
way the modeling error affects the control performance i3], A direct data-driven LPV solution has been presented
unknown for most of the design methods and little workq feed-forward precompensator tuning in [3]. Also in this

has been done on including information about the contrelase no dynamic dependance is accounted for and the final
objectives into the identification setting. In this papedjr@ct  gpjective is an LTI behavior.
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LN K u G y ¢ In the following, the transfer operatd¥/ (p,t,q~*), which
_ - indicates the infinite impulse response of the reference

model (2) will be used as a shorthand form to indicate the
mapping of r via M. Formally, M is such thaty(t) =
M (p,t,q~1)r(t) for all trajectories{u(t), y(t), p(t)} satisfy-

M ing (2). In case the reference model is given in an 10 form,

this can be realized in a state-space representation using t

p so called maximally augmented realization form [11] or the

approaches presented in [12].
Fig. 1._ Data-d_riven LPV control configuration: the propossased-loop Furthermore, consider that the controll§r parameterized
behavior matching scheme. through#, can be represented as

) . . . . AK(P7t7q_179)U(t) = BK(pat7q_179)<r<t) _y(t))’ (3)
by a simulation example in Section VI. Some final remarkgvh

end the paper.

ere

Na g

Il. PROBLEM FORMULATION Ak(p it ) =1+ af(p,t)g ",

Consider the onélegree-of-freedoniDOF) control archi- nhfl
tgcture' deplc'ted in Figure 1. Let denote an un'known Br(p,t,q7 ) = be(p’ g,
single-input single-outpuSISO) LPV system described by P
the difference equation
and
A(p,t,q Dy(t) = B(p,t,q Hu(t), 1 s —
(.14 )y(t) = Blp b ¢ Jult) A ) => a5 fiip,t), b (p,t) = b0:5(0,1),

where u(t) € R is the input signal,y(t) € R is the j=1 J=0

noise-free output angh(t) € P C R is a set ofn, and f, ;(p,t) and g; ;(p,t) are a-priori chosen nonlinear
(exogenous) measurable scheduling variables. From now qBossibly dynamic) functions of the the scheduling paramet
for simplicity, the case of;, = 1 will be considered. sequence. The parameter§, characterizing the controller

In (1), A(p,t,¢~") and B(p,t,¢~") are polynomials in ' are then the collection of the unknown constant terms

the backward time-shift operatgr! of finite degreen,, and als; andbls, i.e,

ny, respectivelyj.e., b= (T STT . X
N I e (e (4)
A(p,t7q_1) = 1+Zai(p7t)q_i’ & = [ailfl ai{(nJT’ b7 - [bi{{l o bl{(mi]—r'
i=1

Remark 2: The controller has been assumed to be dynam-
b _ ically dependent om in order to have enough flexibility to
B(p,t,q ") = Zbi(ﬂ g, achieve the user-defined behavior. As a matter of fact, it is
=0 well-known that a static dependence would be a rather strong
where the coefficients, (p, t) andb, (p, t) are nonlinear (pos- assumption for most of real-world systems [10], [13].®
sibly dynamic) mappings of the whole scheduling sequence, Assume now that a collection of open-loop ddda, =
i.e, p(t), p(t — 1) and so on. {u(t), yo(t),p(t)}, t € IV = {1,...,N}, is available,
The system( is assumed to be stable, where the notiomvherein
of stability is defined as follows. _
Definition 1: An LPV system, represented in terms of Yul(t) = y(t) +w(t) ©®)
(1), is calledstableif, for all trajectories{u(t),y(t),p(t)} and w(t) represents a zero-mean colored output noise.
satisfying (1) withu(t) = 0, ¢ > 0, it holds that3 § > 0  Specifically,
s.t. y(t)| < 6,vt > 0. [ | 1 1
R|er$1;‘rk 1:Notice that, due to linearity, an LPV system Dip:t,q=Juw(t) = Clp.t, g~ Ju(t),
that is stable according to Definition 1 also satisfies that where v is a zero mean white noise of unit variance,
D(p,t,q~ 1) andC(p,t,q~ ') are polynomials i~ of finite

b [u®)] < 00 = oy ly(®)] < oo, degreenq andn., respectivelyij.e.,

for all {u(t),y(t),p(t)} satisfying (1). This property is P - (. g~
known asBounded-Input Bounded-Outp(BIBO) stability Clp,tig™) =1+ ;C’L(p’ )i,
in the £, norm [10]. [ ] a
Consider that, as the objective of the control design, aelsi D(p,t,g ) =1+ Z d;(p, t)q ",
closed-loop behavior is given by a state-space repregamtat =
xpm(t+1) = Apu(p, )z (t) + Bar(p, t)r(t), and the coefficients;(p,t) and d,(p,t) are unknown non-

y(t) = Cr(p,)xa(t) + Dar(p, t)r(t). 2) linear (possibly dynamic) mappings of the the scheduling



parameter sequenge The model-reference control problems « Problem (9) is independent of the analytical description

considered in this paper can then be stated as follows. of A(¢g~',p) and B(¢~!,p) and therefore no model
Problem 1 (Design with noiseless datassume that a identification is needed.
noiseless dataseDy = {u(t),y(t),pt)}, t € IV, a « The information about the data generation mechanism

reference model (2) and a controller structure (3) are given is implicitly included inDy.
Determine#, so that the closed-loop system composed by « Problem (9) is generally nonconvex because of the

(1) and (3) is equal to (2). | product between the optimization variablesand the
Problem 2 (Design with noisy dataAssume that a parameter$ characterizingBx (¢—1, p, 0). Specifically,
noisy dataseDy = {u(t),y.(t),p(t)}, t € IV, a reference it is convex only if Bx(q~!,p,0) is independent of),

model (2) and a controller structure (3) are given. Deteemin whereas it idi-convexin case of any linear dependance
6, so that the closed-loop system composed by (1) and (3) of Bx(q~!,p,0) oné.

asymptotically converges to (2), @ — oc. u It should be here mentioned that the computation of the

First, for the clarity of the exposition, Section Il will be i erse of the reference map is not straightforward. Howeve

dedicated to the unrealistic (but simpler) Problem 1, fofo; reference maps given in the state-space form (2), the
which the key ideas of the approach will be introduced. TheReg it of the following Proposition can be employed.

the solution of the realistic (but more complex) Problem 2 Proposition 1: Assume thatD (p, t) # 0,¥p in (2) such
will be developed as an extension of the noiseless case jf; 5 Dyt (p,t) with D32 (p,)Das(p,t) = 1, Vp. Define

Section IV. the state-space representation of the inverse map of (2) as

Remark 3:Notice that, unlike in the LTI case, designing a
controller that achieves a user-defined behaviiet, (nodel- at(t+1) = Api(p,t)xp (8) + Bagi (p, £)y(t)
reference control) is not trivial in the LPV framework even r(t) = Cuyi(pt)zass (t) + Dagi(p, t)y(t).
from a model-based perspective. The main reason is that (10)

most of the techniques available for closed-loop modelFhe system matrices in (10) can be computed febma(p, t),
matching cannot be extended to parameter-varying systend#us (p,t), Cr(p,t) and Dy (p,t) as follows:

u Apri(p,t) = Aum(p,t) — Bu(p, t)Dy/ (0, )Crs(p, 1),
lIl. LPV CONTROLLER TUNING FROM DATA: Buyi(p,t) = Bu(p,t)Dy/ (p,t),
NOISELESS DATA Cui(pt) = —Dle(p, t)Cn(p, t),
In this Section, Problem 1 will be addressed. Notice that? (P t) = Dy (1)
the objective can be interpreted as an optimization problem Proof: See [6].
over a generic time interval", described by (6). u

As a first step, assume that the following statements hold: Remark 4:In case ofD,; = 0, to compute the inverse, an

Al. the objective can be achieveile, there exists a approximation ofD,; = ep, whereep << 1, can be used,
value of 6 such that the closed-loop behavior isas it is common in robust control. Another more practical

equal toM (p, t) for any trajectory ofp; way to overcome the problem will be shown in Section VI.
A2.  M(p,t) is invertible; =
where the inverse of a LPV mappingis defined as follows.
Definition 2: Given a causal LPV map with input x4,

Notice that if the data is noiseless aAd holds, (9) is the
same as (6) and their minimizer yieles= 0. This is clearly

scheduling signab and outputrs. The causal LPV mapping not th_e case fow # 0, since on_lyyw (and_noty) could be
' that givesz, as output when fed bys, for any trajectory used in (9) to replace (1), leading to a bias of the estimate.
of p, is called theleft inverseof .. m 'his situation will be dealt with in the next section.

The proposed approach is based on two key ideas. The first _
one is that,under assumptiorA2, the dependence on the IV. LPV CONTROLLER TUNING FROM DATA:

choice ofr can be removedAs a matter of fact, by rewriting NOISY DATA

the first constraint of (6) as In this Section, Problem 2 will be addressed and therefore,
_ gt -1 T -1 from now on,y,, in (5) will be considered as the available
r(t) = M(p.t g () + M p by (), () output signal in the data set. To deal with noisy data, the
whereM ' (p, t,q~') denotes the leftinverse dfl (p,,¢~'),  controller parameterg will be now estimated on the basis
Problem (6) can be reformulated as indicated in (8), whergf the instrumental variable(lV) scheme described in the
the argument " has been dropped for the sake of space.sequel. It will be shown that this IV approach not only
Here comes the second fact as follovigince the only provides an extension to the noisy case, but also transforms
signals appearing in8) are u, y and p, Dy can be used the bi-convex optimization into a convex scheme.
instead of the dynamic system relation as indicated by the pefine the regressors(¢, t) and¢(¢, t) according to (12),

first constraint of (8). The problem can then be rewritten\yhere the definitions of signalgt) and¢(t) are
as illustrated in (9) whereu, ¥y and p come from the

available datasef{u(t),y(t),p(t)}N.,. Notice that in the &(t) = M (p,t)y(t) —y(t), &(t) = M (p,)yw(t) — yu(t).
above formulation: (11)



s.t. e(t) = Mp,t,q Hrt) —y(t), vt e IV, ©)
Alp,t,qgNy(t) = Blp,g Mult), vt e Iy,
Ag(qhp,0)u(t) = Br(g ' p,0)(r(t) —yt), VteIy.
ming . |¢]|?
s.t. Ap,t)y(t) = B(p,t)u(t), vt eIV, (8)
ming . [¢]® ©)
s.t. Ag(p,t,0)u(t) = Br(p,t,0) (M (p,t)e(t) + MT(p,t)y(t) —y(t)), VteIi.
¢(€7t) = [ —U(t— 1)f1,0(p?t) —U(t— 1)fl,1(p7t) _u(t_ 1)f1,n0(p7t)"'
_u(t_nax)fnaK,U(p7 t) _u(t_naK)fnaK7l(p7 t) _u(t _naK)fnaK;nnaK (pv t)
£(t)go.0(pst) §(t)goa(p,t) ... §(t)go,mq (pst) -
f(t - an)gan ,0(p7 t) f(t - an)gan,l(p7 t) f(t - an)gan Mg, (p7 t) }T (12)

Based on the above notation, the constraint in (9) can Wesult shows that the solution of (17) asymptotically con-
rewritten as verges to the solution of problem (6), even if the data in
T ; (17) is noisy. X

u(t) =¢ (§,1)0 + Br(p,t,0)M'(p, 1)e(t).  (13) Proposition 2: The controller parameter$y, in (17)
asymptotically convergavith probability 1 (w.p. 1) to the

Consider now the optimization problem : ; .
optimal parameter8 in (6), that is

N
Oy = argngnz HC(t) ((Z)T(f,t)e - u(t))‘ i ,(14) 1\}51100 Orv = 6. (18)
=1 Proof: See [6].
where((t) is theinstrument a vector that shares the same u
dimension of¢(&,t) and is chosen by the user so thidt) There are several ways to build the instrument. One
is independent of the noise tergit) — £(t) = (MT(p,t) — practical solution is to perform a second experiment on
Dw(t), i.e, sinceE[w(t)] =0, the plant, with the same input and parameter trajectories,

, N and collect the output measurements now characterized by
E[C@)(M'(p,t) = Dw(t)] =0, Vt€Zy".  (15) 4 different realization of noise (thus independent of that o

Notice that (14) is aimed to minimize the coloured residuatlhe first experiment). A more efficient way to deal with this

Buc(p,t,0) M (p,0)e(t) in (13). By introducing the matrix 'SSU® would be to resort tRefined Instrumental Variables
o ’ ' (RIV) [9].
notation

V. COMPARISON WITH EXISTING TECHNIQUES

As mentioned in the introduction, non-iterative data-env

®=[p(¢1) ... p(&,N)]", methods already exist in the scientific literature and tloeee
a comparison with them is necessary to better clarify the nov
Problem (14) can be also written in the compact form  elty and the potential of the proposed approach. Specificall

2 non-iterative methods,e. VRFT [4] and Non-iterative CbT

20 (16) [14], are considered here.
The VRFT design scheme corresponds, in the noiseless
LTI case, to the optimization problem

A -1 R
v =(2"®) Z'U. 17) Oy = arg renin lewll?, (19)
Eu

Notice that (17) only depends on the data ad, whereas
no information about the structure 6for the noise model is
required, analogously to the solution of (6). The following cu(t) = u(t) — K(g 74 0)e,(t), t=1,...,N

by = argmein HZ—r (PO — U)|

whose solution is given by

where



K(q~',0) is the controller transfer functione,(t) = Let the desired behavior for the closed-loop systehbe
M~(q Y)y(t) — y(t) and M represents an LTI reference given by the second order plant
behavior. Such a signal can be seen as the error that would

; . ) [(t+1) = A, t t B t)r(t
feed the controller in a “virtual” loop where the inputof 2 +(t§ _ CMEP’ tgiMEtiiDMEp, 5;8 (22)
the identification experiment is the output of the contmlle oy MAP, L)TM MAP, '
and the complementary sensitivity functionig(¢—'). As Where

a matter of facte, is the difference between the “virtual” -1 1 1+p(t)
reference signal feeding the closed-loop system w(pt) = —1-Ap(t) 1|’ Bu(p,t) = 1+ Ap(t) |’
_ -1/ -1

and the noiseless output of the experimgfi). Although

such a formulation might seem similar g) the proposed Ap(t) = p(t) = p(t = 1)

approach in case of fixe@, there are a few significant andy,, is the desired closed-loop trajectory fgft). Such

differences: a control objective has been selected for this example as the
« minimizing H5u||2 is not the same as minimizing||2 closed-loop matrices are easily computable Adcholds.In

in the original model-matching problem, as indicated byractice, any reference model is allowed.

the authors of [4] themselves; Assume now that a gain-scheduled PI controlieiof the
« even though also in the strategy presented in this paptm

a “fictitious” reference signali.e., (7), is computed to  zx(t+1) = xx(t)+ (Oo(p,t) + 01(p, 1)) (r(t) — y(t))

build a closed-loop optimization problem, such a refer- u(t) = xr(t)+0(p,t) (r(t) —y(t))

ence is structurally different from the virtual referenceW
signal computed in VRFT (20). B
« in standard VRFT, the denominator of the controller is O0(p, 1) = oo + fo1p(t), (23)
a-priori fixed to guarantee a global solution, unlike in 01(p,t) = 610 + O11p(t — 1), (24)

the proposed approach.
prop bp is available for model reference control 6f. The closed-

Moreover, in the LPV. e>.(ten5|(.)n of VRFT [7], ) ~loop dynamics can be written as a function of the controller
» controllers are still linear in the parameters with a fixegharameters as:

denominator;

here

« no dynamic dependence @ris taken into account, thus zp(t+1) = Ap(p,t)rr(t) + Br(p, O)r(t), (25)
yielding a less general approach; y(t) = Crp,t)zr(t) + Drp,t)r(?).
« the reference mapping needs to be LTI. where
Regarding Non-iterative CbT, the differences with the pro- p(t) — 0o(p(t)) 1
posed approach are even more evident. First of all, as indi- Ap(p,t) = —0o(p(t)) —01(p(t)) 1 |’
cated in [8], CbT cannot be extended to nonlinear systems, 6o (p(t))
since the tuning scheme is based on the commutation of the Br(p,t) = { 0 (p(t)o) +0,(p(t)) } )
plant and the controller. Moreover, the treatment of noise 0 !
is based on extended instrumental variables minimizing a Cr—=1[1 0], D= [0].

measure of the correlation betweerande.

It should be also remarked that, in the LTI case, both By = comparing Ap, Bp, Cr, Dp and
VRFT and CbT consider also the case whé&rke does not Ay, Ba, Cua, Dag, it is evident that there exists a
hold. To handle this case, an asymptotical stability camstr controller in the considered class which is able to achieve a
and a bias-shaping prefilter are introduced. The analysis olosed-loop behavior equal 1, i.e.,, Al holds. Specifically,
this situation is obviously of great interest also in the LP\the parameters of the optimal controller are such that
framework and therefore it will be an objective of future 0 (p, 1) = 02 + 05, p(t) = 1+ p(t), (26)

work.
VI. NUMERICAL EXAMPLE 0i(p,t) = 0 + Onp(t = 1) = —p(t =1).  (27)

In this Section, the effectiveness of the proposed approach'n this example, the parameters of the controller will be

is demonstrated on a numerical example. Consider the SIS@MPuted using the method proposed in this paper, without
LPV systemG defined as deriving a model of~, so as to design the control law directly

from data in its IO form
rza(t+1) = t)xa(t u(t
S O €6 u(t) =u(t — 1) + Bolp. 1) (r(t) — u(0)) +

. . . —-1)— —1)).
where p is an exogenous parameter taking valuesPin= +01(p, 1) (r(t = 1) —y(t = 1) (28)
[—0.4,0.4]. According to Definition 1, it can be shown that For this purpose, a data sBty of N = 1000 measure-
the system is stable for all possible trajectoriey of ments are collected, by performing an experiment whétg



is selected as a white noise sequence with uniform distt
bution ¢/ (—1,1) and p(t) = 0.4sin(0.047t). The output
measurements are corrupted by a white noise sequence w
normal distribution\/'(0, o2) and standard deviation= 0.2.
Under this experimental setting, the resultBignal to Noise
Ratio (SNR) is9.8 dB.

1

-1+

—2F

As a preliminary step, recall that' " is needed to compute .

0

(11). SinceD,, is zero, the result of Proposition 1 cannot be

.- o . -0.05
used as it is. However, Proposition 1 can still become usef

as follows. Consider the systeM’ defined as 02

Ve (t + 1) A (p, t)IM/(t) + By (p, t)r(t)

o

Yn (t) CA,{/ (p, t)IM/ (t) + DM/ (p7 t)T(t)

where Ay (p,t) = Am(p,t), Bu(p,t) = Bu(pt),
Cumr(pst) Cum(qp)An(p,t) and Dy (p,t)
Cr(gp)Bar(p, t). Notice that, to compute®y, (p,t) and
Dy (p,t), the sequence op in Cj; has to be shifted
one step forward in time. It is then easy to check that
ym (t) = yp(t + 1). Since nowDy,r # 0 Vp € P, the
inverse Mt of M’ can be computed using Proposition 1
and, as a consequence, (11) is given by filtering with
M'T and shifting the data in time as

It should be underlined here that, doing so, the samples

available for controller identification becom¥ — 1. This 2]

procedure is feasible because filtering is operated off-lin
The controller parameters can now be computed using thE!

direct data-driven method proposed in this paper, the

IV estimation formula (17) using an instrument built with a [4]

second experiment. The resulting values are

0o(p, t) =0.9852 + 1.0166p(t),
01 (p,t) = — 0.0153 — 0.9860p(t — 1),

Fig.

@o) B

(1)

I | I I I
100 150 sample 200 250 300

2. Numerical example: realized closed-loop output respg and

desired output responsgy; (top), tracking errore (middle), scheduling
signalp (bottom).

formal methods for controller structure selection;
optimization methods including stability constraints.

REFERENCES

M. Ali, H. Abbas, and H. Werner. Controller Synthesis frput-
Output LPV Models. InProc. of the 49th Conference on Decision
and Control, Atlanta (GA), USApages 4018-4023, 2010.

A.S. Bazanella, L. Campestrini, and D. Eckharfata-Driven Con-
troller Design: The#H2 Approach Springer, 2011.

M. Butcher and A. Karimi. Data-driven tuning of linear paneter-
varying precompensatordnternational Journal of Adaptive Control
and Signal Processing®4(7):592—-609, 2009.

M.C. Campi, A. Lecchini, and S.M. Savaresi. Virtual reface feed-
back tuning: a direct method for the design of feedback ctiate
Automatica 38(8):1337-1346, 2002.

V. Cerone, D. Piga, Regruto, and Rofh. Fixed order LPV controllers
design for LPV models in input-output form. IRroc. of the 51st
Conference on Decision and Control, Maui, Hawaii, US012.

] S. Formentin, D. Piga, R.&th, and S. Savaresi. LPV control system

where small discrepancies with respect to (26)-(27) are
obviously due to the noise and the finiteness\af ]
Despite these small variations, the controller appears to
be effective in terms of matching of the desired closed-loop
behavior. As an example, Figure 2 illustrates a referencé®
tracking (validation) experiment using a piecewise lingar

different from the trajectory of the estimation datagey. [9]

Notice that, in these simulations, the mean tracking esor i

less thanl %. [10]
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study. An instrumental variable technique has been prcnbos&s]
to deal with the bi-convex optimization issue related to
the given problem formulation and the effectiveness of the
approach has been proven on a numerical example. THE!
paper aims to lay the basic foundations for future research i
direct data-driven control of LPV plants. Specifically, fre
activities will be devoted to the development of:

« control design techniques using collection of closed-

loop data (useful to deal with unstable plants);
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