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Abstract— In many control applications, nonlinear plants
can be modeled as linear parameter-varying (LPV) systems,
by which the dynamic behavior is assumed to be linear, but
also dependent on some measurable signals,e.g., operating
conditions. When a measured data set is available, LPV model
identification can provide low complexity linear models that can
embed the underlying nonlinear dynamic behavior of the plant.
For such models, powerful control synthesis tools are available,
but the way the modeling error and the conservativeness of
the embedding affect the control performance is still largely
unknown. Therefore, it appears to be attractive to directly
synthesize the controller from data without modeling the
plant. In this paper, a novel data-driven synthesis scheme is
proposed to lay the basic foundations of future research on
this challenging problem. The effectiveness of the proposed
approach is illustrated by a numerical example.

I. INTRODUCTION

In many control applications, nonlinear plants can be
modeled aslinear parameter-varying(LPV) systems, where
the dynamic behavior is characterized by linear relations
which vary depending on some measurable time-varying
signals, called scheduling signals. For example, the valueof
these variables can represent the actual operating point ofthe
system. In the literature, it has been shown that accurate and
low complexity models of LPV systems can be efficiently
derived from data usinginput-output (IO) representation
based model structures [10], while state-space approaches
appear to be affected by the curse of dimensionality and
other approach-specific problems [15]. However, most of
the control synthesis approaches are based on a state-space
representation of the system dynamics (except a few recent
works [1] [5]) and state space realization of complex IO
models is difficult to accomplish in practice. This transforma-
tion can result in a non minimal parameter dependency with
time-shifted versions of the scheduling parameters or in a
non state-minimal state-space realization, for which efficient
model reduction is largely an open issue [12]. Moreover, the
way the modeling error affects the control performance is
unknown for most of the design methods and little work
has been done on including information about the control
objectives into the identification setting. In this paper, adirect
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method is proposed to design fixed-order LPV controllers
in an IO form using experimental data directly. In fact,
this corresponds of designing controllers without deriving
a model of the system. This approach permits to avoid the
critical (and time-consuming) approximation steps related
to modeling and state-space realization and it results in a
fully automatic procedure, where only the desired closed-
loop behavior has to be specified by the user. Moreover,
although the optimization problem to solve the design of the
controller is bi-convex in the general case, the final procedure
turns out to be convex, when the problem is reformulated
using suitable instrumental variables.

Direct controller tuning using a single set of IO data,
also known as non-iterative data-driven control, has been
first studied in thelinear time-invariant (LTI) framework
[2]. Well established approaches have been introduced,
like Virtual Reference Feedback Tuning(VRFT) [4] and
Non-iterative Correlation-based Tuning(CbT) [14]. A
first attempt to extend VRFT to LPV systems has been
presented in [7], where data-driven gain-scheduled controller
design has been proposed to realize a user-defined LTI
closed-loop behavior. Although satisfactory performance
has been shown for slowly varying scheduling trajectories,
this methodology is far from being generally applicable to
LPV systems. As a matter of fact, in the method presented
in [7], the controller must be linearly parameterized and
the reference behavior must be LTI. The latter requirement
represents a strict limitation, since an LTI behavior might
be difficult to realize in practice, as it may require too
demanding input signals and dynamic dependence of the
controller on the scheduling signal. On the other hand, the
LPV extension of Non-iterative CbT has been found to
be unfeasible, as the derivation of this approach is based
on the commutation of the plant and the controller in the
tuning scheme [8]. Unfortunately, such a commutation does
not generally hold for parameter-varying transfer operators
[13]. A direct data-driven LPV solution has been presented
for feed-forward precompensator tuning in [3]. Also in this
case, no dynamic dependance is accounted for and the final
objective is an LTI behavior.

In the remainder of this paper, a novel data-driven scheme
for LPV controller synthesis without the need of a model
of the system is presented. The formulation of the design
problem is provided in Section II, whereas Section III and
Section IV illustrate the technical development of the method
for noiseless and noisy data, respectively. Section V com-
pares the proposed scheme to existing techniques, whereas
the effectiveness of the introduced method is demonstrated



Fig. 1. Data-driven LPV control configuration: the proposedclosed-loop
behavior matching scheme.

by a simulation example in Section VI. Some final remarks
end the paper.

II. PROBLEM FORMULATION

Consider the onedegree-of-freedom(DOF) control archi-
tecture depicted in Figure 1. LetG denote an unknown
single-input single-output(SISO) LPV system described by
the difference equation

A(p, t, q−1)y(t) = B(p, t, q−1)u(t), (1)

where u(t) ∈ R is the input signal,y(t) ∈ R is the
noise-free output andp(t) ∈ P ⊆ R

np is a set ofnp

(exogenous) measurable scheduling variables. From now on,
for simplicity, the case ofnp = 1 will be considered.

In (1), A(p, t, q−1) and B(p, t, q−1) are polynomials in
the backward time-shift operatorq−1 of finite degreena and
nb, respectively,i.e.,

A(p, t, q−1) = 1 +

na
∑

i=1

ai(p, t)q
−i,

B(p, t, q−1) =

nb
∑

i=0

bi(p, t)q
−i,

where the coefficientsai(p, t) andbi(p, t) are nonlinear (pos-
sibly dynamic) mappings of the whole scheduling sequence,
i.e., p(t), p(t− 1) and so on.

The systemG is assumed to be stable, where the notion
of stability is defined as follows.

Definition 1: An LPV system, represented in terms of
(1), is calledstable if, for all trajectories{u(t), y(t), p(t)}
satisfying (1) withu(t) = 0, t ≥ 0, it holds that∃ δ > 0
s.t. |y(t)| ≤ δ, ∀t ≥ 0. �

Remark 1:Notice that, due to linearity, an LPV system
that is stable according to Definition 1 also satisfies that

sup
t≥0

|u(t)| < ∞ =⇒ sup
t≥0

|y(t)| < ∞,

for all {u(t), y(t), p(t)} satisfying (1). This property is
known asBounded-Input Bounded-Output(BIBO) stability
in theL∞ norm [10]. �

Consider that, as the objective of the control design, a desired
closed-loop behavior is given by a state-space representation

xM (t+ 1) = AM (p, t)xM (t) +BM (p, t)r(t),
y(t) = CM (p, t)xM (t) +DM (p, t)r(t).

(2)

In the following, the transfer operatorM(p, t, q−1), which
indicates the infinite impulse response of the reference
model (2) will be used as a shorthand form to indicate the
mapping of r via M . Formally, M is such thaty(t) =
M(p, t, q−1)r(t) for all trajectories{u(t), y(t), p(t)} satisfy-
ing (2). In case the reference model is given in an IO form,
this can be realized in a state-space representation using the
so called maximally augmented realization form [11] or the
approaches presented in [12].

Furthermore, consider that the controllerK, parameterized
throughθ, can be represented as

AK(p, t, q−1, θ)u(t) = BK(p, t, q−1, θ)(r(t)− y(t)), (3)

where

AK(p, t, q−1) = 1 +

naK
∑

i=1

aKi (p, t)q−i,

BK(p, t, q−1) =

nbK
∑

i=0

bKi (p, t)q−i,

and

aKi (p, t) =

n0
∑

j=1

aKi,jfi,j(p, t), bKi (p, t) =

mi
∑

j=0

bKi,jgi,j(p, t),

and fi,j(p, t) and gi,j(p, t) are a-priori chosen nonlinear
(possibly dynamic) functions of the the scheduling parameter
sequencep. The parametersθ, characterizing the controller
K, are then the collection of the unknown constant terms
aKi,j andbKi,j , i.e.,

θ = [a⊤1 . . . a⊤naK
b⊤0 . . . b⊤nbK

]⊤,

ai = [aKi,1 . . . aKi,ni
]⊤, bi = [bKi,1 . . . bKi,mi

]⊤.
(4)

Remark 2:The controller has been assumed to be dynam-
ically dependent onp in order to have enough flexibility to
achieve the user-defined behavior. As a matter of fact, it is
well-known that a static dependence would be a rather strong
assumption for most of real-world systems [10], [13].�

Assume now that a collection of open-loop dataDN =
{u(t), yw(t), p(t)}, t ∈ IN

1 = {1, . . . , N}, is available,
wherein

yw(t) = y(t) + w(t) (5)

and w(t) represents a zero-mean colored output noise.
Specifically,

D(p, t, q−1)w(t) = C(p, t, q−1)v(t),

where v is a zero mean white noise of unit variance,
D(p, t, q−1) andC(p, t, q−1) are polynomials inq−1 of finite
degreend andnc, respectively,i.e.,

C(p, t, q−1) = 1 +

nc
∑

i=1

ci(p, t)q
−i,

D(p, t, q−1) = 1 +

nd
∑

i=1

di(p, t)q
−i,

and the coefficientsci(p, t) and di(p, t) are unknown non-
linear (possibly dynamic) mappings of the the scheduling



parameter sequencep. The model-reference control problems
considered in this paper can then be stated as follows.

Problem 1 (Design with noiseless data):Assume that a
noiseless datasetDN = {u(t), y(t), p(t)}, t ∈ IN

1 , a
reference model (2) and a controller structure (3) are given.
Determineθ, so that the closed-loop system composed by
(1) and (3) is equal to (2). �

Problem 2 (Design with noisy data):Assume that a
noisy datasetDN = {u(t), yw(t), p(t)}, t ∈ IN

1 , a reference
model (2) and a controller structure (3) are given. Determine
θ, so that the closed-loop system composed by (1) and (3)
asymptotically converges to (2), asN → ∞. �

First, for the clarity of the exposition, Section III will be
dedicated to the unrealistic (but simpler) Problem 1, for
which the key ideas of the approach will be introduced. Then,
the solution of the realistic (but more complex) Problem 2
will be developed as an extension of the noiseless case in
Section IV.

Remark 3:Notice that, unlike in the LTI case, designing a
controller that achieves a user-defined behavior (i.e., model-
reference control) is not trivial in the LPV framework even
from a model-based perspective. The main reason is that
most of the techniques available for closed-loop model-
matching cannot be extended to parameter-varying systems.
�

III. LPV CONTROLLER TUNING FROM DATA:
NOISELESS DATA

In this Section, Problem 1 will be addressed. Notice that
the objective can be interpreted as an optimization problem
over a generic time intervalIN

1 , described by (6).
As a first step, assume that the following statements hold:
A1. the objective can be achieved,i.e., there exists a

value of θ such that the closed-loop behavior is
equal toM(p, t) for any trajectory ofp;

A2. M(p, t) is invertible;
where the inverse of a LPV mappingΣ is defined as follows.

Definition 2: Given a causal LPV mapΣ with input x1,
scheduling signalp and outputx2. The causal LPV mapping
Σ† that givesx1 as output when fed byx2, for any trajectory
of p, is called theleft inverseof Σ. �

The proposed approach is based on two key ideas. The first
one is that,under assumptionA2, the dependence on the
choice ofr can be removed. As a matter of fact, by rewriting
the first constraint of (6) as

r(t) = M†(p, t, q−1)ε(t) +M†(p, t, q−1)y(t), (7)

whereM†(p, t, q−1) denotes the left inverse ofM(p, t, q−1),
Problem (6) can be reformulated as indicated in (8), where
the argumentq−1 has been dropped for the sake of space.

Here comes the second fact as follows.Since the only
signals appearing in(8) are u, y and p, DN can be used
instead of the dynamic system relation as indicated by the
first constraint of (8). The problem can then be rewritten
as illustrated in (9) whereu, y and p come from the
available dataset{u(t), y(t), p(t)}Nt=1. Notice that in the
above formulation:

• Problem (9) is independent of the analytical description
of A(q−1, p) and B(q−1, p) and therefore no model
identification is needed.

• The information about the data generation mechanism
is implicitly included inDN .

• Problem (9) is generally nonconvex because of the
product between the optimization variablesε and the
parametersθ characterizingBK(q−1, p, θ). Specifically,
it is convex only ifBK(q−1, p, θ) is independent ofθ,
whereas it isbi-convexin case of any linear dependance
of BK(q−1, p, θ) on θ.

It should be here mentioned that the computation of the
inverse of the reference map is not straightforward. However,
for reference maps given in the state-space form (2), the
result of the following Proposition can be employed.

Proposition 1: Assume thatDM (p, t) 6= 0, ∀p in (2) such
that ∃ D−1

M (p, t) with D−1
M (p, t)DM (p, t) = 1, ∀p. Define

the state-space representation of the inverse map of (2) as

xM†(t+ 1) = AM†(p, t)xM†(t) +BM†(p, t)y(t)
r(t) = CM†(p, t)xM†(t) +DM†(p, t)y(t).

(10)
The system matrices in (10) can be computed fromAM (p, t),
BM (p, t), CM (p, t) andDM (p, t) as follows:

AM†(p, t) = AM (p, t)−BM (p, t)D−1
M (p, t)CM (p, t),

BM†(p, t) = BM (p, t)D−1
M (p, t),

CM†(p, t) = −D−1
M (p, t)CM (p, t),

DM†(p, t) = D−1
M (p, t).

Proof: See [6].

Remark 4: In case ofDM = 0, to compute the inverse, an
approximation ofDM = ǫD, whereǫD << 1, can be used,
as it is common in robust control. Another more practical
way to overcome the problem will be shown in Section VI.
�

Notice that if the data is noiseless andA1 holds, (9) is the
same as (6) and their minimizer yieldsε = 0. This is clearly
not the case forw 6= 0, since onlyyw (and noty) could be
used in (9) to replace (1), leading to a bias of the estimate.
This situation will be dealt with in the next section.

IV. LPV CONTROLLER TUNING FROM DATA:
NOISY DATA

In this Section, Problem 2 will be addressed and therefore,
from now on,yw in (5) will be considered as the available
output signal in the data set. To deal with noisy data, the
controller parametersθ will be now estimated on the basis
of the instrumental variable(IV) scheme described in the
sequel. It will be shown that this IV approach not only
provides an extension to the noisy case, but also transforms
the bi-convex optimization into a convex scheme.

Define the regressorsφ(ξ, t) andφ(ξ̃, t) according to (12),
where the definitions of signals̃ξ(t) andξ(t) are

ξ̃(t) = M†(p, t)y(t)− y(t), ξ(t) = M†(p, t)yw(t)− yw(t).
(11)



minθ,ε ‖ε‖
2

s.t. ε(t) = M(p, t, q−1)r(t)− y(t), ∀t ∈ IN
1 ,

A(p, t, q−1)y(t) = B(p, q−1)u(t), ∀t ∈ IN
1 ,

AK(q−1, p, θ)u(t) = BK(q−1, p, θ)(r(t)− y(t)), ∀t ∈ IN
1 .

(6)

minθ,ε ‖ε‖
2

s.t. A(p, t)y(t) = B(p, t)u(t), ∀t ∈ IN
1 ,

AK(p, t, θ)u(t) = BK(p, t, θ)(M†(p, t)ε(t) +M†(p, t)y(t)− y(t)), ∀t ∈ IN
1 .

(8)

minθ,ε ‖ε‖
2

s.t. AK(p, t, θ)u(t) = BK(p, t, θ)(M†(p, t)ε(t) +M†(p, t)y(t)− y(t)), ∀t ∈ IN
1 .

(9)

φ(ξ, t) = [ − u(t− 1)f1,0(p, t) −u(t− 1)f1,1(p, t) . . . −u(t− 1)f1,n0
(p, t) . . .

− u(t− naK )fnaK
,0(p, t) −u(t− naK )fnaK

,1(p, t) . . . −u(t− naK )fnaK
,nnaK

(p, t)

ξ(t)g0,0(p, t) ξ(t)g0,1(p, t) . . . ξ(t)g0,m1
(p, t) . . .

ξ(t− nbK
)gnbK

,0(p, t) ξ(t− nbK
)gnbK

,1(p, t) . . . ξ(t− nbK
)gnbK

,mnbK

(p, t) ]
⊤ (12)

Based on the above notation, the constraint in (9) can be
rewritten as

u(t) =φ⊤(ξ, t)θ +BK(p, t, θ)M†(p, t)ε(t). (13)

Consider now the optimization problem

θ̂IV = argmin
θ

N
∑

t=1

∥

∥ζ(t)
(

φ⊤(ξ, t)θ − u(t)
)∥

∥

2

2
, (14)

whereζ(t) is the instrument, a vector that shares the same
dimension ofφ(ξ, t) and is chosen by the user so thatζ(t)
is independent of the noise termξ(t)− ξ̃(t) = (M†(p, t) −
1)w(t), i.e., sinceE[w(t)] = 0,

E[ζ(t)(M†(p, t)− 1)w(t)] = 0, ∀t ∈ IN
1 . (15)

Notice that (14) is aimed to minimize the coloured residual
BK(p, t, θ)M†(p, t)ε(t) in (13). By introducing the matrix
notation

Z = [ζ(1) . . . ζ(N)]
⊤
, U = [u(1) . . . u(N)]⊤,

Φ = [φ(ξ, 1) . . . φ(ξ,N)]
⊤
,

Problem (14) can be also written in the compact form

θ̂IV = argmin
θ

∥

∥Z⊤ (Φθ − U)
∥

∥

2

2
, (16)

whose solution is given by

θ̂IV =
(

Z⊤Φ
)−1

Z⊤U. (17)

Notice that (17) only depends on the data andM†, whereas
no information about the structure ofG or the noise model is
required, analogously to the solution of (6). The following

result shows that the solution of (17) asymptotically con-
verges to the solution of problem (6), even if the data in
(17) is noisy.

Proposition 2: The controller parameterŝθIV in (17)
asymptotically convergewith probability 1 (w.p. 1) to the
optimal parameterŝθ in (6), that is

lim
N→∞

θ̂IV = θ̂. (18)

Proof: See [6].

There are several ways to build the instrument. One
practical solution is to perform a second experiment on
the plant, with the same input and parameter trajectories,
and collect the output measurements now characterized by
a different realization of noise (thus independent of that of
the first experiment). A more efficient way to deal with this
issue would be to resort toRefined Instrumental Variables
(RIV) [9].

V. COMPARISON WITH EXISTING TECHNIQUES

As mentioned in the introduction, non-iterative data-driven
methods already exist in the scientific literature and therefore
a comparison with them is necessary to better clarify the nov-
elty and the potential of the proposed approach. Specifically,
non-iterative methods,i.e. VRFT [4] and Non-iterative CbT
[14], are considered here.

The VRFT design scheme corresponds, in the noiseless
LTI case, to the optimization problem

θ̂vr = argmin
θ,εu

‖εu‖
2
, (19)

where

εu(t) = u(t)−K(q−1, θ)ev(t), t = 1, . . . , N



K(q−1, θ) is the controller transfer function,ev(t) =
M−1(q−1)y(t) − y(t) and M represents an LTI reference
behavior. Such a signal can be seen as the error that would
feed the controller in a “virtual” loop where the inputu of
the identification experiment is the output of the controller
and the complementary sensitivity function isM(q−1). As
a matter of fact,ev is the difference between the “virtual”
reference signal feeding the closed-loop system

rv(t) = M−1(q−1)y(t), (20)

and the noiseless output of the experimenty(t). Although
such a formulation might seem similar to the proposed
approach in case of fixedp, there are a few significant
differences:

• minimizing ‖εu‖
2 is not the same as minimizing‖ε‖2

in the original model-matching problem, as indicated by
the authors of [4] themselves;

• even though also in the strategy presented in this paper
a “fictitious” reference signal,i.e., (7), is computed to
build a closed-loop optimization problem, such a refer-
ence is structurally different from the virtual reference
signal computed in VRFT (20).

• in standard VRFT, the denominator of the controller is
a-priori fixed to guarantee a global solution, unlike in
the proposed approach.

Moreover, in the LPV extension of VRFT [7],

• controllers are still linear in the parameters with a fixed
denominator;

• no dynamic dependence onp is taken into account, thus
yielding a less general approach;

• the reference mapping needs to be LTI.

Regarding Non-iterative CbT, the differences with the pro-
posed approach are even more evident. First of all, as indi-
cated in [8], CbT cannot be extended to nonlinear systems,
since the tuning scheme is based on the commutation of the
plant and the controller. Moreover, the treatment of noise
is based on extended instrumental variables minimizing a
measure of the correlation betweenu andε.

It should be also remarked that, in the LTI case, both
VRFT and CbT consider also the case whereA1 does not
hold. To handle this case, an asymptotical stability constraint
and a bias-shaping prefilter are introduced. The analysis of
this situation is obviously of great interest also in the LPV
framework and therefore it will be an objective of future
work.

VI. NUMERICAL EXAMPLE

In this Section, the effectiveness of the proposed approach
is demonstrated on a numerical example. Consider the SISO
LPV systemG defined as

xG(t+ 1) = p(t)xG(t) + u(t)
y(t) = xG(t),

(21)

where p is an exogenous parameter taking values inP =
[−0.4, 0.4]. According to Definition 1, it can be shown that
the system is stable for all possible trajectories ofp.

Let the desired behavior for the closed-loop systemM be
given by the second order plant

xM (t+ 1) = AM (p, t)xM (t) +BM (p, t)r(t)
yM (t) = CM (p, t)xM (t) +DM (p, t)r(t).

(22)

where

AM (p, t) =

[

−1 1
−1−∆p(t) 1

]

, BM (p, t) =

[

1 + p(t)
1 + ∆p(t)

]

,

CM = [1 0] , DM = 0,

∆p(t) = p(t)− p(t− 1)

and yM is the desired closed-loop trajectory fory(t). Such
a control objective has been selected for this example as the
closed-loop matrices are easily computable andA1 holds.In
practice, any reference model is allowed.

Assume now that a gain-scheduled PI controllerK of the
form

xK(t+ 1) = xK(t) + (θ0(p, t) + θ1(p, t)) (r(t)− y(t))
u(t) = xK(t) + θ0(p, t) (r(t)− y(t))

where
θ0(p, t) = θ00 + θ01p(t), (23)

θ1(p, t) = θ10 + θ11p(t− 1), (24)

is available for model reference control ofG. The closed-
loop dynamics can be written as a function of the controller
parameters as:

xF (t+ 1) = AF (p, t)xF (t) +BF (p, t)r(t),
y(t) = CF (p, t)xF (t) +DF (p, t)r(t).

(25)

where

AF (p, t) =

[

p(t)− θ0(p(t)) 1
−θ0(p(t))− θ1(p(t)) 1

]

,

BF (p, t) =

[

θ0(p(t))
θ0(p(t)) + θ1(p(t))

]

,

CF = [1 0] , DF = [0] .

By comparing AF , BF , CF , DF and
AM , BM , CM , DM , it is evident that there exists a
controller in the considered class which is able to achieve a
closed-loop behavior equal toM , i.e., A1 holds. Specifically,
the parameters of the optimal controller are such that

θ◦0(p, t) = θ◦00 + θ◦01p(t) = 1 + p(t), (26)

θ◦1(p, t) = θ◦10 + θ◦11p(t− 1) = −p(t− 1). (27)

In this example, the parameters of the controller will be
computed using the method proposed in this paper, without
deriving a model ofG, so as to design the control law directly
from data in its IO form

u(t) =u(t− 1) + θ0(p, t) (r(t)− y(t))+

+ θ1(p, t) (r(t− 1)− y(t− 1)) . (28)

For this purpose, a data setDN of N = 1000 measure-
ments are collected, by performing an experiment whereu(t)



is selected as a white noise sequence with uniform distri-
bution U (−1, 1) and p(t) = 0.4 sin(0.04πt). The output
measurements are corrupted by a white noise sequence with
normal distributionN (0, σ2) and standard deviationσ = 0.2.
Under this experimental setting, the resultingSignal to Noise
Ratio (SNR) is9.8 dB.

As a preliminary step, recall thatM† is needed to compute
(11). SinceDM is zero, the result of Proposition 1 cannot be
used as it is. However, Proposition 1 can still become useful
as follows. Consider the systemM ′ defined as

xM ′(t+ 1) = AM ′(p, t)xM ′(t) +BM ′(p, t)r(t)
yM ′(t) = CM ′(p, t)xM ′(t) +DM ′(p, t)r(t)

where AM ′(p, t) = AM (p, t), BM ′(p, t) = BM (p, t),
CM ′(p, t) = CM (qp)AM (p, t) and DM ′(p, t) =
CM (qp)BM (p, t). Notice that, to computeCM ′(p, t) and
DM ′(p, t), the sequence ofp in CM has to be shifted
one step forward in time. It is then easy to check that
yM ′(t) = yM (t + 1). Since nowDM ′ 6= 0 ∀p ∈ P, the
inverseM ′† of M ′ can be computed using Proposition 1
and, as a consequence, (11) is given by filteringyw with
M ′† and shifting the data in time as

ξ̃(t) = M ′†(p, t)yw(t+ 1)− yw(t), t ∈ IN−1
1 . (29)

It should be underlined here that, doing so, the samples
available for controller identification becomeN − 1. This
procedure is feasible because filtering is operated off-line.

The controller parameters can now be computed using the
direct data-driven method proposed in this paper,i.e., the
IV estimation formula (17) using an instrument built with a
second experiment. The resulting values are

θ0(p, t) =0.9852 + 1.0166p(t), (30)

θ1(p, t) =− 0.0153− 0.9860p(t− 1), (31)

where small discrepancies with respect to (26)-(27) are
obviously due to the noise and the finiteness ofN .

Despite these small variations, the controller appears to
be effective in terms of matching of the desired closed-loop
behavior. As an example, Figure 2 illustrates a reference
tracking (validation) experiment using a piecewise linearp,
different from the trajectory of the estimation datasetDN .
Notice that, in these simulations, the mean tracking error is
less than1%.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, a novel data-driven method has been intro-
duced to design model-reference controllers for LPV systems
using a set of IO data without undertaking a full modeling
study. An instrumental variable technique has been proposed
to deal with the bi-convex optimization issue related to
the given problem formulation and the effectiveness of the
approach has been proven on a numerical example. This
paper aims to lay the basic foundations for future research in
direct data-driven control of LPV plants. Specifically, future
activities will be devoted to the development of:

• control design techniques using collection of closed-
loop data (useful to deal with unstable plants);
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Fig. 2. Numerical example: realized closed-loop output responsey and
desired output responseyM (top), tracking errorε (middle), scheduling
signalp (bottom).

• formal methods for controller structure selection;
• optimization methods including stability constraints.
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