
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Global Trajectory Tracking for Underactuated VTOL Aerial Vehicles using a Cascade 
Control Paradigm

Permalink
https://escholarship.org/uc/item/3094b2jk

ISBN
9781467357173

Authors
Naldi, Roberto
Furci, Michele
Sanfelice, Ricardo G
et al.

Publication Date
2013-12-01

DOI
10.1109/cdc.2013.6760536
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3094b2jk
https://escholarship.org/uc/item/3094b2jk#author
https://escholarship.org
http://www.cdlib.org/


Global Trajectory Tracking for Underactuated VTOL Aerial V ehicles
using a Cascade Control Paradigm

Roberto Naldi, Michele Furci, Ricardo G. Sanfelice and Lorenzo Marconi

Abstract— This work proposes a feedback control strategy
capable of controlling the dynamics of an under-actuated
Vertical Take-Off and Landing (VTOL) aerial vehicle to trac k a
desired trajectory globally with respect to the initial conditions.
The novelty of the proposed design is the idea of considering
a cascade control paradigm in which the attitude dynamics,
which are governed by means of a hybrid controller capable
of overcoming the well-known topological constraints, andthe
position dynamics of the vehicle play respectively the roleof
the inner and of the outer loop. The stability properties of
the proposed controller are then derived by analyzing the
interconnection between a hybrid system, namely the closed-
loop attitude dynamics, and a continuous time system, given
by the closed-loop position dynamics. The proposed algorithms
are then demonstrated by means of simulations obtained
considering a miniature quadrotor prototype.

I. I NTRODUCTION

Miniature Vertical Take-Off and Landing (VTOL) aerial
systems are currently employed successfully in a large num-
ber of applications including surveillance, aerial photography
and search and rescue operations [1], among others. One
reason for this large success is the high level of maneuver-
ability, which allows to safely perform flight missions even
in densely cluttered environments [2] or even to perform ad-
vanced robotic tasks [3]. Among the different configurations,
this class of systems include helicopters [4], ducted-fan tail-
sitters - [5], [6], [7] - and multi-propeller helicopters - [8],
[9], [10]. To fully take advantage of the potential of such
vehicles, globally stabilizing control designs play a central
role.

Several contributions and seminal papers document differ-
ent approaches to the control design for such a class of under-
actuated systems [11], [12], [13]. In [14], almost-global
stability results are demonstrated by means of Lyapunov
based techniques. Results therein show robustness also in
the presence of aerodynamic drag disturbances. Trajectory
tracking in the absence of linear velocity measurements has
been considered in [15], where a hierarchical controller has
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been proposed. In [16], almost-global stability results are
achieved by considering geometric methods and then applied
to the control of a quadrotor aerial vehicle. Backstepping
control design has been proposed in [17] in order to perform
aggressive maneuvers by considering the dynamics of a
small-scale helicopter. A global stabilizing controller based
on synergistic Lyapunov functions has appeared in [18].
In [19], [20], inner-outer loop control strategies have been
employed to stabilize the dynamical model of a miniature
helicopter. The proposed methodology takes into account
for the feedback interconnection between the inner attitude
and the outer position control loops. More recently, a survey
describing feedback control design for under-actuated VTOL
systems has appeared in [21].

This work proposes an inner-outer loop control strategy
in order to let the dynamics of a miniature VTOL vehicle
to track a desired trajectory globally with respect to the
initial position and attitude configuration. This is achieved
by considering recent results regarding attitude control for
rigid bodies [22] where the topological obstructions, which
prevent to obtain global stability considering continuous
feedback [23], are avoided by employing hybrid control
techniques [24]. As a result, to analyze the stability prop-
erties of the the proposed inner-outer controller, the inter-
connection of a hybrid system, modeling the closed-loop
attitude dynamics, and a continuous time system, modeling
the closed-loop position dynamics, has to be taken into
account. More specifically, a cascade control approach is
investigated. The proposed controller is based on the idea
of “breaking the loop” between the attitude and the position
closed-loop dynamics through a suitable choice of the control
torques. As an advantage, the overall stability analysis is
simplified since the closed-loop system can be considered as
a cascade connection. Simulations obtained considering the
dynamical model of a miniature quadrotor prototype show
the effectiveness of the proposed results.

The paper is organized as follows. Section II presents
the dynamical model for the class of under-actuated aerial
vehicles of interest. Section III introduces the control prob-
lem which is then addressed in Section IV. Finally, the
application of the proposed algorithm to the control of a
quadrotor prototype is presented in Section V.

A. Notation and Definitions

Throughout this paper,Fi andFb denote, respectively, an
inertial reference frame and a reference frame attached to the
center of gravity of the vehicle. WithIn ∈ R

n×n we denote
then-dimensional identity matrix. Given setsS1 andS2, the



notation f : S1 ⇒ S2 denotes a set-valued map mapping
subsets ofS1 onto subsets ofS2. With e1, e2 and e3 we
denote the unit vectorse1 := [1, 0, 0]T , e2 := [0, 1, 0]T

ande3 := [0, 0, 1]T . For anyx ∈ R
3, we let

S(x) :=







0 −x3 x2

x3 0 −x1

−x2 x1 0







be a skew-symmetric matrix and we denote with∧ the
inverse operator such thatS(x)∧ = x. Given a rotation
matrix R ∈ SO(3), Θ(R) := 1

2 trace(I3 − R). With Sn we
denote the n-dimensional unit sphere defined asSn := {x ∈
R

n+1 : ‖x‖ = 1}. A unit quaternionq ∈ S3 is defined
as a pairq = [η, ǫT ]T in which η ∈ R and ǫ ∈ R

3 are
denoted respectively as the scalar and vector part. Given unit
quaternionsq1 = [η1, ǫ

T
1 ]

T andq2 = [η2, ǫ
T
2 ]

T , the standard
quaternion product is defined as

q1 ⊗ q2 =

[

η1 −ǫT1
ǫ1 η1I3 + S(ǫ1)

][

η2

ǫ2

]

.

With 1 = [1, 0, 0, 0]T ∈ S3 we denote the identity quaternion
element and, for a quaternionq = [η, ǫT ]T ∈ S3, with q−1 =
[η, −ǫT ]T the inverse, so thatq ⊗ q−1 = q−1 ⊗ q = 1.
We refer to asaturation functionas a mappingσ : Rn → R

n

such that, forn = 1,

1) |σ′(s)| := |dσ(s)/ds| ≤ 2 for all s,
2) sσ(s) > 0 for all s 6= 0, σ(0) = 0,
3) σ(s) = sgn(s) for |s| ≥ 1,
4) |s| < |σ(s)| < 1 for |s| < 1.

For n > 1, the properties listed above are intended to hold
componentwise.

II. DYNAMICAL MODEL

The dynamics of a large class of miniature Vertical Take-
Off and Landing (VTOL) aerial vehicles, including heli-
copters, ducted-fan and multi-propeller configurations, can
be described by considering the so calledvectored-thrust(see
among others [21], [15]) dynamical model:

Mp̈ = −ufRe3 +Mge3

Ṙ = RS(w)

Jẇ = S(Jw)w + uτ

(1)

in which p = [x, y, z]T ∈ R
3 denotes the position of the

center of gravity of the system expressed in the inertial
reference frameFi, w = [wx, wy, wz ]

T ∈ R
3 is the angular

speed expressed in the body frameFb, R ∈ SO(3) is
the rotation matrix relating vectors inFb to vectors inFi,
M ∈ R> and J ∈ R

3×3 (with the property thatJ =
JT > 0) are the mass and the inertia matrix of the system,
uf ∈ R≥0 denotes the control force generated by the aircraft
own actuators (which, by construction, is directed along the
body z axis) and, finally,uτ ∈ R

3 is the control torque
vector. In order to model actuator limitations, the control
force and torques are required to satisfy|uf | ≤ fU > 0,

‖uτ‖ ≤ τU > 0 with fU , τU modeling respectively the
maximum attainable force and torques.

Rotations can be parameterized by means of a unit quater-
nion q ∈ S3 through the mappingR : S3 → SO(3) (known
as Rodriguez formula [25]) defined as

R(q) = I + 2ηS(ǫ) + 2S(ǫ)2 .

The mappingR is such thatR(q) = R(−q), namely the
two quaternionsq and−q corresponds to the same rotation
matrix. By employing the quaternion parametrization, the
dynamics equation (1) is rewritten as

Mp̈ = −ufR(q)e3 +Mge3

q̇ =
1

2
q ⊗

[

0

w

]

Jẇ = S(Jw)w + uτ .

(2)

III. C ONTROL PROBLEM

The goal of the control law to be designed is to track a
given time reference position and orientation

pR(t) ∈ R
3, RR(t) ∈ SO(3) (3)

assuming full knowledge of the state of the system. The
desired references (3) must be chosen to satisfy thefunc-
tional controllability constraints of the system which are
described below. The first constraint derives from the under-
actuated nature of system (1) which does not allow to choose
a reference position and orientation independently. More
specifically, by defining thereference control force vector
vcR as

vcR(p̈R) := Mge3 −Mp̈R , (4)

the reference attitudeRR(t) ∈ SO(3) must then satisfy

RRe3 =
vcR(p̈R)

‖vcR(p̈R)‖
. (5)

From a geometrical viewpoint, the above constraint requires
the bodyz-axis of the vehicle to be aligned with the reference
control force vector. Note that, to compute a solution to (5)1,
the reference control force vector should be such that

‖vcR(p̈R(t))‖ > vL, ∀t ≥ 0 (6)

for some vL > 0. The force and torque control inputs
required to track asymptotically the desired position and
orientation are then given by

ufR = ‖vcR(p̈R)‖, uτR = JẇR − S(JwR)wR, (7)

where wR := RT
RṘR

∧ is the reference angular velocity.
From (5) it turns out that the reference angular speed and
acceleration along the bodyx andy axis are functions of the
reference control vector and its derivatives, namely

[wRx
, wRy

]T := WxyR
T
R

d

dt

vcR
‖vcR‖

,

1Note that solutions to (5) are nonunique. In fact the constraint is fixing
only two of the three degrees of freedom characterizing the rotation matrix;
cf. [18].



[ẇRx
, ẇRy

]T := Wxy

(

−S(wR)R
T
R

d

dt

vcR
‖vcR‖

+

+ RT
R

d2

dt2
vcR

‖vcR‖

)

in whichWxy ∈ R
2×3 has the first and second rows given by

[0, −1, 0], [1, 0, 0]. On the other hand, angular speed and ac-
celeration along the bodyz-axis, namelywRz

andẇRz
, can

be chosen arbitrarily without affecting the position tracking
objective. Further constraints on the reference positionpR(t)
and the reference orientationRR must be chosen to let the
control force and torques computed in (7) satisfy actuator
limitations, namely

|ufR(t)| ≤ fU , ‖uτR(t)‖ ≤ τU ∀t ≥ 0 . (8)

In summarypR(t) andRR(t) are required to be sufficiently
smooth functions of time satisfying appropriate bounds on
high order derivatives.

IV. I NNER-OUTER LOOPCONTROL STRATEGY :
CASCADE APPROACH

In this section a control design capable of addressing
the control problem defined in Section III is presented.
The proposed solution is based on the idea of obtaining a
hierarchical control structure in which the attitude dynamics
of the vehicle is designed as aninner loop to govern the
position dynamics of the system. To achieve this goal the
solution proposed in following subsection aims at obtaining
a cascade connection between the attitude and the position
subsystems through a suitable design of the control inputs.

A. Position Control Law

As a first step, let us consider the position dynamics in (1).
By considering the following error coordinatesp̄ := p− pR,
˙̄p := ṗ− ṗR, the position error dynamics can be written as

M ¨̄p = −ufRe3 +Mge3 −Mp̈R . (9)

To stabilize the origin of (9), we define thecontrol force
vectoras

vc(p̄, ˙̄p, p̈R) := vcR(p̈R) + κ(p̄, ˙̄p) , (10)

with κ(p̄, ˙̄p) a static state feedback law such thatκ(0, 0) = 0.
From (10) it is possible to compute the control orientation
Rc := RRR

′
c(p̄, ˙̄p), with R′

c(p̄, ˙̄p) ∈ SO(3) such that

R′
c(0, 0) = I3, R′

c(p̄, ˙̄p)e3 = RT
R

vc(p̄, ˙̄p, p̈R)

‖vc(p̄, ˙̄p, p̈R)‖
. (11)

Moreover, following Section III, it is also possible to define
the control angular speed aswc := RT

c Ṙc
∧. Note that, when

p̄ = ˙̄p = 0 the control orientationRc coincides with the
reference attitudeRR defined in Section III.

To avoid singularities in (11), a suitable design of the
position control lawκ(p̄, ˙̄p) is required so as to guarantee
that the magnitude of the force control vector (4) is non
vanishing regardless the current position and velocity errors.

Inspired by [20], we focus on the following nested saturation
feedback law

ζ1 := p̄, ζ2 := ˙̄p+ λ1σ

(

k1
λ1

ζ1

)

κ(p̄, ˙̄p) := λ2σ

(

k2
λ2

ζ2

) (12)

in which λ1, λ2, k1 and k2 are positive parameters to be
tuned. Note that, from (6) and (10), the constraint‖vc(·)‖ >
0 can be satisfied by choosingλ2 sufficiently small.

Finally, the control inputuf is designed as

uf = ufc(p̄, ˙̄p, p̈R) := ‖vc(p̄, ˙̄p, p̈R)‖ . (13)

B. Attitude Control Law

Let us denote withqR, qc ∈ S3, whereR(qR) ≡ RR

and R(qc) ≡ Rc for all t ≥ 0, the referenceand control
quaternion, respectively. In particularqR and qc can be
obtained by lifting trajectories inSO(3) to trajectories inS3

by employing the path-lifting mechanism proposed in [26].
With the control quaternion at hand, it is possible to define
the following attitude error coordinates

q̄ = q−1
c ⊗ q, w̄ := w − w̄c (14)

with w̄c := R(q̄)Twc and then rewrite the attitude dynamics
in (2) as

˙̄q = 1
2 q̄ ⊗

[

0

w̄

]

J ˙̄w = Σ(w̄, w̄c)w̄ + S(Jw̄c)w̄c − JR(q̄)T ẇc + uτ ,
(15)

having definedΣ(w̄, w̄c) := S(Jw̄)+S(Jw̄c)− (S(w̄c)J +
JS(w̄c)). Inspired by [22], we consider then the following
hybrid controller:

uτ = uFF
τ (q̄, wc, ẇc) + uFB

τ (q̄, w̄, h̄) (16)

with

uFF
τ (q̄, wc, ẇc) = JR(q̄)T ẇc − S(Jw̄c)w̄c

uFB
τ (q̄, w̄, h̄) = −kph̄ǭ− kdw̄

(17)

in which kp, kd are positive gains and wherēh ∈ {−1, 1}
is obtained through the following hybrid system

Hc

{

˙̄h = 0 h̄η̄ ≥ −δ

h̄+ ∈ sgn(η̄) h̄η̄ ≤ −δ
(18)

whereδ ∈ (0, 1) is the hysteresis threshold andsgn : R ⇒

{−1, 1} is the outer-semicontinous set-valued map

sgn=

{

sgn(s) |s| > 0

{−1, 1} s = 0 .



C. Closed-Loop Position Error Subsystem

The closed-loop position error dynamics in (9) can be
written by means of the(ζ1, ζ2) coordinates defined in (12)
as

ζ̇1 = −λ1σ

(

k1
λ1

ζ1

)

Mζ̇2 = −λ2σ

(

k1
λ1

ζ2

)

+ k1σ
′

(

k1
λ1

ζ̇1

)

+ Γ(p̄, ˙̄p, q̄, qc),

(19)
in which

Γ(p̄, ˙̄p, q̄, qc) := ufc(p̄, ˙̄p, p̈R) (R(qc ⊗ q̄)−R(qc)) e3 (20)

is considered here as an exogenous input modeling the
influence of the attitude error on the position of the system.
For the above closed-loop system, the following property
holds true.

Proposition 1 Consider the closed-loop position error sub-
system (19). Letk1, k2, λ1, λ2 be chosen as

λi = ǫ(i−1)λ⋆
i , ki = ǫk⋆i , i ∈ {1, 2} (21)

wherek⋆i , λ⋆
i are chosen such that

λ⋆
2

k⋆2
<

λ⋆
1

4
, 4k⋆1λ

⋆
1 <

λ⋆
2

4
, 6

k⋆1
k⋆2

<
1

24
(22)

for all ǫ > 0. Then the system (19) is Input-to State Stable
(ISS) with nonzero restriction2 ∆u(ǫ) on the inputΓ and no
restriction on the initial conditions.

D. Closed-Loop Attitude Error Subsystem

By considering (15) with the control torque given by
(16), the following closed-loop attitude error subsystem is
obtained:

Ha

{

˙̄x = F (x̄) h̄η̄ ≥ −δ

x̄+ ∈ G(x̄) h̄η̄ ≤ −δ
(23)

wherex̄ = [q̄T , w̄T , h̄]T ,

F (x̄) :=











1
2 q̄ ⊗

[

0

w̄

]

J−1
(

Σ(w̄, w̄c)w̄ − kph̄ǭ− kdw̄
)

0











and G(x̄) := [ q̄T , w̄T sgn(η̄)T ]T . For the hybrid
systemHa, applying [22][Theorem 5.2], the following result
holds true.

Proposition 2 Consider the hybrid systemHa given by (23).
Then for allkp > 0, kd > 0, δ ∈ (0, 1) the following results
hold true

• the compact setA given by (q̄, w̄, h̄) ∈ S3 × R
3 ×

{−1,+1} s.t. q̄ = h̄1, w̄ = 0 is globally asymptotically
stable;

2For a definition of Input-to-State-Stability with restrictions the reader is
referred to [20][Appendix B]

• for each maximal solution toHa, given∆ > 0 there
existsT∆ > 0 such thatΘ(R(q̄(t, j))) ≤ ∆ for all
t+ j ≥ T∆, (t, j) ∈ dom̄x3.

Remark. By applying the result in [22][Theorem 5.2] it is
possible to show that the attitudeR(q(t)) of the vehicle
converges asymptotically toR(qc(t)) globally with respect
to the initial attitude position and angular velocity. Global
stability is obtained by considering a hybrid controller able
to overcome the topological obstruction affecting globally
stabilizing continuous feedback onSO(3). In addition, the
presence of the hysteresis (which can be varied by a suitable
choice of δ) ensures robustness to nonzero measurement
noise.⊳

E. Inner-Outer Loop Analysis

The overall closed-loop system turns out to be given by a
cascade interconnection (see Figure 1) in which the attitude
error dynamics (23) influences the position error dynamics
(19) through the signalΓ defined in (20). For the closed-loop
system the following property holds true.

Proposition 3 Let the referencespR(t), RR(t) be such that
(5)- (8) hold. Then, there existsǫ⋆ > 0 such that by tuning
the position controller as in Proposition 1 withǫ < ǫ⋆

and the attitude controller as in Proposition 2, then every
maximal solution to the hybrid system corresponding to the
interconnection is complete and4

lim
t→∞

(

R(q)(t)TR(qR)(t), p(t)− pR(t)
)

= (I3, 0)

globally with respect to the initial conditions.

attitude position

(23) (19)q̄

Fig. 1. The interconnection between the closed-loop attitude and position
error dynamics.

Remark.Since the control force vectorvc in (10) is given by
the sum of the reference control vectorvcR in (4), which is
required to satisfy (6), and the saturated position controllaw,
by choosingǫ small as in the statement of the proposition it is
possible to ensure that the magnitude ofvc is non vanishing.
⊳

V. A PPLICATION TO THE CONTROL OF A QUADROTOR

AERIAL VEHICLE

In order to test the proposed control strategy, the problem
of controlling a miniature quadrotor aerial vehicle has been
considered.

3For the definition of the domain dom of a solution to a hybrid system,
the reader is referred to hybrid systems literature, e.g. [24]

4By passing from hybrid time domains to ordinary time.



Following [8], the dynamics of the system can be de-
scribed by means of (1) in which the resultant force and
torques can be computed as a function of the four thrusts
Ti, i = 1, 2, 3, 4, generated by the four different propellers,
namely

[

uf

uτ

]

=











−1 −1 −1 −1

0 −d 0 d

d 0 −d 0

Ktm −Ktm Ktm −Ktm





















T1

T2

T3

T4











(24)

whereb denotes the distance of the propeller spin axis from
the center of gravity of the system, andKtm is a parameter
which relates the thrust of a single motor to the aerodynamic
torque produced along the spin axis of the propeller. The
parameters of the specific prototype areM = 1 Kg, J =
diag(0.0082, 0.0082, 0.0164) Kgm2, d = 0.29 m, Ktm =
0.026.

In the first simulation, the quadrotor is required to hover at
a fixed position starting from an initial attitude configuration
in which the system is overturned, namely it has a large
initial attitude error. To govern the position dynamics, the
controller (12) has been employed by choosing, according
to Proposition 1, the control gains ask⋆1 = 1, λ⋆

1 = 5,
k⋆2 = 150 and λ⋆

2 = 150. For the attitude loop, the
controller in (16)-(18) has been employed withkp = 40,
kd = 10. Finally the value ofǫ has been selected equal
to 0.2. Figures 2 and 3 show the attitude and the position
of the vehicle during the simulation. Note that, despite the
large initial attitude error, the final desired configuration is
recovered asymptotically. Figure 5 shows the value of the
hybrid variableh̄. Observe that, due to the initial conditions
close to the jump set, at timet ≈ 0.05, the value of
h̄ jumps and a different unit quaternion, representing the
same desired hovering orientation, is stabilized. Finallythe
force and torque control inputs applied to the quadrotor are
depicted in Figure 4.
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Fig. 2. The attitude trajectory of the quadrotor during the hovering
maneuver.

The second simulation considers an aggressive maneuver
to be accomplished by the vehicle. In particular the desired
time reference signals are given byxR(t) := 0, yR(t) :=
cos(γt), zR(t) := − sin(γt), whereγ := 2π rad/s. The
degree of freedom in the choice ofRR is selected in order
to maintain the vehicle at a constant heading. The quadrotor
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Fig. 3. The position trajectory of the quadrotor during the hovering
maneuver.
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Fig. 4. The control force and torques applied to the quadrotor during the
hovering maneuver.
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Fig. 5. The hybrid statēh of the quadrotor during the hovering maneuver.

is required to follow a circular trajectory along they and
z inertial axis at constant speed. For the above references,
condition (6) holds withvL =

√

(2π)4 + g2 − 2g(2π)2 and
hence the constraint requiring that the magnitude of (4) is not
vanishing is satisfied since

√
3λ⋆

2ǫ < vL. For this simulation,
the attitude controller in (16) is employed withkp = 40,
kd = 8. The actual position trajectory and the reference one
are depicted in Figure 8, showing how the system converges
to the desired path. Figure 6 shows the attitude of the system
during the aggressive maneuver. Note that, to compensate for
the high centrifugal force, the quadrotor has to continuously
rotate (“flip”) around the bodyx axis. Finally, Figure 7 shows
the control force and torques applied to the vehicle during
the maneuver.

VI. CONCLUSION

This work has focused on the design of a cascade feedback
control strategy able to let the dynamics of an under-actuated
VTOL aerial vehicle to track a desired trajectory globally
with respect to the initial conditions. This is achieved by
considering a hybrid attitude controller, able to overcome
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Fig. 6. The attitude trajectory of the quadrotor during the aggressive
maneuver.
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Fig. 7. The control force and torques applied to the quadrotor during the
aggressive maneuver.
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Fig. 8. The position trajectory followed by the quadrotor during the
aggressive maneuver.

the well known topological obstructions affecting continuous
stabilizing control laws, and by analyzing the interconnection
between the attitude and the position closed-loop dynam-
ics. The proposed solution is shown to lead to a cascade
connection between a hybrid ad a continuous time system.
Simulations are finally presented to show the effectiveness
of the proposed approach by considering the problem of
controlling a miniature quadrotor prototype.

REFERENCES

[1] E. Feron and E.N. Johnson. Aerial robotics. In B. Siciliano and
O. Khatib, editors,Springer Handbook of Robotics, pages 1009–1027.
Springer, 2008.

[2] A. Bachrach, R. He, and N. Roy. Autonomous flight in unknown
indoor environments. International Journal of Micro Air Vehicles,
1(4):217–228, 2009.

[3] L. Marconi and R. Naldi. Control of aerial robots. hybrid
force/position feedback for a ducted-fan.IEEE Control System
Magazine, 32(4):43–65, 2012.

[4] V. Gavrilets, E. Frazzoli, B. Mettler, M. Piedimonte, and E. Feron.
Aggressive maneuvering of small autonomous helicopters: Ahuman-
centered approach.The International Journal of Robotics, 20(10):795–
807, 2001.

[5] J.M. Pflimlin, P. Soueres, and T. Hamel. Hovering flight stabilization
in wind gusts for ducted fan UAV.42nd IEEE Conf. on Decision and
Control, 2004.

[6] R. Naldi, L. Gentili, L. Marconi, and A. Sala. Design and experimental
validation of a nonlinear control law for a ducted-fan miniature aerial
vehicle. Control Engineering Practice, 18(7):747–760, 2010.

[7] R. Naldi and L. Marconi. Robust control of transition maneuvers for
a class of V/STOL aircraft.Automatica, 49(6):1693 – 1704, 2013.

[8] P. Pounds, R. Mahony, and P. Corke. Modelling and controlof a large
quadrotor robot.Control Eng. Pract., 18(7):691–699, 2010.

[9] S. Bouabdallah and R. Siegwart.Advances in Unmanned Aerial
Vehicles, chapter Chapter 6: Design and Control of a Miniature
Quadrotor, pages 171–210. Springer Press, Feb. 2007.

[10] R. Cunha, D. Cabecinhas, and C. Silvestre. Nonlinear trajectory
tracking control of a quadrotor vehicle. InProc. European Control
Conference, 2009.

[11] J. Hauser, S. Sastry, and G. Meyer. Nonlinear control design for
slightly non-minimum phase systems: application to V/STOLaircraft.
Automatica, 28(4):665–679, 1992.

[12] P. Martin, S. Devasia, and B. Paden. A different look at output
tracking: control of a VTOL aircraft. Automatica, 32(1):101–107,
1996.

[13] T. Koo and S. Sastry. Output tracking control design of ahelicopter
model based on approximate linearization. InDecision and Control,
1998. Proceedings of the 37th IEEE Conference on, volume 4, pages
3635–3640 vol.4, Dec 1998.

[14] M.D. Hua, T. Hamel, P. Morin, and C. Samson. A control approach for
thrust-propelled underactuated vehicles and its applications to VTOL
drones.IEEE Transsactions on Automatic Control, 54(8):1837–1853,
2009.

[15] A. Abdessameud and A. Tayebi. Global trajectory tracking control
of VTOL-UAVs without linear velocity measurements.Automatica,
46(4):1053–1059, April 2010.

[16] T. Lee, M. Leok, and N.H. McClamroch. Nonlinear robust tracking
control of a quadrotor UAV on SE(3).Asian Journal of Control,
15(3):1–18, May 2013.

[17] E. Frazzoli, M. Dahleh, and E. Feron. Trajectory tracking control
design for autonomous helicopters using a backstepping algorithm.
Proceedings of the American Control Conference, pages 4102–4107,
2000.

[18] P. Casau, R.G. Sanfelice, R. Cunha, D. Cabecinhas, and C. Silvestre.
Global trajectory tracking for a class of underactuated vehicles. In
Proceedings of American Control Conference, pages 419–424, Wash-
ington DC, US, 2013.

[19] L. Marconi and R. Naldi. Robust nonlinear full degree offredom
control of an helicopter.Automatica, 42:1584–1596, 2007.

[20] A. Isidori, L. Marconi, and A. Serrani.Robust Autonomous Guid-
ance: An Internal Model Approach. Advances in Industrial Control.
Springer-Verlag London, 2003.

[21] M. Hua, T. Hamel, P. Morin, and C. Samson. Introduction to feedback
control of underactuated VTOL vehicles.IEEE Control Systems
Magazine, 33(2):61–75, February 2013.

[22] C.G. Mayhew, R.G. Sanfelice, and A.R. Teel. Quaternion-based hybrid
controller for robust global attitude tracking.IEEE Transactions on
Automatic Control, 56(11):2555–2566, November 2011.

[23] S.B. Bhat and D.S. Bernstein. A topological obstruction to con-
tinuous global stabilization of rotational motion and the unwinding
phenomenon.System & Control Letters, 39:63–70, 1999.

[24] R. Goebel, R. G. Sanfelice, and A. R. Teel.Hybrid Dynamical Systems
Modeling, Stability, and Robustness. Princeton University Press, 2012.

[25] M.D. Shuster. A survey of attitude representation.The Journal of the
Astronautical Sciences, 41(4):439–517, December 1993.

[26] C. Mayhew, R. Sanfelice, and A. Teel. On path-lifting mechanisms and
unwinding in quaternion-based attitude control.IEEE Transactions on
Automatic Control, 58(5):1179–1191.




