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Abstract— We address the problem of a consensus system in
the presence of Byzantine faults seen as an attacker injecting
a perturbation in the state of the nodes. We propose the use
of Set-Valued Observers to detect if the state observations are
compatible with the system dynamics. The method is extended
to the stochastic case by introducing a strategy to construct a
set that is guaranteed to contain all possible states with, at least,
a pre-specified desired probability. The proposed algorithm is
stable in the sense that it requires a finite number of vertices
to represent polytopic sets while also enabling the a priori
computation of the largest magnitude of a disturbance that
an attacker can inject without being detected.

I. INTRODUCTION

The problem of consensus relates to a set of agents
agreeing on a common value using a distributed algorithm.
We are interested in randomized gossip average consensus
in that nodes are allowed to send messages to a random
neighbor in order to compute the average of their initial
state. By nature, such algorithms are designed to cope with
“crash type” faults by using redundancy and randomization.
However, Byzantine faults, such as an intruder in the system,
can prevent convergence or drive the system steady state to
any value [1]. The applicability of Byzantine fault detection
schemes ranges from consensus algorithms to information
dissemination and distributed control of industry processes.

The problem of detecting Byzantine faults using unreliable
fault detectors was introduced in [2], where multiple classes
of theoretic detectors are presented. For the specific case of
a consensus system, an algorithm is proposed that makes use
of an unreliable detector to solve the problem of consensus.
However, [2] differs from our work in that the consensus
value is assumed to be one of the initial values, whereas
we are looking at asymptotically reaching the average of the
initial values by using a linear dynamic system.

The consensus problem has been widely studied when
considering rather non-antagonistic failure models which in-
clude packet drops and nodes crashing but, to enable a more
comprehensive model, Byzantine faults must be considered.
The research interest in this issue has motivated a number of
contributions including the scenario of unreliable networks in
distributed systems. In particular, [1] considers the problem
of detecting and correcting the state of the system in the
presence of a Byzantine fault. The case of malicious agents
and faulty agents is studied and the authors provide, in both
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cases, bounds on the number of corrupted nodes to ensure
detectability of the fault. In [1], the system dynamics are
described by a linear time-invariant model that constrains
the communication network to be fixed in all time slots.
Here, however, a randomized gossip algorithm is considered,
thus dropping the assumption that the same sets of nodes are
involved in message exchanges at every time instant.

The main contributions of this paper are as follows:
• the analysis of the problem of detecting an intruder

in a randomized gossip consensus algorithm is recast
into the framework of Linear Parameter-Varying (LPV)
systems with uncertain dynamics;

• an upper bound on the magnitude of the attacker signal
is derived beyond which the attacker can be detected;

• the concept of stochastic Set-Valued Observers (SVOs)
is introduced by taking advantage of the use of α-
confidence sets, i.e., sets where the state of the system
is known to belong with a desired pre-specified 1 − α
probability; which can be viewed as a generalization of
confidence intervals.

• finally, it is also shown that this method inherits the
main properties regarding the computational stability by
having a bound on the volume and number of vertices
needed to define the polytopic sets where the state is
contained with a pre-specified probability; guarantees
of intruder detection are also provided.

The choice for representing the set of possible states
depends on a mathematical formulation that enables fast and
non-conservative intersections and unions of sets, as those
are major and normally time-consuming operations when
implemented in a computer. One alternative is to use the
concept of zonotopes, described in [3] and further developed
in [4] and [5]. In this article, an alternative approach is
adopted, based on the concept of Set-Valued Observers
(SVOs) first introduced in [6] and [7] and further information
can be found in [8] and [9] and the references therein.

The applicability of the proposed method for fault de-
tection in a randomized gossip algorithm is not limited to
the consensus problem, as several challenges in the Fault
Detection and Isolation (FDI) literature - [10], [11] - share
the framework described in the sequel. In [12], the authors
propose the use of SVOs for fault detection as a model
falsification problem. This paper extends the results in [12] to
detect Byzantine faults in consensus systems, by rewriting its
dynamics as an LPV. Moreover, unlike the approach in [12],
the method proposed herein takes into account the probability
information related to having a given communication.

The remainder of this paper is organized as follows. In
Section II, we describe the problem of randomized gossip
consensus in the presence of Byzantine faults. The proposed
solution is given in Section III and the main properties of
the obtained results are stated in Section IV and illustrated



through simulations in Section V. Concluding remarks and
potential future work are presented in Section VI.

Notation : The transpose of a matrix A is denoted by
Aᵀ. For vectors ai, (a1, . . . , an) := [aᵀ

1 . . . aᵀ
n]ᵀ. We let

1n := [1 . . . 1]ᵀ and 0n := [0 . . . 0]ᵀ indicate n-dimensional
vector of ones and zeros, respectively, and In denotes the
identity matrix of dimension n . Dimensions are omitted
when clear from context. The vector ei denotes the canonical
vector whose components are equal to zero, except for the
ith component. The notation ||.|| refers to ‖v‖ := supi |vi|
for a vector, and ‖A‖ := σ̄(A).

II. PROBLEM STATEMENT

We consider a set of m agents with scalar state xi(t), 1 ≤
i ≤ m running a distributed iterative algorithm that guar-
antees convergence of the state to its initial average value,
i.e.,

lim
t→∞

xi(t) = xav :=
1
m

m∑
i=1

xi(0). (1)

We refer to this problem as the average consensus problem.
In a gossip framework, at each transmission time, each

node i chooses a random out-neighbor j according to the
probability wij . Only nodes involved in the communication
can change their state according to the received information.
Thus, we regard transmission times as a discrete variable
k that corresponds to the continuous variable t as between
communications the state remains constant.

The communication topology is modeled by a graph G =
(V,E), where V represents the set of m agents, also denoted
by nodes, and E ⊆ V × V is the set of communication
links. Node i can send a message to node j, if (i, j) ∈ E. If
there exists at least one i ∈ V such that (i, i) ∈ E we say
that the graph has self-loops, which can model, for example,
packet drops, since node i only has access to its own value at
that transmission time. We associate to graph G a weighted
adjacency matrix W with entries:

Wij :=
{
wij , if (i, j) ∈ E
0, otherwise

, (2)

where the weights wij ∈ [0, 1].
We consider here radomized gossip algorithms in a Byzan-

tine environment of the form

x(k + 1) = U(k)x(k) +B(k)u(k), (3)

where the matrix U(k) is selected randomly from a set
{Qij , (i, j) ∈ E} and u(k) models Byzantine faults. The
random selection of U(k) models the process by which
nodes select a random out-neighbor, as described above, i.e.,
with probability wij

m a transmission between node i and j
occur which changes the states xi and xj according to the
column stochastic matrix Qij (i.e. 1ᵀQij = 1ᵀ) to preserve
the average. The input u(k) models the behavior of nodes
reporting incorrect state values or updating their state by
something other than the “fault-free” averaging rule

x(k + 1) = U(k)x(k) (4)

In this paper, we assume symmetry in the communication
and use as definition for the matrices Qij the algorithm
proposed in [13], which we recall here for readability:

Qij = I − (ei − ej)(ei − ej)ᵀ

2

A consensus system S, as defined above, refers to the pair
of equations:{

x(k + 1) = U(k)x(k) +B(k)u(k)
y(k) = C(k)x(k)

(5)

From node i point of view, the output of the system y(k) is
the states that it can measure at time instance k. If node i
transmitted to node j this will be the vector with the state xi
and xj (C(k) = [ei, ej ]ᵀ) and will only have its own state
if the node did not communicate (C(k) = [ei, ei]ᵀ). With a
slight abuse of notation, we use y(k) to refer to the output
of the system at time k and yk(x(0), uk) to express the same
output as a function of the initial state x(0) and input uk,
where uk denotes the vector of inputs up to time k.

The main goal of this paper can therefore be stated as:
developing algorithms for detecting nonzero inputs u(k) in
(3) that do not require knowledge of the matrices B(k) and
signal u(k) in (3) and, instead, only use the measurements
yk which stands for all the measurements up to time k.

Definition 1 (undetectable faults): Take the consensus
system (5). A nonzero input sequence uk (corresponding to
a fault) is said to be undetectable in N iterations if:

∀k < N, ∃x(0), x′(0) ∈ Rm : yk(x(0), uk) = yk(x′(0), 0).
The intuition behind this definition is that a fault is only

detectable if there is no possible set of initial conditions such
that the sequence y(0) · · · y(N) of measurable states can be
generated without an attacker signal.

Assumption 2 (detectable faults): Each fault considered
can be defined by means of an input sequence uk, and is
detectable in the sense of Definition 1.

The fault being detectable as in Assumption 2 relates to
the observability of the system as in [14].

Assumption 3 (bounded state): ∀k < N, ‖x(k)‖ < c for
a given constant c.

Assumption 3 is sustained by the fact that a non-faulty
gossip algorithm has a bounded state. Therefore, there exists
a constant c that if the state is larger one could trivially detect
the occurrence of the fault.

III. PROPOSED SOLUTION

We start by introducing the problem from a worst-case
scenario perspective and by finding suitable computational
machinery to detect Byzantine faults. Progress is then made
to generalize the algorithm to include the probability infor-
mation and convert the detection into a stochastic scenario.

A. Worst-case scenario
In a worst-case scenario, all the realization of U(k) are

assumed possible and the “low probability” of specific events
cannot be used to infer the likelihood of a fault.

The dynamics of the system can be cast into a Linear
Parameter-Varying (LPV) model with uncertainty in the time-
varying matrix U(k) by rewriting them as a central matrix
and a sum of uncertainties resulting in (3) being:

x(k + 1) =
(
A0 +

n∆∑
`=1

∆`(k)A`
)
x(k) +B(k)u(k) (6)

where n∆ is the number of required uncertainties and each
∆` is a scalar uncertainty with |∆`| = 1.

Detecting a fault in a worst-case scenario reduces to
finding whether a given sequence of observations, yk, can be



generated by the dynamics in (6) with zero terms B(k)u(k)
or not, for any admissible initial conditions x(0).

Definition 4 (Distinguishability [15]): Let SA and SB be
two systems of the form (5) with outputs at discrete time
k, yA(k) and yB(k), and initial states xA(0) and xB(0),
respectively. Then, SA and SB are said distinguishable in
N ≥ 0 measurements if, for any

(xA(0), xB(0), φ(0), · · · , φ(N − 1))
∈ Rm × Rm × Rnφ , · · · ,Rnφ

there exists k ∈ {0, 1, · · · , N − 1} such that

yA(k) 6= yB(k).

where φ is the vector of disturbances, uncertainties and
inputs.

This notion of distinguishability in Definition 4 is closely
related to the notion of fault detectability in Definition 1 in-
troduced before. We study fault detectability by considering
the distinguishability between the measurements of the real
system and the measurements generated by a virtual “fault-
free” model characterized by zero input.

We use the SVO framework from [15] and take advantage
of the distinguishability concept to derive a bound on the
magnitude of the injected attacker signal, such that the attack
is detected whenever this bound is exceeded. This will be one
of the main contributions of this paper.

Notice that the distinguishability definition used for detect-
ing a Byzantine fault is combinatorial by nature. Computing
the set of possible state realizations is a matter of making the
union of the possible state realizations for each combination
of transmissions. In (6), that behavior is modeled by the
vector of uncertainties ∆`(k). Thus, the problem grows
exponentially as the number of measurements N increases.

We adopt a similar notation as in [16] and define, at
transmission time k, X(k) := Set(M(k),m(k)) where
Set(M,m) := {q : Mq ≤ m} represents a convex
polytope containing the vectors q ∈ Rn that satisfy the
constraint Mq ≤ m, where ≤ is a component-wise operation
between the two vectors. The aim of an SVO is to find
an approximation of the smallest set containing all possible
states of the system, at time k, X̃(k) with the knowledge that
∀0 ≤ i ≤ N, x(k − i) ∈ X̃(k − i) and that the dynamics of
the system are as in (6). Assumption 3 is needed to include
the initial state into a polytope and use the SVO technique
to compute a convex over-approximation. In other words, at
each time k, X̃(k) is an approximation of the set containing
all possible states, X(k), such that X(k) ⊆ X̃(k).

More precisely, the initial state x(0) ∈ X(0) where
X(0) := Set(M0,m0) and we can select M0 and m0 such
that the corresponding polytope is guaranteed to contain the
initial state. For a given uncertainty instantiation ∆?, the set
X(k+ 1) := Set(M∆∗(k+ 1),m∆∗(k+ 1)), which contains
all the possible states of the system at time k + 1, can be
found explicitly by[

M(k)(A0 +A∆∗)−1

C(k + 1)
−C(k + 1)

]
︸ ︷︷ ︸

M(k+1)

x(k + 1) ≤

[
m(k)

y(k + 1)
−y(k + 1)

]
︸ ︷︷ ︸

m(k+1)

(7)

where

A∆∗ =
n∆∑
`=1

∆∗`A`

and ∆∗` is the realization of the uncertainty for the current
transmission time. This procedure assumes an invertible
transmission matrix. When this is not the case, we can adopt
the strategy in [17] and solve the inequality

I −A0 −A∆∗(k)
−I A0 +A∆∗(k)

C(k + 1) 0
−C(k + 1) 0

0 M(k)


[
x(k + 1)
x(k)

]
≤


0
0

y(k + 1)
−y(k + 1)
m(k)


(8)

by applying the Fourier-Motzkin elimination method [18] to
remove the dependence on x(k) and obtain the set described
by M(k + 1)x(k + 1) ≤ m(k + 1).

Let the coordinates of each vertex of the hypercube H :=
{δ ∈ RN : |δ| ≤ 1} be denoted by θi, i = 1, · · · , 2n∆ . Using
(7) (or (8)) we compute Xθi(k) with ∆∗ = θi. Thus, the set
of all possible states at time k + 1 can be obtained by

X(k + 1) =
⋃
θi∈H

Set(Mθi(k + 1),mθi(k + 1))

where we make the union for all the vertices θi that appear
in the graph, and where Mθi and mθi are obtained using (7)
or (8). It should be noticed that not all the vertices of the
hypercube H are of interest, as some communications never
take place due to the limited connectivity of the network.
The convex hull, X̃(k+ 1), of set X(k+ 1) is then obtained
by using the methods described in [12], since, in general, the
set X(k + 1) is non-convex even if X(k) was convex. We
recall Propositions 6.1 and 6.2 in [16] for completeness.

Proposition 5 (Membership of X(k) in X̃(k)): Consider
a system described by (6) and assume that X(0) ⊆ X̃(0).
Then, X(k) ⊆ X̃(k) for all k ∈ {0, 1, 2, · · · }.

Proposition 6 (Growth of X̃(k)): Suppose that a system
described by (6) with x(0) ∈ X(0) and u(k) = 0,∀k,
satisfies, for a sufficiently large N∗,

max
∆(k), · · · ,∆(k +N)

|∆(m)| ≤ 1, ∀m
k ≥ 0

∣∣∣∣∣∣ k+N∏
j=k

A(j)
∣∣∣∣∣∣ < 1,

for all N ≥ N∗, and where

A(j) :=
[
A0 +

n∆∑
i=1

∆i(j)Ai(j)
]
.

Then, X̃(k) cannot grow unbounded.
In summary, from Propositions 5 and 6, and a bound on

the perturbation, one concludes that X(k) ⊆ X̃(k), ∀k if
X(0) ⊆ X̃(0). Moreover, the set X̃(k) cannot grow without
bound, in the sense that its volume is bounded, and it exists a
hyper-parallelepiped X̃(k) that, at each time, contains the set
X(k), and has a bounded distance between any two vertices.

Proposition 6 does not apply directly to our case since, by
definition, the norm of any product of matrices Qij is equal
to 1 since the matrices are contraction matrices except for
the eigenvector 1. However, since there are no disturbances,
we can relax the assumption and require the norm of the
product to be smaller or equal to one and it follows the
same reasoning as the proof of the proposition.

Notice that using the method provided before to compute
M(k) and m(k) for the “fault-free” model gives a set where



our measurements can take values (Proposition 5 is essential
to establish it). By doing the intersection with the vector of
measurements y(k) for the real system, if it results in an
empty set, the real system is distinguishable from the virtual
“fault-free” model and a fault is detectable.

An important and relevant issue regarding the construction
of the SVO is its decentralized construction, which is fun-
damental when analyzing distributed systems. We point out
that a node just requires the following: the information of the
signal y that it measures when communicating with others;
the matrix C(k) and thus needs to be able to determine which
node it is transmitting to; and its own previous estimate set
which corresponds to know M(k) and m(k). All the matrices
A∆? for the necessary combinations of the uncertainties ∆`

can be determine if the node knows the global network
structure or the node can use all possible links when it is not
known. However, in a practical scenario, in order to optimize
the convergence rate, the nodes will compute the matrix W
in a distributed fashion and the global network structure can
be inferred as the support graph of the matrix W .

B. Stochastic Set-Valued Observers
The worst-case scenario considered in the previous section

completely ignores the probabilistic structure behind the
selection of the matrices U(k).

To understand how this information can help in detecting
Byzantine faults, consider a complete 5-node network (m =
5) and time horizon to detect the fault N = 20. Each node i
takes a measurement xi(0) of a quantity of interest and then
a consensus procedure starts, in order to calculate the average
of the initial values of the nodes xav =

∑5
i=1 xi(0)/5. Let us

assume that the packet drop probability pdrop = 0.01, which
means that the matrix of probabilities guaranteing the fastest
convergence, calculated using a semi-definite program as in
[13], is given by

W =
(1− pdrop)
m− 1

11ᵀ +
mpdrop − 1
m− 1

I

where a packet drop is represented as a transmission from
node i to itself, using the transmission matrix Qii = I .

If a node did not communicate, it is only able to determine
its own state. Suppose that the states of the agents start
dissimilar from each other but that during the first N time
steps, all agents are faulty and keep their states unchanged,
i.e., x(k) = x(0),∀k ≤ N . This fault is undetectable
according to Definition 1 since the sequence of N failed
transmissions due to the physical medium mimics the same
behavior. Consequently, using the algorithm in the previous
section, x(0) must remain in the set X̃(k),∀k and therefore
a fault is not detected. However, the probability of obtaining
the sequence x(k) = x(0),∀k ≤ N is exceedingly small:

Prob[{x(k) = x(0),∀0 ≤ k ≤ N}] = 10−40

and is more likely to be a Byzantine fault. The inability of
the SVO to incorporate the probability associated with each
event is, therefore, a main drawback. Such an example mo-
tivates the introduction of Stochastic Set-Valued Observers
(SSVOs) where the polytope containing the possible state is
associated with a probability. The objective of this section
concerns with extending the SVO concept to cope with the
probability of getting a given sequence of measurements.

Consider the algorithm described in the previous subsec-
tion to generate the sets X̃(k) and recall that we rewrote each

Qij as in (6), therefore, associating with each hypercube
vertex θij a transmission matrix Qij with correspondent
probability wij . Take the map ψ : H 7→ E which gives the
correspondence between the vertices of the hypercube H and
the edges in set E and let us collect the minimum number
of vertices θij in Θ such that

∑
θij
wψ(θij) ≥ 1−α. The set

for the SSVO X̄(k) is then an α-confidence set defined as:

X̄(k) :=
⋃

θij∈Θ

Set(Mθij (k),mθij (k)) (9)

Computationally, it requires to sort the vertices θij ac-
cording to probabilities wψ(θij) as to construct Θ and then
determining Mθij (k) and mθij (k) as before. θij depends
on the selected edges and there can be multiple sets Θ
generating an α-confidence set and any of them will suffice.

IV. MAIN PROPERTIES

In this section, we start by providing a result showing that
the set generated by the SSVO is a α-confidence set.

Proposition 7: Take the definition of X̄(k) as in (9). Then,
∀k, X̄(k) is a α-confidence set.

Proof: The result is straightforward from the fact

Prob
[
x(k) ∈

⋃
θi∈Θ

Set(Mθi(k),mθi(k))
]
≥
∑
θi∈Θ

wψ(θi)

≥ 1− α
In view of Proposition 7, if we have a detectable fault as in

Definition 1, and declare the fault to be detected when the set
X̄(k) becomes empty, then, the probability of having a false
positive is less or equal to α. In addition, by the construction
of the set X̄(k), we observe that X(k) is α-confidence set
with α = 0 and we have X̄(k) ⊆ X(k).

Borrowing the definitions in [16] for a horizon of N :

(AN , bN ) = LFM

(
MN

−MN

M̃0

M̃W

 ,
 0

0
m̃0

m̃W

 , 2m) (10)

where the LFM stands for the left Fourier-Motzkin elimi-
nation method and:

M̃0 = [diag(M0,M0) 0 0 0] , m̃0 =
[
m0

m0

]
,

M̃W = [0 diag(Md, · · · ,Md)] , m̃W = [mᵀ
d · · · mᵀ

d ] ,

MN =


CA −CB

R̄
CAAA −CBAB

...
...

CAA
N
A −CBANB

 ,

R̄ =


0 0 · · · 0
R1

1 0 · · · 0
R2

1 R2
2 · · · 0

...
...

. . .
...

RN1 RN2 · · · RNN

 ,
Rki =

[
CAA

k−i
A BA −CBAk−iB BB

]
.

where the Md and md define the set for the signal u, i.e.,
Md and md are defined such that u(k) ∈ Set(Md,md); and



Ai, Bi and Ci with i ∈ {A,B} are the matrices from the
two systems. With a slight abuse of notation, we are writing
the product of N matrices A(k) as AN for shorter notation.

The next proposition provides a theoretical bound on the
attacker signal magnitude to guarantee detection.

Proposition 8 (Attacker signal bound [16]): Consider a
“fault-free” system SA and a faulty system SB as in (5):

SA =
{
xA(k + 1) = A(k)xA(k)
yA(k) = C(k)xA(k)

SB =
{
xB(k + 1) = A(k)xB(k) +B(k)u(k)
yB(k) = C(k)xB(k)

where u ∈ Rnu , xi ∈ Rm, yi ∈ R2, initialized with the same
initial conditions and let the X(k) = Set(AN , bN ), where the
current state is contained, be defined as in (10).

Further define:

P =
1
N
diag(0nu , Inu , · · · , 0nu , Inu)

and let γmin ≥ 0 be defined such that

γmin ≥ max
ANξ≤bN

ξᵀPξ

where the vector ξ stacks all the measurements, initial states
and perturbation from the attacker. Then, system SA and SB
are distinguishable in N measurements if

1
N

N∑
k=0

||u(k)||2 > γmin (11)

Notice that in Proposition 8, the parameter γmin is the
smallest “disturbance” that an attacker can inject in the
system before system SA and SB are distinguishable in the
sense that the measured output of the faulty system cannot
be generated by the dynamics of the non-faulty one. Using
the same line-of-thought to derive the following result.

Corollary 9 (Attacker signal bound for SSVO): Consider
a non-faulty system SA and a faulty system SB as in
Proposition 8. Then, the Byzantine fault is detectable in
N measurements with a false positive probability lower or
equal than α if (11) is verified.

V. SIMULATION RESULTS

In this section, we present simulation results for some
meaningful scenarios illustrating specific features of the
proposed fault detection scheme. We consider the scenario
of detecting an unresponsive node and also an attacker
employing the best available strategy. A third type of fault is
detected by the SSVO to motivate the use of the stochastic
information, where a worst-case detection is not suitable.

We consider a 5-node network with nodes labelled i, i ∈
{1, 2, 3, 4, 5} and initial state xi(0) = i − 1 and a nominal
bound for the state magnitude of |xi| ≤ 5. In order to reduce
complexity and to study the properties of the algorithms in
a disadvantageous setting, we considered N = 1, meaning
that we only use the information from the previous iteration
for the estimates. This is a worst-case scenario, as the
algorithm only takes into account the dynamics of the system
with one time step from the last estimate and discards
prior observations. A missed detection is considered if the
algorithm is not able to detect the fault within 300 time
steps. Each result presented corresponds to 1000 Monte-
Carlo runs. For convenience, node 1 is the node that performs
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Fig. 1: Detection times for the unresponsive fault.

the detection and node 2 is the failing node, and no faults
occur in the first 10 transmissions. Note that if a node
introduces Byzantine faults from the start of the algorithm,
it can do so without being detected since the network has
no information about the initial state of the Byzantine node.
The following probability matrix is used:

W =


0 0.5 0.5 0 0

0.5 0 0.25 0 0.25
0.5 0.25 0 0.125 0.125
0 0 0.125 0.25 0.625
0 0.25 0.125 0.625 0


To show the properties of the SVO detection, we devise a

scenario where a node becomes unresponsive due to CPU
load or software crash, does not perform the consensus
update and, therefore, replies always with the same value.

Figure 1 depicts the detection time for the unresponsive
fault with a detection rate of 38.4%. We observe that the
fault is more likely to be detected as time progresses. The
γmin = 76.56 and ‖u‖2 = 2.997 which indicates that the
injected signal is detected even though its energy is less than
the theoretical bound. Since the detection rate was so small,
we also simulated for the case where each node runs an SVO
with its own local observations. The detection times follow
a similar pattern but the detection rate increased to 100%.

A more interesting simulation is when the attacker emu-
lates the strategy of the fault detection scheme and uses that
information to attack the system by reproducing the worst
possible fault without being detected. We assume that the
attacker has full knowledge of the network structure, initial
states and sequence of communicating pairs for all k.

Figure 2 shows a representative case of the injected
fault signal magnitude for each of the 300 time slots. The
profile of the plot changes depending on the sequence of
transmissions but presents the exponential decay as shown
in Figure 2. We also computed the minimum, maximum and
mean deviation of the steady state to be 0.2268, 2.8003 and
1.8463, respectively. We point out that since the true steady
state is 2, the attacker could only deviate it to 4.8003 which
is less than the trivial bound of 5.

To illustrate the advantage of the SSVO when detecting
faults, we consider a scenario where a node takes advantage
of the network and initiates communication with a neighbour
regardless of the probability matrix W but does not change
any of the nodes state. Notice that using an SVO, such faults
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Fig. 2: Representative example of an undetected signal.
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Fig. 3: Detection times for the SSVO.

would not be detected as any communication pattern that is
possible is considered regardless of its probability. Between
transmission time 10 < k < 20 the communication takes
place between node 3 and 4 and α = 0.1.

Figure 3 depicts the detection times for the SSVO case
with a detection rate of 92.8%. Even though the behaviour
is similar, in this case there is a probability of at most α of
the detection being a false positive.

VI. CONCLUSIONS AND FUTURE WORK

The paper focuses on gossip algorithm with stochastic
transmissions in a Byzantine environment, which considers
a larger group of faults than “crash type” failures, namely:
intermittent failures, state corruption, nodes executing er-
roneous algorithm steps or corrupted messages that pass
the medium checksums and other detection mechanisms,
amongst others. We are particularly interested in faults that
change the final consensus value and by modeling transmis-
sions as uncertainties in the system dynamics enabled us to
provide proofs of detection if the fault is detectable in a given
sense and bounds on the magnitude of the attacker signal.

The proposed approach adopts the concept of set-valued
observers to generate, at each transmission time, a convex
set containing all possible state realizations and converting
the problem to that of detecting whether the intersection
between this set and the set of observations is void or not
(i.e. rewriting the problem as a distinguishability problem
rather than a detectability one). We also provide an algo-
rithm to construct confidence sets that take into account the

probabilistic nature of the stochastic gossip algorithm, which
reduces the conservativeness of the worst-case approach, at
the expense of introducing a probability of false positives.

Our main contribution is two-folded: we introduce a novel
type of observer for discrete-time stochastic systems, show-
ing that the estimated set containing the state, at each time
instant, is bounded; and a bound is derived on the attacker
signal magnitude above which detection is guaranteed.

We envisage some directions of future work by consid-
ering asymmetric communications and a broader class of
distributed algorithms. Some additional work is necessary
in reducing the computational complexity of calculating the
set where the state of the system is. Finally, different types of
faults may be analyzed in order to persue less conservative
conditions that can still guarantee the detectability of faults.
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