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Abstract— In this paper, we consider the problem of design-
ing optimal measurement policies for a sensor that acquires
sequential compressive measurements of a static vector of
unknown sparsity as originally formulated in [3]. The scenario
is modeled as a finite horizon sequential decision making
problem when the number of samples is strictly restricted to be
less than the overall horizon of the problem. We assume that
at each instant of time the sensor can decide whether or not
to take an observation, based on the quality of the sensing
parameters. The objective of the sensor is to minimize the
coherence of the final sensing matrix. We provide a closed-loop
optimal measurement policy for a low-dimensional problem.
We generalize the optimal policy to obtain a feasible policy for
acquiring arbitrary length sparse vectors of unknown sparsity.
Finally, we illustrate the performance of the proposed policy
by providing simulation results.

I. INTRODUCTION

Modern surveillance and monitoring networks are prone
to the problem of data deluge. They are burdened with large
amounts of data often containing very low information con-
tent. For example, a surveillance system placed in a remote
area with the goal of detecting intruders will often observe
an inactive scene, yet record or transmit the same amount of
data during these periods as if the scene were active [26].
Compressive Sensing (CS) provides a promising solution to
the problem of data deluge [2]. CS is an emerging field driven
by the fact that a small group of non-adaptive linear projec-
tions of a compressible signal contains enough information
for reconstruction and processing [9], [4]. The benefits of
compressive sensing are clearly apparent in applications in
which a high cost is associated with each measurement
sample. Additional memory savings can be incurred if some
prior temporal information about “events of interest” is used
to activate the sensors. Such a strategy falls into the category
of opportunistic sensing (OS) [1]: a methodology that aims
to dynamically adjust sensing system parameters to the state
of the environment. In this work, we address the problem
of opportunistically activating sensors that use compressive
sensing schemes to acquire measurements.
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In an opportunistic setting, it is apparent that the sensing
system must make a dynamic decision based on the current
state of the environment and the previous measurements.
However, such a decision can be made only if either some
statistics about the signal is available a priori or real-time
information about the signal is available from a side channel
[25]. The latter means that some secondary modality (e.g.,
a motion detector) must collect the actionable information.
However, this involves extracting useful information at the
expense of collecting additional data, which defeats the
original goal of resolving the problem of data deluge unless
the resolution of the side sensor is kept low. Hence a trade-
off between the quantity and quality of data arises in the
presence of a secondary modality. In order to avoid this
dilemma, we consider the former case where a single sensor
makes continuous observation in order to estimate the signal
with some a priori knowledge about the sparsity of the
signal. We assume that the signal is sparse, but the exact
sparsity is unknown.

In order to modify the sensor activation policy based on
prior measurements, we take observations sequentially. The
sequential process of acquiring samples using CS schemes
has garnered some attention in the recent past. An important
application area is dynamic magnetic resonance imaging
(MRI) for real-time medical applications such as MR image
guided surgery, or functional MRI to track brain activation
changes. Prior work in sequential compressive sensing has
primarily focused on the problem of adaptively shaping the
sensing mechanism based on previous measurements. In
[21], the authors propose a measurement policy that max-
imizes the posterior variance of the expected measurement.
A major drawback of the proposed technique is the lack of
scalability with the problem dimension. In [6], [17], the au-
thors propose computationally efficient Bayesian algorithms
in which the adaptive projections can be computed in time
linear in the length of the signal. Additionally, theoretical
bounds on the performance of the adaptive scheme is pre-
sented for the first time in [17]. In [13], [14], the authors
introduce a new adaptive sampling-and-refinement scheme
called the Distilled Sensing for recovery of a sparse signal.
Compressive Distilled Sensing (CDS) is an extension of the
previous technique to compressive sampling regimes. In [16],
the authors provide recovery results for CDS that are valid
only for sparse signals with dynamic range on the order
of a constant. In [15], the authors propose a sequential
sensing-and-refinement approach based on their prior works
in [14] that removes the dynamic range constraints present
in [16]. They extend these ideas to compressive sensing and
seek to identify conditions sufficient to enable a stronger
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exact support recovery result. For time varying sparsity in
signals, there is some ongoing work in the area of recursive
estimation of sparse sequences with structured temporal
variation in the sparsity pattern. In [23], [24], the authors
propose techniques for recursive sparse reconstruction of
dynamic natural signal/image sequences for small changes
in sparsity with time. In [20], the authors address the prob-
lem of stability of the aforementioned techniques. All the
aforementioned work assume an apriori knowledge about the
sparsity of the signal. [8] addresses the challenges associated
with acquisition of signals of unknown sparsity. The authors
propose a stopping rule for acquiring an adequate number
of measurements when the sparsity of the inherent signal is
unknown. They also address the scenario when the signals
are near-sparse and corrupted with noise.

In contradistinction with the aforementioned work on
sequential compressed sensing that deals with asymptotic
performance of the sensor, we address here a finite horizon
problem. This problem formulation appeals to a large variety
of practical problems. For example, in tracking applications
involving a static sensor, a mobile target remains in the sens-
ing range for a limited amount of time [7], [26]. Accordingly,
in this work we address the problem of optimal measurement
policies for a sensor that is constrained to acquire compressed
measurements (for example, a single pixel camera [11]) of a
static sparse vector in finite time. The problem is formulated
as a sequential decision problem, and the objective of the
sensor is to maximize the incoherence [10], [22] of the
final sensing matrix, which in turn extends our technique
to scenarios in which the sparsity of the data is unknown.

In addition to addressing the problem of data deluge,
optimal activation policies for sensors also appeals to the
paradigm of energy-efficient sensing. Energy consumption
is an important factor that governs the overall life time of
a sensor network. Apart from the vast literature in wireless
networks that deals with efficient communication and rout-
ing protocols for conserving energy, there has been some
recent work that proposes energy efficient sensor scheduling
schemes using ideas that lie at the interface of estimation
theory and control. [18] considers a remote estimation prob-
lem with an energy-harvesting sensor and a remote estimator.
Due to the randomness of energy available for communi-
cation, the problem of finding a communication scheduling
strategy for the sensor is a challenge. The estimator relies on
messages communicated by the sensor to produce real-time
estimates of the sensors observations. The paper employs
dynamic programming to characterize the optimal strategies
for finding a communication scheduling strategy for the
sensor and an estimation strategy for the estimator that
jointly minimize an expected sum of communication and
distortion costs over a finite time horizon. [12] and [19]
introduce the problem of recursive estimation with limited
information in order to study the limited battery power of
wireless devices in sensor networks. This is modeled by
imposing a hard constraint on the number of available trans-
missions that are possible between an encoder-decoder pair
that communicates using a wireless channel for estimating

a random process. These papers provide, under different
settings, the optimal structure of the encoder-decoder pair
and the corresponding optimal transmission policy of the
encoder. In [3], the previous formulation on limited sensing
has been extended to sensors that use compressive sensing
techniques to acquire sparse signals. The problem has been
formulated as a sequential decision making problem in which
the objective of the sensor is to minimize the final coherence
matrix. A greedy approach is provided to the aforementioned
problem which is suboptimal. In this work, we revisit this
problem, and provide optimal acquisition strategies for low
dimensional data.

The organization of the paper is as follows. Section II
introduces the problem. Section III presents the encoder
structure when the sensing mechanism is based on random
Bernoulli trials. Section IV gives the optimal policy for
N = 2. Section V presents an extension of the optimal policy
proposed in Section IV to arbitrary N and provides simu-
lation results to illustrate the performance of the proposed
policy. Section VI presents our conclusions.

II. PROBLEM FORMULATION

In this section, we present the formal problem statement.
Consider a sensor taking measurements of a vector x ∈ RN .
For example, x can be obtained by vectorizing a matrix
comprising of pixel intensities in an image. The sensor is
comprised of an encoder-decoder pair, denoted by (Φ,∆).
In this paper, we assume Φ to be a matrix A of size M×N ,
and thereby restrict ourselves to linear measurements. Let
aij denote the element in row i and column j of matrix A.

Now we describe our sensing mechanism. We assume
that the measurement process consists of L sequential
stages, where L ∈ R+. At each stage, prior to acquiring
a measurement, the sensor generates a row vector ak =
[ak1, . . . , akN ] ∈ RN , where k ∈ [1, . . . , L]. Based on prior
measurements, the sensor either takes a measurement at the
current stage or decides otherwise. Therefore, at stage k, the
set of actions available to the sensor is defined as follows:

σk =

{
0 No Observation (NO)
1 Observation (O)

Overall, the sensor is restricted to take M measurements
within L stages, where M ≤ L. In case the sensor decides
to take the jth measurement at stage k, the measurement
sample yj is given by the following expression:

yj =

N∑
i=1

akixi, j ∈ [1, · · · ,M ] (1)

Therefore, each measurement corresponds to the projection
of x along ak. Let y = [y1, · · · , yM ] ∈ RM denote the final
measurement vector. We obtain the following relationship
between x and y,

y = Ax, (2)

where A is a matrix formed by stacking the row vectors ak

corresponding to yk based on the relation (1). Let sk denote
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the number of measurements taken by the sensor till the kth

stage; sk satisfies the following equation:

sk+1 = sk + σk

The decision of the sensor whether or not to take a mea-
surement at any stage depends on the information available
to the sensor. Assuming perfect recall, we have the following
information structure available to the sensor:

Ik = {(sk, k); a1, . . . , ak}, 1 ≤ k ≤ L

Let the sensor’s decision at time k be denoted by µk(·).
σk, µk(·) and Ik are related in the following manner:

σk = µk(Ik)

The decision of the sensor at stage k is a function of
{a1, . . . , ak}, and k − 1 past decisions, i.e.,

µk(·) : Z+
M+1 × Z+

L+1 × RN × · · · × RN︸ ︷︷ ︸
k times

→ {O,NO},

where Z+
n = {1, ..., n− 1}. The policy of the sensor, Π, can

be defined as follows:

Π = {µ1, . . . , µL}

A policy Π is admissible if µk maps to O M times. So as to
maximize the success rate of signal recovery algorithms in
CS literature, the objective is to find an admissible policy π∗

for the sensor that minimizes the coherence (or maximizes
the incoherence) of the final sensing matrix, which is given
by the following expression,

Cπ(M,L) = max
l,m∈[1,N ]

E[
|al · am|
‖al‖2‖am‖2

], (3)

where al and am denote the columns of matrix A =
[a1 · · · aN ]T .

From the CS literature [4], it is well known that the
incoherence of the final sensing matrix A plays an important
role in the design of the decoder when the original vector x is
sparse. For perfect recovery, sensing matrices are generated
from specific random processes, for example, from Bernoulli
trials, Gaussian ensembles or random DFT matrices [4],
which ensures that the resulting sensing matrix is incoherent
with high probability. However, in a standard CS setting, the
complete sensing matrix is generated a priori. Therefore, this
work explores the scenario in which the sensor can adapt
its sensing mechanism sequentially in order to improve the
incoherence of the final sensing matrix. Moreover, since the
incoherence of the final sensing matrix does not depend on
the sparsity of the x, the resulting technique can be extended
to signals of unknown sparsity, which is the problem under
consideration.

In the next section, we analyze the above problem when
aij’s are an outcome of i.i.d. Bernoulli trials.

III. BERNOULLI TRIALS

In this section, we address the problem of minimizing
(3), stated in the previous section, when the elements of
Φ are obtained from Bernoulli trials, and ∆ is chosen as
the Basis Pursuit decoder. The aforementioned forms of the
encoder-decoder pair have been found to be efficient for
reconstruction of sparse vectors in undersampled signals [5].

To be more specific, we precisely define the following
structure for the encoder-decoder pair.

A. Encoder (Random Symmetric Signs Ensemble)

If σk = 1, then the encoder transmits yj =

N∑
i=1

akixi to

the decoder, where each aki is drawn from an i.i.d. Bernoulli
process with the following distribution:

aki =

{
1√
M

w.p. 1
2

− 1√
M

w.p. 1
2

(4)

B. Decoder (Basis Pursuit)
We choose the decoder to be the basis pursuit decoder that

has the following form,

min ‖x̂‖1 subject to Ax̂ = y,

where x̂ is the reconstruction of x from the observation y.
Based on the sampling distribution, we conclude that ‖ai‖ =
1 ∀i, irrespective of the outcome of the individual trials.
From the definition of σk, (3) can be reformulated as follows:

π∗ = arg min
π

max
l,m∈[1,N ]

E[|
L∑
k=1

σkaklakm|] (5)

Finally, the outcome of the Bernoulli trials can be redefined
as follows without any change in the problem statement:

aij =

{
+1 w.p. 1

2
−1 w.p. 1

2

(6)

In [3], optimal policies for the problem under open-loop
information structure were given. It was shown that all open-
loop admissible policies lead to the same cost. In the next
section, we consider the class of closed-loop admissible
policies Π and provide the optimal strategies for the case
N = 2.

IV. OPTIMAL POLICY FOR N = 2

For the case of N = 2, we define the state of the system
as follows. Let wk = ak1ak2, and let Vk(n+k , n

−
k ) denote the

value function at the kth step for 0 ≤ k ≤ L, where n+k and
n−k are the numbers of +1’s and −1’s, respectively, that have
been accepted until step k. The number of measurements
remaining at step k is given by (M − n+k − n

−
k ). Since the

decision at step k is made after wk ∈ {−1,+1} is observed,
the dynamic programming equation and the optimal decision
are as follows:

Vk(n+k , n
−
k ) =

Ewk

[
min
σk

Vk+1

(
n+k + σk

1 + wk
2

, n−k + σk
1− wk

2

)]
(7)
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σ∗k = argmin
σk

[
Vk+1

(
n+k + σk

1 + wk
2

, n−k + σk
1− wk

2

)]
The boundary condition is given as

VL(n+L , n
−
L ) =

∣∣n+L − n−L ∣∣ . (8)

Since an admissible policy accepts only M rows, (8) is
equivalent to

Vk(n+k ,M − n
+
k ) =

∣∣M − 2n+k
∣∣ =

∣∣M − 2n−k
∣∣ . (9)

Theorem 1: For even M , the optimal policy is given by

µ∗k =


σk = 1 if n+k <

M
2 , wk = +1, n+k + n−k < M

σk = 1 if n−k < M
2 , wk = −1, n+k + n−k < M

σk = 1 if M − n+k − n
−
k = L− k

σk = 0 otherwise

Proof: In order to prove optimality, we explicitly
provide an expression for the value function. We prove that
the function satisfies the dynamic programming equation (7),
along with the boundary conditions. Finally, we compute the
optimal policy based on the proposed value function from the
dynamic programming equation,

The value function for the problem is given by the
following,

Vk(n+k , n
−
k ) =

pk
∑M

2 −n
+
k

i=0

(
L−k
i

)
(M − 2n+k − 2i) if n+k ≤

M
2 ,

+pk
∑M

2 −n
−
k

i=0

(
L−k
i

)
(M − 2n−k − 2i) n−k ≤

M
2

pk
∑M−n+

k−n
−
k

i=0

(
L−k
i

)
(M − 2n−k − 2i) if n+k ≥

M
2 ,

+pk
∑L−k
i=M−n+

k−n
−
k +1

(
L−k
i

)
(2n+k −M) n−k ≤

M
2

pk
∑M−n+

k−n
−
k

i=0

(
L−k
i

)
(M − 2n+k − 2i) if n+k ≤

M
2 ,

+pk
∑L−k
i=M−n+

k−n
−
k +1

(
L−k
i

)
(2n−k −M) n−k ≥

M
2

where pk = 2−(L−k) for even M values.
To verify that Vk(n+k , n

−
k ) is indeed the value function,

first note that at the boundary, n+k + n−k = M . Thus, either
n+k ≥

M
2 or n−k ≥

M
2 . Assume we have the former. Then,

as M − 2n−k = 2n+k −M ,

V (n+k ,M − n
+
k ) = 2−(L−k)

L−k∑
i=0

(
L− k
i

)
(2n+k −M)

=
∣∣2n+k −M ∣∣

and (9) is obtained. The latter, n−k ≥
M
2 , is the symmetric

case and again yields (9), showing that the boundary condi-
tion is satisfied.

When n+k + n−k = M , accepting a new row renders
the policy inadmissible. On the other hand, when
M − n+k − n

−
k = L− k, i.e., the number of remaining steps

is equal to the number of measurements to be accepted,
the policy becomes inadmissible if any new measurement
is rejected. Therefore, to show that Vk(n+k , n

−
k ) obeys

the dynamic programming equation (7), it is sufficient to

consider the following nontrivial cases:

Case (i): n+k < M
2 , n

−
k < M

2 , which imply n+k + 1 ≤ M
2

and n−k + 1 ≤ M
2 , and n+k + n−k < M :

(a) wk = +1

Vk+1(n+k , n
−
k )− Vk+1(n+k + 1, n−k ) =

2−(L−k−2)

M
2 −1−n

+
k∑

i=0

(
L− k − 1

i

)
> 0

Vk+1(n+k + 1, n−k ) < Vk+1(n+k , n
−
k ) =⇒ σ∗k = 1 (10)

(b) wk = −1

Vk+1(n+k , n
−
k )− Vk+1(n+k , n

−
k + 1) =

2−(L−k−2)

M
2 −1−n

−
k∑

i=0

(
L− k − 1

i

)
> 0

Vk+1(n+k , n
−
k + 1) < Vk+1(n+k , n

−
k ) =⇒ σ∗k = 1 (11)

Inserting (10) and (11) into the right hand side of (7):

Ewk

[
minσk

Vk+1

(
n+k + σk

1+wk

2 , n−k + σk
1−wk

2

)]
= 1

2Vk+1(n+k + 1, n−k ) + 1
2Vk+1(n+k , n

−
k + 1) (12)

The summations containing n+k in (12) yield

1
22−(L−k−1)

∑M
2 −n

+
k−1

i=0

(
L−k−1

i

)
(M − 2n+k − 2− 2i)

+ 1
22−(L−k−1)

∑M
2 −n

+
k

i=0

(
L−k−1

i

)
(M − 2n+k − 2i)

= 2−(L−k)
∑M

2 −n
+
k

i′=1

(
L−k−1
i′−1

)
(M − 2n+k − 2i′)

+ 2−(L−k)
∑M

2 −n
+
k

i=0

(
L−k−1

i

)
(M − 2n+k − 2i) (13)

= 2−(L−k)
∑M

2 −n
+
k

i=1

(
L−k
i

)
(M − 2n+k − 2i)

+ 2−(L−k)
(
L−k−1

0

)
(M − 2n+k ) (14)

= 2−(L−k)
∑M

2 −n
+
k

i=0

(
L−k
i

)
(M − 2n+k − 2i) (15)

where the relation between (13) and (14) follows from the
identity (

L−k−1
i

)
+
(
L−k−1
i−1

)
=
(
L−k
i

)
(16)

and that between (14) and (15) from(
L−k−1

0

)
=
(
L−k
0

)
. (17)

(15) is identical to the summation with n+k in Vk(n+k , n
−
k ).

Similarly, the summations with n−k in (12) and that in
Vk(n+k , n

−
k ) are found to be equal, verifying (7) for case (i).

Case (ii): n+k ≥
M
2 , n

−
k ≤

M
2 , n+k + n−k < M and M −

n+k − n
−
k < L− k:

(a) wk = +1

Vk+1(n+k + 1, n−k )− Vk+1(n+k , n
−
k ) =

2−(L−k−2)
L−k−1∑

i=M−n+
k−n

−
k

(
L− k − 1

i

)
> 0
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Vk+1(n+k , n
−
k ) < Vk+1(n+k + 1, n−k ) =⇒ σ∗k = 0 (18)

(b) wk = −1

Vk+1(n+k , n
−
k )− Vk+1(n+k , n

−
k + 1) =

2−(L−k−2)
M−n+

k−n
−
k −1∑

i=0

(
L− k − 1

i

)
> 0

Vk+1(n+k , n
−
k + 1) < Vk+1(n+k , n

−
k ) =⇒ σ∗k = 1 (19)

Employing (18) and (19) in (7), we have

Ewk

[
minσk

Vk+1

(
n+k + σk

1+wk

2 , n−k + σk
1−wk

2

)]
= 1

2Vk+1(n+k , n
−
k ) + 1

2Vk+1(n+k , n
−
k + 1)

= Vk(n+k , n
−
k )

where, again, the identities (16) and (17) are used in the
last equality.

Case (iii): n+k ≤
M
2 , n

−
k ≥

M
2 , n+k + n−k < M and M −

n+k − n
−
k < L− k + 1:

As this case is symmetric to the case (ii),
(a) wk = +1 =⇒ σ∗k = 1
(b) wk = −1 =⇒ σ∗k = 0

and (7) holds.
It has been shown that Vk(n+k , n

−
k ) satisfies (7) as well as

(9) for all (nontrivial) cases along with the optimal decisions
forming the decision rule µ∗k of the Theorem 1.

Theorem 2: The optimal policy for odd M is given by

µ∗k =


σk = 1 if n+k−1 <

1
2 (M − 1), wk = +1

σk = 1 if n−k−1 <
1
2 (M − 1), wk = −1

σk is arbitrary if n+k−1 = 1
2 (M − 1), wk = +1

σk is arbitrary if n−k−1 = 1
2 (M − 1), wk = −1

σk = 0 otherwise

Proof: The following cost function

Vk(n+k , n
−
k ) =

pk
∑M−1

2 −n+
k

i=0

(
L−k
i

)
(M − 2n+k − 2i) if n+k ≤

M−1
2

+pk
∑L−k−M+1

2 +n−k
i=M+1

2 −n+
k

(
L−k
i

)
n−k ≤

M−1
2

+pk
∑M−1

2 −n−k
i=0

(
L−k
i

)
(M − 2n−k − 2i)

pk
∑M−n+

k−n
−
k

i=0

(
L−k
i

)
(M − 2n−k − 2i) if n+k ≥

M+1
2

+pk
∑L−k
i=M−n+

k−n
−
k +1

(
L−k
i

)
(2n+k −M) n−k ≤

M−1
2

pk
∑M−n+

k−n
−
k

i=0

(
L−k
i

)
(M − 2n+k − 2i) if n+k ≤

M−1
2

+pk
∑L−k
i=M−n+

k−n
−
k +1

(
L−k
i

)
(2n−k −M) n−k ≥

M+1
2

where pk = 2−(L−k), satisfies (7) and (9) for odd M along
with µ∗k given in Theorem 2. This can be verified similar to
the value function for the previous case when M is even.

For even M , with the policy provided in Theorem 1,
the resulting correlation of the columns becomes zero if at
least M

2 +1’s and M
2 −1’s appear in the sequence. If, for

example, enough −1’s do not appear, the policy accepts all

−1’s that come up, keeping the resulting correlation as close
to 0 as possible. Therefore, the policy ensures the smallest
correlation that can be obtained from any given sequence.
The same holds when M is odd, but in this case the minimum
correlation that can be achieved is 1.

V. EXTENSION TO HIGHER DIMENSIONS

In this section, we extend the optimal policy proposed in
the previous section to arbitrary N . Based on the notations
introduced in Section II, we can write the following equation

yk = Akx

where yk = [y1, . . . , yk]′, and Ak is obtained by stacking the
vectors ai as rows for i = 1, . . . , k. Define gjlm as follows:

gjlm =

j∑
r=1

arlarm

If we consider two specific columns, i and j in Ak, then
we can define µk∗ij and σk∗ij∗ to be the optimal policy and
the optimal action, respectively, corresponding to the two
columns based on the analysis in the previous section. Let

Sk = {(i, j)|(i, j) = arg max
m,n

gkmn}

Sk0 = {(i, j)|[(i, j) ∈ Sk]
∧

[σk∗ij = 0]}

Sk1 = {(i, j)|[(i, j) ∈ Sk]
∧

[σk∗ij = 1]}

The policy we propose is as follows:

µk =


µk∗
(argmaxij gkij)

, |Sk| = 1

0, |Sk| > 1, |Sk0 | > Sk

2

1, |Sk| > 1, |Sk1 | ≥ Sk

2

,

where µ∗k is the policy at stage k, and | · | denotes the
cardinality of the set. For N = 2, µk coincides with µ∗k. For
the case of general N , tight bounds on the performance of µk
is a topic of our ongoing research. In this paper, we illustrate
the performance of µk by presenting some simulation results.

Figure 1 shows the simulation of the implementation of µk
for a scenario in which N = 1000, L = 500 and M = 400.
The plot on the left shows the sequential variation of |gk|∞
of Ak. The plot on the right shows σk as a function of time.
The plot on the right in Figure 2 shows the histogram of
|gL|∞ for 100 simulation runs when one implements the
open loop optimal policy proposed in [3], whereas the plot
on the left is the histogram obtained when µk is used as
the activation policy. Since the weights of large correlations
values have decreased, µk shows some improvement over the
open-loop optimal policy. However, for very small values of
M compared to N , the following lemma shows that the final
coherence is unaffected by the activation policy.

Lemma 1: If N > 2M−1, the coherence of the final matrix
is 1 irrespective of the activation policy.

Proof: Consider the matrix A ∈ {−1,+1}M×N that is
obtained at the end of the process. With M rows, only 2M
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Fig. 1. The variation of |gk|∞ [left] and σk [right] with k for N =
1000, L = 500,M = 400

Fig. 2. The histogram of the coherence of the final sensing matrix for µk
[left] and for the open-loop policy proposed in [3] [right] as a result of 100
runs with N = 1000 and M = 400

distinct columns can be generated; however, half of these
columns are negative of the other half. Hence, if N > 2M−1,
there is at least one pair of identical columns or one column
is negative of another.

VI. CONCLUSION

In this paper, we have considered the problem of optimal
measurement policies for a sensor that acquires sequential
compressive measurements of a static vector as originally
formulated in [3]. We obtained closed-loop optimal mea-
surement policies for low-dimensional problems in contrast
to the previous work [3] that had proposed a greedy strategy.
Finally, we have generalized the optimal policy to obtain a
feasible policy for acquiring arbitrary length sparse vectors
of unknown sparsity. The performance of the proposed policy
has been illustrated through simulation results. In the future,
we plan to extend this work to dynamic signals with bounded
variations in sparsity.
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