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Università degli Studi di Pavia

Technical Report

September, 2013

Abstract

This paper proposes a state estimator for large-scale linear systems described by the in-

teraction of state-coupled subsystems affected by bounded disturbances. We equip each sub-

system with a Local State Estimator (LSE) for the reconstruction of the subsystem states

using pieces of information from parent subsystems only. Moreover we provide conditions

guaranteeing that the estimation errors are confined into prescribed polyhedral sets and con-

verge to zero in absence of disturbances. Quite remarkably, the design of an LSE is recast

into an optimization problem that requires data from the corresponding subsystem and its

parents only. This allows one to synthesize LSEs in a Plug-and-Play (PnP) fashion, i.e. when

a subsystem gets added, the update of the whole estimator requires at most the design of

an LSE for the subsystem and its parents. Theoretical results are backed up by numerical

experiments on a mechanical system.
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1 Introduction

In several applications, the use of centralized state estimators is hampered by the complexity of

the underlying systems. As an example, when plants are composed by several subsystems arranged

in a parent-child coupling relation, online operations, such as the transmission of output samples

to a central processing unit or the simultaneous estimation of all states, can be prohibitive. This

has motivated a large body of research on Distributed State Estimators (DSEs) where subsystems

are equipped with LSEs connected through a communication network and dedicated to the recon-

struction of local states only [1, 2, 3, 4, 5, 6, 7, 8]. Concerning the required communication links,

some methods are more parsimonious as they do not need information to be exchanged between

all LSEs, but only along the edges of a directed network with the parent-child topology induced

by subsystems coupling [3, 4, 5, 6, 7, 8]. Furthermore, there are methods that also guarantee the

fulfillment of constraints on local states [6] or estimation errors [7, 8].

As in [7] and [8], in this paper we consider discrete-time linear time-invariant subsystems

affected by bounded disturbances and propose a DSE composed by LSEs with a Luenberger-like

structure and connected through a network with parent-child topology. We provide conditions for

guaranteeing estimation errors fulfill prescribed polyhedral constraints at all times and converge to

zero when there are no disturbances. A key feature of our approach is that, differently from [7] and

[8], checking these conditions amounts to numerical tests that are associated with individual LSEs

and that can be conducted in parallel using hardware collocated with subsystems. Furthermore,

each test requires data from parent subsystems only. These properties enable PnP design of LSEs,

meaning that (i) when a subsystem is added to a plant, the corresponding LSE can be designed

using pieces of information from parent subsystems only; (ii) in order to preserve the key properties

of the whole DSE, the plugging in and out of a subsystem triggers at most the update of LSEs

associated to child subsystems and (iii) the design/update of an LSE is automatized, e.g. it is

recast into an optimization problem that can be solved using local hardware. We highlight that

addition and removal of subsystems, as well as synthesis of LSEs, are here considered as offline

operations and therefore no hybrid dynamics is generated. Our method, that parallels the PnP

procedure for the design of decentralized model predictive controllers proposed in [9] and [10], can

be useful in the context of systems of systems [11] and cyber-physical systems [12] where, typically,

the number of subsystems changes over time.

The paper is structured as follows. The DSE is introduced in Section 2. In Section 3, the

main results allowing design decentralization are presented together with the optimization-based

synthesis of LSEs. PnP operations are discussed in 4. In Section 5 we illustrate the use of the DSE

for reconstructing the states of a 2D array of masses connected by springs and dampers. Finally,

Section 6 is devoted to conclusions.

Notation. We use a : b for the set of integers {a, a + 1, . . . , b}. The symbol Rn
+ stands for

the vectors in Rn with nonnegative elements. The column vector with s components v1, . . . , vs

is v = (v1, . . . , vs). The symbol ⊕ denotes the Minkowski sum, i.e. A = B ⊕ C if and only if

A = {a : a = b + c, b ∈ B, c ∈ C}. Moreover,
⊕s

i=1 Gi = G1 ⊕ . . . ⊕ Gs. The symbol 1α

(resp. 0α) denotes a column vector with α ∈ N elements all equal to 1 (resp. 0). Given a matrix

A ∈ Rn×n, with entries aij its entry-wise 1-norm is ||A||1 =
∑n

i=1

∑n
j=1 |aij | and its Frobenius

norm is ||A||F =
√

∑n
i=1

∑n
j=1 a

2
ij . The standard Euclidean norm is denoted with ‖ · ‖. The

pseudo-inverse of a matrix A ∈ Rm×n is denoted with A♭.

The set X ⊆ Rn is positively invariant [13] for x(t+ 1) = f(x(t)), if x(t) ∈ X ⇒ f(x(t)) ∈ X.
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The set X ⊆ Rn is Robust Positively Invariant (RPI) [13] for x(t+1) = f(x(t), w(t)), w(t) ∈ W ⊆

Rm if x(t) ∈ X ⇒ f(x(t), w(t)) ∈ X, ∀w(t) ∈ W. The RPI set X̄ is maximal (MRPI) if every other

RPI X verifies X̄ ⊇ X. The RPI set X is minimal (mRPI) if every other RPI X verifies X ⊆ X.

The RPI set X(ǫ) is a ǫ-outer approximation of the mRPI X if

x ∈ X(ǫ) ⇒ ∃ x ∈ X and x̃ ∈ Bǫ(0) : x = x+ x̃

where, for ǫ > 0, Bǫ(v) = {x ∈ Rn|‖x− v‖ < ǫ}.

2 Distributed state estimator

We consider a discrete-time Linear Time Invariant (LTI) system

x+ = Ax+Bu+Dw

y = Cx
(1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp and w ∈ Rr are the state, the input, the output and the

disturbance, respectively, at time t and x+ stands for x at time t+ 1. The state is composed by

M state vectors x[i] ∈ Rni , i ∈ M = 1 : M such that x = (x[1], . . . , x[M ]), and n =
∑

i∈M ni.

Similarly, the input, the output and the disturbance are composed by M vectors u[i] ∈ Rmi ,

y[i] ∈ R
pi , w[i] ∈ R

ri , i ∈ M such that u = (u[1], . . . , u[M ]), m =
∑

i∈M mi, y = (y[1], . . . , y[M ]),

p =
∑

i∈M pi, w = (w[1], . . . , w[M ]) and r =
∑

i∈M ri.

We assume (1) can be equivalently described by subsystems Σ[i], i ∈ M, given by

Σ[i] : x+
[i] = Aiix[i] +Biu[i] +

∑

j∈Ni

Aijx[j] +Diw[i]

y[i] = Cix[i]

(2)

where Aij ∈ Rni×nj , i, j ∈ M, Bi ∈ Rni×mi , Di ∈ Rni×ri , Ci ∈ Rpi×ni and Ni is the set of

parents of subsystem i defined as Ni = {j ∈ M : Aij 6= 0, i 6= j}. Moreover, since y[i] depends on

the local state x[i] only, subsystems Σ[i] are output-decoupled and then C = diag(C1, . . . , CM ).

Similarly, subsystems Σ[i] are input- and disturbance-decoupled, i.e. B = diag(B1, . . . , BM ) and

D = diag(D1, . . . , DM ). We also assume

w[i] ∈ Wi (3)

where the set Wi ⊂ Rri is a zonotope centered at the origin, i.e. a polytope that is centrally

symmetric about the origin. Without loss of generality, Wi can be written as

Wi = {w[i] ∈ R
ri |Fiw[i] ≤ 1ῡi

}

= {w[i] ∈ R
ri |w[i] = ∆ili, ||li||∞ ≤ 1}

(4)

where Fi = (fT
i,1, . . . , f

T
i,ῡi

) ∈ Rῡi×ri , rank(Fi) = ri, ∆i ∈ Rri×r̄i and li ∈ Rr̄i .

In this section we propose a Distributed State Estimator (DSE) for (1). As in [7] and [8], we

define for i ∈ M the Local State Estimator (LSE)

Σ̃[i] : x̃+
[i] = Aiix̃[i] +Biu[i] − Lii(y[i] − Cix̃[i])+

∑

j∈Ni

Aij x̃[j] −
∑

j∈Ni

δijLij(y[j] − Cj x̃[j])
(5)
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where x̃[i] ∈ Rni is the state estimate, Lij ∈ Rni×pj are gain matrices and δij ∈ {0, 1}. This

implies that Σ̃[i] depends only on local variables (x̃[i], u[i] and y[i]) and parents’ variables (x̃[j]

and y[j], j ∈ Ni). Binary parameters δij , j ∈ Ni can be chosen equal to one for exploiting the

knowledge of parents’ outputs, or equal to zero for reducing the number of transmitted output

samples.

Defining the state estimation error as

e[i] = x[i] − x̃[i], (6)

from (2), (5) and (6), we obtain the local error dynamics

Θ[i] : e+[i] = Āiie[i] +
∑

j∈Ni

Āije[j] +Diw[i] (7)

where Āii = Aii + LiiCi and Āij = Aij + δijLijCj , i 6= j. Our main goal is to solve the following

problem.

Problem 1. Design in a decentralized fashion LSEs Σ̃[i], i ∈ M that

(a) are nominally convergent, i.e. when Wi = {0} it holds

||e[i](t)|| → 0 as t → ∞ (8)

(b) guarantee, for suitable initial conditions

e[i](t) ∈ Ei, ∀t ≥ 0 (9)

where Ei ⊆ Rni are zonotopes centered at the origin given by

Ei = {e[i] ∈ R
ni |Hie[i] ≤ 1τ̄i}

= {e[i] ∈ R
ni |e[i] = Ξidi, ||di||∞ ≤ 1}

(10)

In (10), Hi = (hT
i,1, . . . , h

T
i,τ̄i

) ∈ R
τ̄i×ni , rank(Hi) = ni, Ξi ∈ R

ni×n̄i and di ∈ R
n̄i . �

Defining the variable e = (e[1], . . . , e[M ]) ∈ R
n, from (7) one obtains the collective dynamics of

the estimation error

e+ = Āe+Dw (11)

where the matrix Ā is composed by blocks Āij , i, j ∈ M.

We equip system (11) with constraints e ∈ E =
∏

i∈M Ei and w ∈ W =
∏

i∈M Wi.

Let L be the matrix composed by blocks Lij , i, j ∈ M. From (11), if L is such that Ā is

Schur, then property (8) holds. Moreover, if there exists an RPI set S ⊆ E for the constrained

system (11), then e(0) ∈ S guarantees property (9). We highlight that methods based on Linear

Programming (LP) for computing S exist [14, 15]. However the resulting LP problems require

the knowledge of the collective model (1) and therefore they become prohibitive for large-scale

systems.

In absence of coupling between subsystems (i.e. Aij = 0, i 6= j) the error dynamics (7) are

decoupled as well. Therefore, from (11), if Lii are such that matrices Āii are Schur, then (8)

holds. Furthermore, if there is an RPI set Si ⊆ Ei for each local error dynamics, property (9) can

be guaranteed by requiring e[i](0) ∈ Si. Since Ei and Wi are polytopes, using the algorithms in
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[14, 15] the computation of sets Si, i ∈ M requires the solution of M LP problems that can be

solved in parallel using computational resources collocated with subsystems.

In the next section we propose a method for bridging the gap between the two extreme cases

described above, i.e. for designing LSEs in a decentralized fashion even in presence of coupling

between subsystems.

3 Decentralization of LSE design

In the following, we first solve Problem 1 in the case of W = {0} i.e. no disturbances act on

subsystems (1), and then show how to take disturbances into account.

When W = {0}, we need to find matrices Lij i, j ∈ M such that system (11) is asymp-

totically stable. To achieve this aim in a decentralized fashion, we treat the coupling term

v[i] =
∑

j∈Ni
Āije[j] as a disturbance for the error dynamics

e+[i] = Āiie[i] + v[i] (12)

and then confine the error into an RPI set Si ⊆ Ei for (12) and v[i] ∈ Vi =
⊕

j∈Ni
ĀijEj . The

main result, that will also enable PnP design of LSEs, is given in the next proposition.

Proposition 1. Let W = {0}. If, for given matrices Lij and parameters δij, i, j ∈ M, the

following conditions are fulfilled

Āii is Schur, ∀i ∈ M (13a)

βi =
∑

j∈Ni

∞
∑

k=0

||HiĀ
k
iiĀijH

♭
j ||∞ < 1, ∀i ∈ M (13b)

then

(I) Ā is Schur;

(II) ∀i ∈ M there exists an RPI Si ⊆ Ei for dynamics (12), such that S =
∏

i∈M Si is a

positively invariant set for system (11).

Proof. The proof is given in the Appendix 7.1.

Some comments are in order. The conditions in Proposition 1 guarantee that if e[i](0) ∈ Si, ∀i ∈

M, then (8) and (9) hold. Condition (13b), that stems from the small gain theorem for networks

[16], implies that the coupling between subsystems must be sufficiently small. In particular, if

subsystems are decoupled, (13b) is always fulfilled and nominal convergence of the state estimator

is guaranteed by condition (13a) only.

Remark 1. We highlight that, for a given i ∈ M, the quantity βi in (13) depends only upon

local fixed parameters {Aii, Ci,Hi}, neighbors’ fixed parameters {Aij , Cj ,Hj}j∈Ni
and local tunable

parameters {Lii, {Lij, δij}j∈Ni
} but not on neighbors’ tunable parameters. This implies that the

choice of {Lii, {Lij, δij}j∈Ni
} does not influence the choice of {Ljj , {Ljk, δjk}k∈Nj

}, for i 6= j. �

When system (1) is affected by disturbances, i.e. W 6= {0}, we can still use (13) for guaranteeing

the stability of matrix Ā, but we need an additional condition in order to guarantee the existence

of an RPI set Si ⊆ Ei for the error dynamics

e+[i] = Āiie[i] + ṽ[i] (14)
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where the disturbance ṽ[i] verifies

ṽ[i] = v[i] +Diw[i] ∈ Ṽi = (
⊕

j∈Ni

ĀijEj ⊕DiWi). (15)

Since Ṽi is a zonotope, it can be written as Ṽi = {ṽ[i] ∈ Rñi |ṽ[i] = Ψid̃i, ||d̃i||∞ ≤ 1} where

ñi =
∑

j∈Ni
nj + ri Ψi =

[

Āij1Ξj1 . . . ĀijzΞjz Di∆i

]

, j1, . . . , jz ∈ Ni.

Proposition 2. For given matrices Lij and parameters δij, i, j ∈ M, if conditions (13) hold and

γi =

∞
∑

k=0

||HiĀ
k
iiΨi||∞ < 1, ∀i ∈ M (16)

then, there exists an RPI set Si ⊆ Ei for (14), such that S =
∏

i∈M Si is an RPI set for system

(11).

Proof. The proof is given in the Appendix 7.2.

Remark 2. We note that if the subsystems are decoupled, then condition (16) implies that there

exists an mRPI Si ⊆ Ei for the local error dynamics (14). Moreover, when subsystems are coupled

and Wi = {0}, if βi < 1 then γi < 1. Indeed, Wi = {0} implies that ∆i = 0 and, as shown in the

proof of Proposition 1, it holds
∑∞

k=0

∑

j∈Ni
||HiĀ

k
iiĀijΞ

♭
j ||∞ ≤

∑∞
k=0

∑

j∈Ni
||HiĀ

k
iiĀijH

♭
j ||∞.

Finally, the pieces of information needed for computing scalars γi are the same needed for com-

puting scalars βi (see Remark 1). �

From results in Proposition 1 and 2, Problem 1 can be decomposed into the following inde-

pendent design problems for i ∈ M.

Problem Pi

Check if there exist Lii and {Lij}j∈Ni
such that Āii is Schur, βi < 1 and γi < 1.

Remark 3. As shown in [17], a necessary condition for the existence of RPI sets Si for (14) is

that

Ei ⊆ Ṽi, ∀i ∈ M (17)

where Ṽi depend upon sets Ej, j ∈ Ni, see (15). In our approach, sets Ei are assigned a priori

on the basis, e.g. of application-dependent constraints. Therefore we implicitly assume conditions

(17) are verified. However, if subsystems are added sequentially to an existing plant and LSEs are

designed with the PnP procedure described in Section 4, conditions (17) are automatically checked

and, if violated, they prevent from plugging-in subsystem Σ[i]. We also highlight that when sets Ei

can be arbitrarily chosen, centralized methods for fulfilling conditions (17) exist [7].

3.1 Optimization-based synthesis of LSEs

The procedure for solving problems Pi, i ∈ M is summarized in Algorithm 1 that can be executed

in parallel by each subsystem using local hardware.

In step (1), if δij = 1, the computation of matrices Lij , j ∈ Ni is required. Since the choice

of Lij affects the coupling term Āij = Aij + δijLijCj , and hence the possibility of verifying

inequalities (13) and (16), we propose to reduce the magnitude of coupling by minimizing the
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Algorithm 1

Input: zonotopes Ei, Wi and scalars δij , ∀j ∈ Ni.

Output: set Si and state estimator Σ̃[i].

1. if δij = 1, compute the matrix Lij , ∀j ∈ Ni solving

min
Lij

||HiĀijH
♭
j ||p (18)

where either p = 1 or p = F .

2. compute a matrix Lii such that βi < 1 and γi < 1. If it does not exist stop;

3. compute the set Si.

magnitude of Āij in (18), where Hi and H♭
j allow us to take into account the size of sets Ei

and Ej , respectively. More precisely, it can be shown that the term ||HiĀijH♭
j ||p is a measure

of how much the coupling term Āije[j], j ∈ Ni affects the fulfillment of the constraint e[i] ∈ Ei

(see Appendix 7.3). We highlight that the minimization of ‖HiĀijH♭
j‖1 in (18) amounts to an

LP problem and the minimization of ‖HiĀijH♭
j‖F can be recast into a Quadratic Programming

(QP) problem. So far, the parameters δij have been considered fixed. However, if in step (1) one

obtains Lij = 0 for some j ∈ Ni, it is impossible to reduce the magnitude of the coupling term

Āij and the knowledge of y[j] is useless for estimator Σ̃[i]. This suggests to revise the choice of δij

and set δij = 0.

In step (2), for the computation of matrix Lii we propose an automatic method in order to

guarantee satisfaction of inequalities (13) and (16). This procedure parallels the method proposed

in [9] for control design. Since in (13a) we require the Schurness of matrix Āii, we need to guarantee

that Lii stabilizes the pair (Aii, Ci). In order to achieve this aim we design Lii as the dual LQ

control gain associated to matrices Qi ≥ 0 and Ri > 0, i.e.

Lii = (Ri + CiP̄iC
T
i )

−1CiP̄iA
T
ii

where P̄i is the solution to the algebraic Riccati equation

AiiP̄iA
T
ii +Qi −AiiP̄iC

T
i (Ri + CiP̄iC

T
i )

−1CiP̄iA
T
ii = P̄i. (19)

We then solve the following nonlinear optimization problem

min
Qi, Ri

βi (20a)

Qi ≥ 0, Ri > 0 (20b)

βi < 1 (20c)

γi < 1 (20d)

where constraint (20d) is needed only if Wi 6= {0}. In order to simplify the optimization problem

(20) one can assume Qi = diag(qi,1, . . . , qi,ni
), Ri = diag(ri,1, . . . , ri,mi

) and replace the matrix

inequalities in (20b) with the scalar inequalities qi,k ≥ 0, k ∈ 1 : ni and ri,k > 0, k ∈ 1 : mi. The

feasibility of problem (20) guarantees that the estimator Σ̃[i] can be successfully designed. Note
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that if all matrices Lij , j ∈ Ni are such that Āij = 0, the inequality (20c) is always fulfilled and,

when W = {0}, the optimization problem (20) is reduced to the solution of the algebraic Riccati

equation (19).

In step (3) of Algorithm 1 we need to compute a nonempty RPI set Si ⊆ Ei that, in view of

Propositions 1 and 2, exists if the optimization problem (20) is feasible. To this purpose, several

algorithms can be used. For instance, [14] discusses the computation of ǫ-outer approximation of

the mRPI Si. The MRPI set S̄i can be obtained using methods in [18]. More recently, efficient

procedures have been also proposed for computing polytopic [15] or zonotopic [19] RPI sets.

4 Plug-and-play operations

Consider a plant composed by subsystems Σ[i], i ∈ M equipped with local state estimators Σ̃[i],

i ∈ M produced by Algorithm 1. In case subsystems are added or removed, we show how to

preserve properties (8) and (9) by updating a limited number of existing LSEs. Note that plugging

in and unplugging of subsystems are here considered as off-line operations, i.e. they do not lead

to switching between different dynamics in real time.

4.1 Plugging in operation

We start considering the plugging in of subsystem Σ[M+1], characterized by parametersAM+1,M+1,

CM+1, EM+1, WM+1, NM+1 and {AM+1,j}j∈NM+1 . In particular, NM+1 identifies the subsystems

that will influence Σ[M+1] through matrices {AM+1,j}j∈NM+1 . Subsystems that will be influenced

by Σ[M+1] are given by SM+1 where

Si = {j : i ∈ Nj}

is the set of children of subsystem Σ[i]. For designing the LSE Σ̃[M+1] we execute Algorithm 1 that

needs information only from subsystems Σ[j], j ∈ NM+1. If Algorithm 1 stops before the last step,

we declare that Σ[M+1] cannot be plugged in. Since sets Nj , j ∈ SM+1 have now one more element,

previously obtained matrices Ljj , j ∈ SM+1 might give βi ≥ 1 or γi ≥ 1. Indeed, quantities βi and

γi in (13) and (16) can only increase. Furthermore, the size of the set Sj increases and therefore

the condition Sj ⊆ Ej could be violated. This means that for each j ∈ SM+1 the LSE Σ̃[j] must

be redesigned by running Algorithm 1. Again, if Algorithm 1 stops before completion for some

j ∈ SM+1, we declare that Σ[M+1] cannot be plugged in.

Note that LSE redesign does not propagate further in the network, i.e. even without changing

state estimators Σ̃[i], i /∈ {M+1}
⋃

SM+1, properties (8) and (9) are guaranteed for the new DSE.

4.2 Unplugging operation

We consider the unplugging of system Σ[k], k ∈ M. Since for each i ∈ Sk the set Ni contains

one element less, one has that βi in (13) and γi in (16) cannot increase. Furthermore, the set S0i ,

chosen before the removal of system Σ[k], still verifies S
0
i ⊇ Ṽi and therefore previously obtained

optimizers for problem (18) can still be used. This means that for each i ∈ Sk the LSE Σ̃[i] does

not have to be redesigned. Moreover, since for each system Σ[j], j /∈ {k}
⋃

Sk, the set Nj does

not change, the redesign of the LSE Σ̃[j] is not required.

In conclusion, the removal of system Σ[k] does not require the redesign of any LSE in order to

8



guarantee (8) and (9). However systems Σ[i] i ∈ Sk have one parent less and the redesign of LSEs

Σ̃[i] through Algorithm 1 could improve the performance.

5 Example

We consider a system composed by 16 masses coupled as in Figure 2 where the four edges connected

to a point correspond to springs and dampers arranged as in Figure 1. Each mass f ∈ 1 : 16 is

mf

mq1

mq2

mq3

mq4

kf,q1 hf,q1

kf,q2

hf,q2

kf,q3 hf,q3

kf,q4

hf,q4

... ...
...

...

Figure 1: Array of masses: details of interconnections.

an LTI system with state variables x[f ] = (x[f,1], x[f,2], x[f,3], x[f,4]) and input u[f ] = (u[f,1], u[f,2]),

where x[f,1] and x[f,3] are the displacements of mass f with respect to a given equilibrium position

in the plane (equilibria lie on a regular grid), x[f,2] and x[f,4] are the horizontal and vertical velocity

of the mass f , respectively, and 100u[f,1] (respectively 100u[f,2]) is the force applied to mass f in

the horizontal (respectively, vertical) direction. The values of mf have been extracted randomly

in the interval [5, 10] while spring constants and damping coefficients are identical and equal to

0.5. Each mass is equipped with local state estimation error constraints ||e[f,j]||∞ ≤ 1, j = 1, 3

and ||e[f,l]||∞ ≤ 1.5, l = 2, 4.

A subsystem Σ[i], i ∈ M = 1 : 4 is a group of four masses as in Figure 2. Therefore each

subsystem has order 16 and two neighbors. For each subsystem Σ[i] we have 8 outputs that are

the displacements of two masses and the velocities of the other two masses. We obtain models

Figure 2: Position of the 16 masses on the plane. Dashed lines define subsystems Σ[i], i ∈ M =

1 : 4.

Σ[i] by discretizing continuous-time models with 0.2 sec sampling time, using zero-order hold

discretization for the local dynamics and treating x[j], j ∈ Ni as exogenous signals. We design

9



an LSE Σ̃[i], i ∈ M using Algorithm 1 and assuming matrices Qi and Ri in (20) are diagonal. In

Figure 3 we show a simulation where the initial state of each mass is x[f ](0) = 0, f ∈ 1 : 16 and the

control inputs u[f,l](k) = 0.1 sin(k), l ∈ 1 : 2, have been used. We initialize each LSE in order to

have e[i] ∈ Si. Estimation results produced by LSEs that have been designed with δij = 0, j ∈ Ni

are represented in Figures 3(a) and 3(c). Results obtained by setting δij = 1, j ∈ Ni are shown in

Figures 3(b) and 3(d). One can notice that in both cases, state estimation errors converge to zero

and they are bounded at all times.
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(a) State (dashed lines) and

state estimation (continuous

line) of the upper left mass

in Figure 2 at time instants

k = 0 : 29.

0 10 20 30
−1.5

−1

−0.5

0

0.5

1

1.5

k
x [1

,1
:4

]

(b) State (dashed lines) and

state estimation (continuous

line) of the upper left mass

in Figure 2 at time instants

k ∈ 0 : 29.
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(c) Estimation errors for all

states at times k ∈ 0 : 99.
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(d) Estimation errors for all

states at times k ∈ 0 : 99.

Figure 3: State estimation results for LSEs designed setting δij = 0, j ∈ Ni (panels 3(a) and 3(c))

and δij = 1, j ∈ Ni (panels 3(b) and 3(d)). In panels 3(a) and 3(b) the same color has been used

for a state and its estimate: cyan and green lines denote velocities while blue and red lines denote

positions.

In Figure 4 we show a simulation where each state of subsystem Σ[i], i ∈ 1 : 4 is affected by a

disturbance w[i] sampled from the uniform distribution in the set Wi = {w[i] ∈ R : |w[i]| ≤ 0.015}.

This has been obtained setting Di = 116.

Figures 4(a) and 4(c) show results produced by LSEs designed with δij = 0, j ∈ Ni while

Figures 4(b) and 4(d) show the results obtained for δij = 1, j ∈ Ni. In both cases, errors fulfill

the prescribed bounds but do not converge to zero because of the persistent disturbances w[i],

i ∈ 1 : 4.

6 Conclusions

We have proposed a novel DSE for large-scale linear perturbed systems, which guarantees that the

estimation errors are bounded into prescribed sets and converge to zero in absence of disturbances.
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(a) State (dashed lines) and

state estimation (continuous

line) of the upper left mass

in Figure 2 at time instants

k = 0 : 29.
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(b) State (dashed lines) and

state estimation (continuous

line) of the upper left mass

in Figure 2 at time instants

k = 0 : 29.

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

k

e

(c) Estimation errors for all

states at times k ∈ 0 : 99.
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(d) Estimation errors for all

states at times k ∈ 0 : 99.

Figure 4: State estimation results for LSEs designed setting δij = 0, j ∈ Ni (panels 4(a) and 4(c))

and δij = 1, j ∈ Ni (panels 4(b) and 4(d)). In panels 4(a) and 4(b) the same color has been used

for a state and its estimate: cyan and green lines denote velocities while blue and red lines denote

positions.

The algorithm is based on the partition of the overall system into subsystems with non-overlapping

states. In particular, the design of LSEs can be carried out in a decentralized fashion by solving

a suitable optimization problem where just information by parent nodes is required. This allows

one to efficiently update the overall DSE when subsystems are plugged in and out.

Future works include the design of output-feedback PnP schemes combining the state estimator

proposed in this paper and the state-feedback PnP controller presented in [9].

7 Appendix

7.1 Proof of Proposition 1

The proof uses arguments that are similar to the ones adopted for proving points (I) and (II) of

Theorem 2 in [20].

7.1.1 Proof of (I)

Define a matrix M such that its ij-th entry µij is

µij = −1 if i = j

µij =
∑∞

k=0 ||HiĀ
k
iiĀijH♭

j ||∞ if i 6= j.

11



Note that all the off-diagonal entries of matrix M are non-negative, i.e., M is Metzler [21]. We

recall the following results.

Lemma 1 (see [22]). Let matrix M ∈ RM×M be Metzler. Then M is Hurwitz if and only if there

is a vector ν ∈ RM
+ such that Mν < 0M .

Lemma 2. Define the matrix Γ = M+ IM where M ∈ RM×M , IM is the M ×M identity matrix

and Γ is non negative. Then the Metzler matrix M is Hurwitz if and only if Γ is Schur.

The proof of Lemma 2 easily follows from Theorem 13 in [21].

Inequalities (13) are equivalent to Mν < 0M where ν = 1M . Then, from Lemma 1, M is Hurwitz.

From Lemma 2, (13) implies that matrix Γ = M+ IM is Schur.

For dynamics (12), we have

e[i](t) = Āt
iie[i](0) +

t−1
∑

k=0

Āk
ii

∑

j∈Ni

Āije[j](t− k − 1) (21)

In view of (21) we can write

||Hie[i](t)||∞ ≤ ||HiĀ
t
iiH

♭
i ||∞||Hie[i](0)||∞+

+
∑

j∈Ni

γij max
k≤t

||Hje[j](k)||∞.

where γij are the entries of Γ. Denoting ẽ[i] = Hie[i], we can collectively define ẽ = H̃e, where

H̃ = diag(H1, . . . ,HM ). From the definition of sets Ei, we have rank(H̃) = n. We define the

system

ẽ+ = ˜̄Aẽ (22)

where ˜̄A = H̃ĀH̃♭. In order to analyze the stability of the origin of (22), we use the small

gain theorem for networks in [16]. In view of Corollary 16 in [16], the overall system (22) is

asymptotically stable if the gain matrix Γ is Schur and, as shown above, this property is implied

by (13). Moreover, system (22) is an expansion of the original system (see Chapter 3.4 in [23]).

In view of the inclusion principle [24], the asymptotic stability of (22) implies the asymptotic

stability of the original system.

7.1.2 Proof of (II)

First note that, for i ∈ M, since Ei is a zonotope, ||hT
i,τΞi||∞ = 1 for all τ ∈ 1 : τ̄i and

therefore ||HiΞi||∞ = 1. This implies that ||hT
i,τ Ā

k
iiĀijΞj ||∞ ≤ ||hT

i,τ Ā
k
iiĀijH♭

j ||∞||HjΞj ||∞ =

||hT
i,τ Ā

k
iiĀijH♭

j ||∞ ≤ ||HiĀ
k
iiĀijH♭

j ||∞.

Therefore, from (13b), for all τ ∈ 1 : τ̄i it holds

∞
∑

k=0

∑

j∈Ni

||hT
i,τ Ā

k
iiĀijΞj ||∞ ≤

∞
∑

k=0

∑

j∈Ni

||HiĀ
k
iiĀijH

♭
j ||∞ < 1 (23)

The next aim is to prove that there exists an RPI Si ⊆ Ei for the dynamics (12), in particular we

define Si as an outer approximation of the mRPI Si and we prove that the outer approximation

12



always exists.

The mRPI for (12) is given by [14]

Si =

∞
⊕

k=0

Āk
ii

⊕

j∈Ni

ĀijEj . (24)

From [14], for given ǫi > 0 there exist αi ∈ R and si ∈ N+ such that the set

Si(ǫi) = (1 − ǫi)
−1

si−1
⊕

k=0

Āk
ii

⊕

j∈Ni

ĀijEj (25)

is an ǫi−outer approximation of the mRPI Si.

Using arguments from Section 3 of [17], we can then guarantee that Si(ǫi) ⊆ Ei. In fact for all

τ ∈ 1 : τ̄i

sup
s[i]∈Si(ǫi)

hT
i,τs[i] ≤ 1. (26)

Using (24), the inequalities (26) are verified if

sup
{e[j](k)∈Ej}

k=0,...,∞
j∈Ni

σi∈Bǫi
(0)

zxi,τ ({e[j](k)}
k=0,...,∞
j∈Ni

) + ||hT
i,τσi||∞ ≤ 1 (27)

where zxi,τ (·) = hT
i,τ

∑∞
k=0 Ā

k
ii

∑

j∈Ni
Āije[j](k).

Since ||hT
i,rσi||∞ ≤ ||hT

i,r||∞ǫi, conditions (27) are satisfied if

sup
{e[j](k)∈Sj}

k=0,...,∞
j∈Ni

zxi,τ ({e[j](k)}
k=0,...,∞
j∈Ni

) ≤ 1− ||hT
i,τ ||∞ǫi. (28)

Using (10), we can rewrite (28) as

sup
{||dj(k)||∞≤1}k=0,...,∞

j∈Ni

zdi,τ ({dj(k)}
k=0,...,∞
j∈Ni

) ≤ 1− ||hT
i,r||∞ǫi (29)

where zdi,τ (·) = hT
i,τ (

∑∞
k=0 Ā

k
ii

∑

j∈Ni
ĀijΞjdj(k)).

The inequalities (29) are satisfied if

∞
∑

k=0

∑

j∈Ni

||hT
i,τ Ā

k
iiĀijΞj ||∞ ≤ 1− ||hT

i,τ ||∞ǫi (30)

for all τ ∈ 1 : τ̄i.

In view of (23), there exists a sufficiently small ǫi > 0 satisfying (30). Hence we proved that

∀i ∈ M there exists an RPI Si ⊆ Ei for dynamics (12). Moreover if we define S =
∏

i∈M Si, the

set S is an invariant set for system (11) equipped with constraints E and W = {0}.

7.2 Proof of Proposition 2

In the following we use similar arguments of Proof of Proposition 1 (see Section 7.1.2) to prove

that there exists an RPI Si ⊆ Ei for the dynamics (14), in particular we define Si as an outer

approximation of the mRPI Si and we prove that the outer approximation always exists.

The mRPI for (14) is given by [14]

Si =

∞
⊕

k=0

Āk
ii





⊕

j∈Ni

ĀijEj ⊕DiWi



 =

∞
⊕

k=0

Āk
iiṼi. (31)
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From [14], for given ǫi > 0 there exist αi ∈ R and si ∈ N+ such that the set

Si(ǫi) = (1− ǫi)
−1

si−1
⊕

k=0

Āk
iiṼi (32)

is an ǫi−outer approximation of the mRPI Si.

Using arguments from Section 3 of [17], we can then guarantee that Si(ǫi) ⊆ Ei. In fact for all

τ ∈ 1 : τ̄i

sup
s[i]∈Si(ǫi)

hT
i,τs[i] ≤ 1. (33)

Using (31), the inequalities (33) are verified if

sup
σi∈Bǫi

(0)
ṽ[i]∈Vi

zxi,τ ({ṽ[i](k)}
k=0,...,∞) + ||hT

i,τσi||∞ ≤ 1 (34)

where zxi,τ (·) = hT
i,τ

∑∞
k=0 Ā

k
iiṽ[i].

Since ||hT
i,rσi||∞ ≤ ||hT

i,r||∞ǫi, conditions (27) are satisfied if

sup
ṽ[i]∈Ṽi

zxi,τ ({ṽ[i](k)}
k=0,...,∞) ≤ 1− ||hT

i,τ ||∞ǫi. (35)

Using (10) and (4), we can rewrite (35) as

sup
{||d̃i(k)||∞≤1}k=0,...,∞

zdi,τ ({d̃i(k)}
k=0,...,∞) ≤ 1− ||hT

i,r||∞ǫi (36)

where zdi,τ (·) = hT
i,τ (

∑∞
k=0 Ā

k
iiΨid̃i(k)).

The inequalities (36) are satisfied if

∞
∑

k=0

||hT
i,τ Ā

k
iiΨi||∞ ≤ 1− ||hT

i,τ ||∞ǫi (37)

for all τ ∈ 1 : τ̄i.

We proved that ∀i ∈ M there exists an RPI Si ⊆ Ei for dynamics (14). Moreover if we define

S =
∏

i∈M Si, the set S is an RPI invariant set for system (11) equipped with constraints E and

W 6= {0}.

7.3 Notes on the optimization problem (18)

In order to fulfill condition (13b), we need to guarantee at least that

ĀijEj ⊆ Ei

hence

HiĀije[j] ≤ 1, ∀e[j] ∈ Ej .

In order to minimize the effect of coupling terms Āij , from (10) we can solve the following opti-

mization problem.

ηij = min
Lij

max
e[j]=Ξjdj

||dj||∞≤1

||HiĀije[j]||p. (38)
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where p = 1 or p = F . Using arguments similar to the ones adopted in the proof of Proposition

1, from (38) we obtain

ηij ≤ min
Lij

max
||dj||∞≤1

||HiĀijΞjdj ||p

≤ min
Lij

max
||dj||∞≤1

||HiĀijH
♭
j ||p||HjΞjdj ||p

≤ min
Lij

max
||dj||∞≤1

||HiĀijH
♭
j ||p||HjΞj ||p||dj ||p

(39)

Irrespectively of p, there exist constants c1,p > 0 and c2,p > 0 such that

||HjΞj ||p ≤ c1,p||HjΞj ||∞ = c1,p

max
||dj||∞≤1

||dj ||p ≤ max
||dj||∞≤1

c2,p||dj ||∞ = c2,p

Therefore, we can conclude that

ηij ≤ c1,pc2,p min
Lij

||HiĀijH
♭
j ||p

and this motivates the optimization problem (18).
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[15] S. V. Raković and M. Baric, “Parameterized Robust Control Invariant Sets for Linear Sys-

tems: Theoretical Advances and Computational Remarks,” IEEE Transactions on Automatic

Control, vol. 55, no. 7, pp. 1599–1614, 2010.
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