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Abstract— This paper is concerned with the risk-limiting
operation of electric power grids with stochastic uncertain-
ties due to, for example, demand and integration of renew-
able generation. The main contribution is incorporating auto-
regressive-moving-average (ARMA) type prediction models for
the underlying uncertainties into chance-constrained, finite-
horizon optimal control. This uncertainty model leads to a more
(compared to existing work in literature) careful treatment of
correlation in time which is significant especially in renewable
generation yet has attracted limited attention. The paper first
discusses how the resulting chance-constrained optimization
problems can be solved computationally and demonstrates the
effects of the use of the proposed prediction models through
simulation-based case studies with realistic data.

I. INTRODUCTION

The increasing uncertainties due to integration of gen-
eration from renewable sources in the electric power grid
necessitate new reliability metrics and new methods to
assess the operation of the grid against these metrics. We
consider the risk of not meeting certain constraints, e.g.,
supply-demand balance, as the reliability criterion, i.e., risk-
limiting operation or dispatch. This risk is induced from
the stochasticity in renewable generation and demand. Prior
work, including but not limited to [1], [2], [3], [4], on
risk-limiting operation relied on simple statistical models of
uncertainty and did not provide any constructive procedure
to account for the effects of correlation over time. On the
other hand, the outputs of the renewable generators (e.g.,
wind turbines) may feature significant correlation over time
violating an essential assumption in this earlier work. For
example, Figure 1 shows the power spectrum density of wind
generation from a wind farm in Southern California in July,
2006.1 Clearly the spectral density is not uniform implying
correlation over time. In other words, wind generation cannot
be modeled as white noise. In addition to the recent interest
in risk-limiting dispatch with no systematic treatment of
correlation over time, reference [5] takes a step toward
modeling correlation through a Markov chain. This approach
can capture time correlation in wind generation; however, it
requires to discretize power output from wind turbines into
a finite number of levels.
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1The data taken from by the National Renewable Energy Laboratory
(NREL).
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Fig. 1. Power spectrum density of wind generation at from a wind farm
at Southern California in July, 2006.

On the other hand, in modeling community there is a
significant body of work on the modeling of uncertain wind
and demand [6]. In particular, it has been shown that an auto-
regressive-moving-average (ARMA) model is an effective
tool to predict wind generation [7], [8] as well as electricity
demand [9], [10], [11]. Moreover, unlike the Markov-chain
model [5], the ARMA-based prediction models do not re-
quire discretization and can potentially capture correlation
between distant time steps. However, these fruitful results
have not been fully utilized in a control context.

Our work—to the best of our knowledge—takes a first step
toward an integration of ARMA-based prediction models
into chance-constrained model predictive control (CCMPC)
while keeping an eye on the computational tractability
(through modeling). We employ an ARMA model because
it is simple enough to be handled by CCMPC tractably
yet expressive enough to represent the behavior of wind
power. More specifically, an ARMA model describes an
autocorrelated stochastic process by a linear regression with
additive Gaussian noise [12]. From the ARMA model we
obtain a probability distribution of future wind generation
and demand conditioned on the current and past observa-
tions, and use the probability distribution to evaluate the
probability of constraint violations. The main contribution of
the paper is this integration of the ARMA-based model for
renewable generation into risk-limiting operation, which have
been investigated by modeling and control communities,
respectively, though in isolation from each other.

We discuss how the resulting optimization problems can
be solved computationally (particularly how the chance con-
straints can be handled) and demonstrate the effects of the
use of the proposed prediction models through simulation-
based case studies with real (or relatively realistic) data. The
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main observations include the following: Without an ade-
quate prediction model of wind and demand, increasing wind
penetration (i.e., increasing uncertainties) requires a higher
reserve capacity, e.g., typically supplied by conventional
generation. The proposed risk-limiting control methodology
with integrated ARMA-based uncertainty models yields a
reduction in such reserve capacity compared to methods
based on simplistic models of uncertainty. The benefits
become more significant with increasing uncertainty due to,
e.g., increasing wind generation penetration levels.

II. OVERVIEW: RISK-LIMITING GRID CONTROL

The method proposed in this paper can be considered
as a wrapper that is implemented on top of an existing
linear chance-constrained model predictive control (CCMPC)
method and utilizes an ARMA-based prediction of stochastic
processes, such as wind generation and demand. We present
the method in a general way so that it can be applied to a
wide variety of risk-limiting control problems. To this end,
we first present a generalized form of a CCMPC problem in
Section II-A. Then we apply it to simple grid control problem
in Section II-B.

A. General formulation of CCMPC

We consider linear dynamics driven by stochastic distur-
bance input w and represented by the general state-space
model

xk+1 = Axk +Buk + Ewk, (1)
yk = Cxk +Duk + Fwk, (2)

where xk, uk, and wk are the state vector, control vector,
and disturbance at time k, respectively.

Constraints can be represented in a general form, by proper
choice of C, D, and F , as

yk ≤ ck,

where ck is a constant. Since there is uncertainty in xk,
robustly satisfying the above constraint often results in a
conservative solution; when the probability distribution of xk

is not bounded, it is typically impossible to robustly satisfy
the constraint. In the CCMPC framework the deterministic
constraint is replaced by a chance constraint:

Pr[yk ≤ ck] ≥ 1− ϵ, (3)

where 0 < ϵ < 1 is a user-specified risk bound. We also
consider additional, explicit control constraints encoded by
uk ∈ U at each k.

At time step t, CCMPC solves the following chance-
constrained finite-horizon optimal control (CCFHOC) prob-
lem with a given cost function J .

Problem 1: CCFHOC

min J(xt+1, . . . , xt+T , ut, . . . , ut+T−1) (4)
over ut, . . . . , ut+T−1 ∈ U (5)

subject to (1), (2), and (3), k = t, . . . , t+ T − 1. (6)

Note that J can be a function of random variables x, such
as its expectation. In many cases, the cost function is simply
a function of deterministic control inputs u.

Various methods have been proposed to solve Problem 1.
Most of the solution methods fall into one of the following
two categories:

1) An analytical approach, such as [13], [14], [15], which
transforms the chance constraint (3) into a determinis-
tic constraint

F−1
yk

(1− ϵ) ≤ ck,

where F−1
yk

(·) is the inverse cumulative distribution
function of y.

2) A scenario-based method, such as [16], [17],which
evaluates the chance constraint by sampling.

The first approach is computationally efficient but requires
relatively strong assumptions on the probability distribution
of wk. The second approach can be applied to relatively
more general classes of problems but typically leads to higher
computational cost.

The CCMPC (like the regular MPC) solves Problem 1 at
each time step and applies only the initial control input.

B. Example: Risk-limiting power flow and dispatch

We review the risk-limiting power flow and dispatch
problem formulated by [1] and demonstrate that it can be
encoded into Problem 1. Consider a power grid consisting
of a set of buses, N . The set G ⊆ N of generation buses is
connected by transmission links with a given topology to the
set L ⊆ N of load buses, i.e., N = G ∩L. A generation bus
is equipped with wind turbines as well as a conventional
power plant which provides ancillary services. Each load
bus demands an uncertain amount of power. In order to
mitigate the uncertainty in demand and wind generation, each
load bus is (possibly) equipped energy storage. The problem
of interest is the optimal scheduling of, for example, the
ancillary services, storage, and phase angle at each bus over
a finite receding time horizon.

The following notation is used. The superscript i repre-
sents the index of buses while the subscript k represents a
time step.
gik : wind generation at bus i ∈ G
sik : spinning reserve (ancillary service) at bus i ∈ G
dik : demand at bus i ∈ L
rik : energy inflow to the storage at bus i ∈ L
lik : energy level of the storage at bus i ∈ L
θik : phase angle at bus i ∈ N
pijk : power flow from bus i to bus j, for i, j ∈ N , i ̸= j
bij : susceptance of the transmission line between bus i and

bus j, for i, j ∈ N , i ̸= j

Here gik and dik are uncertain quantities modeled as stochas-
tic. The decision variables include sik, rik, and θik.

With the DC power flow approximation [18], pijk is a linear
function of phase angles

pijk = bij(θik − θjk).
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The energy level of the storage is related to the
charge/discharge rate through the difference equation

lik+1 = lik + rik.

For all the nodes, we limit the risk of violating the following
constraint in order to prevent energy shortage

gik + sik ≥ dik + rik +
∑
j ̸=i

pijk .

This system is encoded into the form of (1) and (2) through
the choice of

xk = [l1k, · · · , lnk ]T ,
uk = [s1k, · · · , snk , r1k, · · · , rnk , θ1k, · · · , θnk ]T ,
wk = [d1k · · · dnk , g1k · · · gnk ]T ,
A = In, B = In, E = On,

C = On, D = [−In In L], F = [In − In],

L =


∑

j ̸=1 b
1j −b12 · · · −b1n

−b21
∑

j ̸=2 b
2j · · · −b2n

...
. . .

...
−bn1 · · · −bn(n−1)

∑
j ̸=n b

nj

 ,

where In and On are the n-by-n identity and zero matrices,
respectively.

Furthermore, we impose upper and lower bounds on sik,
rik, lik, θik, and pijk . The bounds are denoted by the subscripts
“min” and “max on the respective variables. We assume
that sik,min and lik,min are zero for all k. These bounds are
encoded into the feasible control set U .

In our previous work [1], the wind generation gik and
demand dik are modeled as a white Gaussian noise. Our
proposed approach handles gik and dik as a colored Gaussian
noise, meaning that their probability distributions are auto-
correlated. In Section IV-B we demonstrate that the proposed
approach significantly reduces the cost of the risk-limiting
power flow and dispatch control.

III. METHOD

The proposed approach consists of off-line and on-line
parts, as illustrated in Figure 2. An ARMA model is iden-
tified off-line using past data. This process is described
in detail in Section III-A. The on-line part, which we
call CCMPC-ARMA, consists of the ARMA model and a
chance-constrained, model predictive controller. CCMPC-
ARMA takes as an input the observed sequence of uncertain
processes, such as wind generation and demand, up to the
present time step. From this input the ARMA model predicts
the probability distribution of the uncertain process over
the current prediction horizon, as discussed in Section III-
B. Then the controller uses this probability distribution to
generate a control sequence that satisfies the probabilistic
constraint by solving the chance-constrained finite-horizon
optimal control problem formulated in Section III-C. The
on-line part is summarized in Section III-D.
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Fig. 2. Illustration of the proposed approach. An ARMA model is identified
off-line using past data of uncertain process, such as wind generation and
demand. During the on-line control, the ARMA model takes as an input the
observed sequence of the uncertain process up to the present time step and
outputs the probability distribution of the process over the current prediction
horizon. Then a CCMPC controller uses this probability distribution to
generate a risk-limiting control sequence.

A. Construction of an ARMA model and preprocessing of
data

For now we assume wk to be a scalar for simplicity, while
an extension to multi-dimensional case is straightforward.

An ARMA model represents a stochastic process in terms
of two polynomials, one for the auto-regression (AR) and the
second for the moving average (MA) [12]. More specifically,
an ARMA model with p autoregressive terms and q moving-
average terms, denoted by ARMA(p,q), is

wk =

p∑
i=1

aiwk−i +

q∑
i=1

bivk−i + vk, (7)

where vk is a white noise (i.e., vk is an independent and
identically distributed random variable). An ARMA model
can be viewed as a whitening filter that represents an
autocorrelated (i.e., colored) process, wk, by a a white noise
vk [19]. It is often assumed that vk has a zero-mean Gaussian
distribution N(0, σ2) with variance σ2. In such a case, wk

also has a Gaussian distribution, but its mean and variance
are time-varying, and the distributions are autocorrelated.
The maximum-likelihood estimation of the parameters, ai,
bi, and σ2, can be obtained by iterative methods such as the
iterative Prony’s method [20]. The order of an ARMA model
is chosen to minimize a model selection criterion such as the
Akaike’s information criterion and the Bayesian information
criterion [12].

Of our particular focus is an ARMA(p,p−1) model, which
can be transformed into the following observable canonical
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form

zk+1 = Pzk +Qvk, (8)
wk = Rzk, (9)

where

P =


a1 1 0 · · · 0
a2 0 1 0
...

...
. . .

ap−1 0 0 1
ap 0 0 · · · 0

 , Q =


1
b1
...

bp−2

bp−1

 , (10)

R =
[
1 0 · · · 0

]
. (11)

(12)

The state vector zk is

zk = [wk, z2,k, · · · , zm,k]
T with (13)

zj,k =

p∑
i=j

aiwk+j−i−1 +

p−1∑
i=j−1

bivk+j−i−1. (14)

This state-space representation of an ARMA model is inte-
grated into a linear CCMPC in the next subsection.

It is often assumed that vk is a zero-mean noise. In such a
case, a stationary process always results in a stable ARMA
model where the mean of the stationary distribution of wk

is zero. Therefore, before constructing an ARMA model
of wind generation, we subtract the mean from the given
data. For example, Figure 3-(a) shows a profile of wind
generation over a month, which is used for the simulation
in Section IV-B. The mean generation over the month,
12.57 MW, is subtracted from the data before computing the
ARMA parameters. The mean is added back when making
a prediction.

Similarly, ARMA models can be used to make a prediction
of demand. Unlike wind generation, energy demand has an
obvious daily pattern, as shown in Figure 3-(a). Therefore,
we perform a different preprocessing for demand data. We
obtain a mean at every time over the day from the given data,
and subtract the circadian mean from the data. For example,
in Figure 3-(b), the circadian mean is shown by the dot-
dashed line. As in wind generation, the circadian mean is
added back when making a prediction.

B. On-line prediction by the ARMA Model

The ARMA model constructed in the previous subsection
is used to make a prediction on-line. Here, we mean by
prediction a set of parameters that specifies the probability
distributions of wk, such as mean and standard deviation.

Let t be the present time step. Roughly speaking, the
prediction can be made by recursively applying (8) and (9)
starting from k = t. In order to do so, we first need to con-
struct the initial state of the prediction model, zt, using (13)
and (14). This requires the values of wt, wt−1, wt−2, · · · , as
well as vt, vt−1, vt−2 · · · . We assume that wt, wt−1, wt−2 · · ·
have been observed at time step t, which simply means
that, for example, the data of the current and past wind
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(a) Wind generation in July, 2006 at a wind farm in Southern California.
Data from the National Renewable Energy Laboratory (NREL) dataset.
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(b) Electricity demand from a typical feeder over three days in July, 2010
in the service area of Southern California Edison. The dot-dashed line
represents the circadian mean of the demand.

Fig. 3. Typical profiles of wind generation and electricity demand. The
one-sigma (standard deviation) interval around the mean is shown by the
two dotted lines.

generation is available. However, the noise, vt, is not di-
rectly observable. If we assume that vt−1, vt−2 · · · vt−q are
available, then vt can be determined from the observations
of wt, wt−1, · · ·wt−p by using (7) as

vt = wt −
p∑

i=1

aiwt−i −
q∑

i=1

bivt−i. (15)

In order to initiate this recursion, the first q steps of vt is set
to its mean value. Then, the present value of vt is updated
on-line at each time step using (15).

Let v̄ and σ2
v be the mean and variance of v. Then, the

mean w̄t+k and variance Σt+k of wt+k are given by

w̄t+k = RP kz0 +

k∑
i=1

RP k−1Qv̄ and (16)

Σwt+k
=

k∑
i=1

RP k−1Qσ2
v(RP k−1Q)T . (17)

C. Formulation of the chance-constrained finite-horizon op-
timal control problem with ARMA

We next integrate the ARMA model into Problem 1 and
obtain a new formulation of the chance-constrained finite-
horizon optimal control problem, which is solved at each
time step in order to obtain the optimal control sequence
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over a prediction horizon. Consider the extended system[
xk+1

zk+1

]
= Ae

[
xk

zk

]
+Beut + Eevt, (18)

yk = Ce

[
xk

zk

]
+Dut, (19)

where

Ae =

[
A ER
0 P

]
, Be =

[
B
0

]
,

Ee =

[
0
Q

]
, Ce =

[
C FR

]
.

Then we formulate the following chance-constrained
finite-horizon optimal control problem.

Problem 2: CCFHOC-ARMA

min J(xt+1, . . . , xt+T , ut, . . . , ut+T−1) (20)
over ut, . . . . , ut+T−1 ∈ U (21)

subject to (18), (19), and (3), k = t, . . . , t+ T − 1.
(22)

Compare (18) and (19) with (1) and (2) and notice that
they have the same form. Therefore, Problem 2 can be solved
by existing CCMPC approaches that can solve Problem
1, such as the analytical and scenario-based approaches
discussed in Section II-A.

For reader’s convenience, we derive the mean and covari-
ance matrix of yt+k below. Here we assume that the white
noise v is a vector, whose mean and covariance matrix are
represented by v̄ and Σv. We denote by x̄t and Σxt the mean
and covariance of the initial state xt. Then,

ȳk = CeA
k
e

[
xt

zt

]
+

k−1∑
i=0

CeA
i
e(Beut+i + Eev̄) +Dut+k,

Σyk
=

k−1∑
i=0

CeA
i
eEeΣv(CeA

i
eEe)

T + CeA
k
eΣxt(CeA

k
e)

T .

In a special case where v̄ follows a Gaussian distribution,
the probability distribution of yk is also Gaussian, whose
mean and variance is obtained as above. Let F−1

SG(·) be
the inverse cumulative distribution function of the standard
Gaussian distribution, N(0, 1). Then the chance constraint
(3) is transformed into a deterministic constraint as

ȳk +
√
diag(Σyk

) F−1
SG(ϵ) ≤ ck,

where diag(Σyk
) is a vector of the diagonal elements of Σyk

and
√
· is the element-wise square root.

D. The CCMPC-ARMA method

The proposed method, namely CCMPC-ARMA, is sum-
marized in Algorithm 1. At time step t, CCMPC-ARMA
solves Problem 2 and applies only the initial control input,
ut. The main difference from typical MPCs is that CCMPC-
ARMA must keep track of the noise process in the ARMA

model, vt, as in line 5 of Algorithm 1. In Figure 2 we
illustrate prediction and control steps separately for ease of
explanation. In Algorithm 1, these two steps are performed
in a combined manner in line 7 since the ARMA model is
integrated in the extended system (18) and (19).

Algorithm 1 CCMPC-ARMA
1: t← 0
2: v−q · · · v−1 ← v̄
3: while do
4: Observe wt

5: vt ← wt −
∑p

i=1 aiwt−i −
∑q

i=1 bivt−i

6: Construct zt by (13) and (14)
7: Solve Problem 2
8: Apply ut

9: t← t+ 1
10: end while

IV. SIMULATION RESULTS

A. Simple dispatch problem

We first demonstrate how the proposed method can im-
prove the performance on a simple problem where a cen-
tralized dispatcher plans supply capacity for the next 24
hours in the presence of uncertainty in energy demand and
supply. The objective is to minimize the total planned supply
capacity over a day in order to minimize the cost, while
making sure that the risk of being in short of supply is
limited to a pre-specified bound, ϵ. This risk-limiting supply
capacity is computed using the proposed CCMPC-ARMA
method. We compare the results with an existing approach
(referred to as “CCMPC-White” hereafter) which models
wind generation and demand by the sum of a circadian means
and a white noise.

More specifically, we formulate the following finite-
horizon optimal control problem:

min
s1,...,s24

24∑
k=1

sk (23)

subject to Pr[sk + gk ≥ dk] ≥ 1− ϵ, k = 1, . . . , 24,
(24)

where gk, and dk are wind generation, and demand at the kth
time step, respectively. The planned supply capacity, denoted
by sk, represents the spinning reserve and energy generation
by conventional (i.e., dispensable) power plants. Note that gk
and dk are random variables predicted by the ARMA model
described in Section III-A.

Observe that this problem is equivalent to Problem 1 by
letting

xk+1 = uk = sk−1, wk = [gk − ḡ, dk − d̄k]
T , c = −ḡ + d̄k,

A = 0, B = 1, Bw = [1, −1].

We define wk so that its mean is zero by subtracting the
average wind generation and demand, ḡ and d̄k. Since
electricity demand has an obvious dependence on time of
the day, we use circadian mean for demand, d̄k. On the other
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hand, since the dependence of wind generation on the time of
the day is not as obvious as demand, we consider a constant
mean ḡ for wind. The proposed approach models the residual
noise wk by an ARMA model while CCMPC-White models
it by a white Gaussian noise.

The probability distribution of gk is predicted using an
ARMA(3,2) model constructed from the real data published
by California ISO2 over 93 days in December in 2010, 2011,
and 2012. During these periods, approximately 2% of the
total energy is supplied from wind turbines on average. In
order to simulate future situations in which the renewable
penetration is significantly higher than the present, we also
considered cases with 20%, 50%, and 80% wind penetra-
tions, by magnifying the wind data. We assume that vk in
(18) has a zero-mean Gaussian distribution with standard
deviation σv. The parameters, ai, bi, σv , are estimated using a
maximum likelihood method from the data. As for CCMPC-
White, the mean and the standard deviation at the kth hour
of a day are obtained statistically from the same data over
93 days.

The results are shown in Table I. We solve the above
optimization problem for 93 days and the table shows the
average. The cost shown in the table is the total supply
capacity planned over a 3-month period, while Pfail is the
resulting probability violation at each hour, computed from
the simulation over the same period. The risk bound ϵ is set
to 10%.

Our simulation results indicate that, with increased wind
penetration, CCMPC-White requires greater amount of sup-
ply capacity because the amount of energy that can be saved
by increasing wind penetration is exceeded by the extra
amount of reserve capacity that is required to absorb the
increased uncertainty in wind generation. Intuitively, this
means that, as we introduce more wind power to a grid,
we need to increase, rather than decrease, the capacity of
conventional power plants in order to provide sufficient an-
cillary service. With such a situation, the benefit of renewable
generation is significantly undermined.

The proposed approach, CCMPC-ARMA, requires smaller
amount of supply capacity than CCMPC-White with all
penetration levels. Most importantly, the required reserve
capacity decreases as the wind penetration increases. This
is because the probability distribution of future net de-
mand (i.e., demand minus wind generation) derived from an
ARMA model has significantly smaller standard deviation
than a white-noise model, as shown in Figure 4. Another
important feature of CCMPC-ARMA is that it uses the
probability distribution of net demand conditioned on the
current and past observations. For example, Figure 5 shows
the mean net demands derived from an ARMA model and
a white-noise model, predicted at 0:00 am on December
31. The white-noise model simply uses the same circadian
mean everyday. On the other hand, an ARMA model predicts
future probability distributions based on current and past few
observations. Since the observed demand is lower than usual

2http://www.caiso.com/

TABLE I
SIMULATION RESULTS OF A SIMPLE POWER DISPATCH PROBLEM. THE

TABLE SHOWS THE TOTAL REQUIRED SUPPLY CAPACITY OVER THREE

MONTHS AS WELL AS THE AVERAGE PROBABILITY OF CONSTRAINT

VIOLATION (Pfail).

Wind penetration 2% 20% 50% 80%

Cost [TWh] CCMPC-ARMA 64.87 61.92 60.78 59.99
CCMPC-White 65.02 65.72 70.67 75.90

Pfail
CCMPC-ARMA 5.93% 3.67% 4.17% 4.71%
CCMPC-White 4.30% 0.32% 0.00% 0.00%
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Fig. 4. Standard deviation (SD) of net demand (i.e., demand minus wind
generation) on December 31, 2012
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Fig. 5. Mean net demand and risk-limiting supply on December 31, 2012

over past few hours from 0:00 am on December 31, the
ARMA model predicts that the mean net demand is lower
than average on this day. Consequently, it requires less supply
capacity and hence results in a smaller cost.

B. Optimal power flow and dispatch

Next we deploy the proposed CCMPC-ARMA method on
the risk-limiting optimal power flow and dispatch problem
formulated and solved by [1], which is reviewed in Section
II-B. We use the IEEE 14-bus system, of which buses 1, 2,
3, 6, and 8 are generation buses. Generation profiles for the
generation buses were created using data from five Southern
California locations provided by NREL. At each location, the
data at 10-minute intervals for five individual wind turbines
during July 2006 were averaged. Load profiles were created
using normalized demand data from 14 typical feeders for
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the month of July 2010.3 The data were interpolated to obtain
points separated by 10-minute intervals to match the wind
generation data. Samples of the data were shown in Figure
3.

In our previous work [1], uncertainty in demand and wind
generation are modeled as white Gaussian noises, whose
mean and standard deviation are obtained statistically from
the data over 31 days of the month for each of the generation
and load buses. For example, the uncertainty in the wind
data at bus 1, shown in Figure 3-(a), was modeled as a
white Gaussian noise with the mean being 12.57 MW and
the standard deviation being 10.68 MW. This is a quite
wide distribution, whose one-sigma interval around the mean
(represented by the dotted lines in Figure 3-(a)) almost covers
the entire range of possible output from the wind generator.
In the present work, the ARMA models are created off-line
for both demand and wind generation at each bus using
the same raw data. Then, during the execution of model
predictive control, the mean and standard deviation of the
demand and wind generation are predicted on-line using the
ARMA models. The standard deviation derived from the
ARMA model is significantly smaller than the white-noise
model, as we show in Figure 7. Another key difference from
[1] is that the previous work scheduled control actions over
a single horizon while this work performs receding horizon
control over a month. In this simulation study we compare
the proposed approach with the receding horizon extension
of [1], which we refer to as CCMPC-White for convenience.

The step cost function is a quadratic map of spinning
reserve and battery charge/discharge rate

Jk =
∑
i∈G

(
hi
1s

i
k

2
+ hi

2s
i
k

)
+
∑
i∈L

hi
3|rik|.

where h1
1 = 0.01, h2

1 = 0.04, h3
1 = 0.03, h6

1 = 0.02, h8
1 =

0.05, h1
2 = 1.5, h2

2 = 1.5, h3
2 = 2.0, h6

2 = 2.0, h8
2 = 3.0, and

hi
3 = 0.01 for all i ∈ L in the simulations. The upper bounds

of the five spinning reserves are s1max = 6.0 p.u., s2max = 5.0
p.u., s3max = 4.0 p.u., s6max = 3.0 p.u., and s8max = 2.0 p.u.
We set bimax = 2 p.u., rimax = 0.5 p.u., and rimin = −0.5
p.u. for all i ∈ L. Finally, the risk bound is set to 5%, i.e.,
ϵ = 0.05.

The wind generation provides 6.7% of the total energy
demand. As in Section IV-A, we also conduct simulations
with magnified wind supply in order to simulate scenarios
with 25, 50, and 75% wind penetration. For each scenario,
the CCMPC-ARMA and CCMPC-White are run over 4,000
time steps with 10-minute intervals.

Table II shows the resulting average cost per day as well
as the average probability of constraint violation (Pfail).
Trends similar to those in Section IV-A are observed. Indeed,
the proposed method, CCMPC-ARMA, always results in a
smaller cost than CCMPC-White. Furthermore, with increas-
ing wind penetration levels, the difference becomes more
significant. The resulting probability of constraint violation

3The data is obtained through personal communication with researchers
from Southern California Edison.

TABLE II
SIMULATION RESULTS OF A RISK-LIMITING POWER FLOW AND

DISPATCH PROBLEM WITH IEEE 14 BUS SYSTEM. THE TABLE SHOWS

THE AVERAGE COST PER DAY AND THE AVERAGE PROBABILITY OF

CONSTRAINT VIOLATION (Pfail) OF THE PROPOSED (CCMPC-ARMA)
AND EXISTING (CCMPC-WHITE) METHODS.

Wind penetration 6.7% 25% 50% 75%

Cost CCMPC-ARMA 1531.6 1310.4 1059.2 902.5
CCMPC-White 1694.8 1880.2 2148.1 2432.9

Pfail
CCMPC-ARMA 6.71% 5.95% 5.36% 4.71%
CCMPC-White 20.2% 17.5% 17.1% 17.0%
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Fig. 6. Required spinning reserve capacity on buses 1 and 2 of the IEEE
14 bus system, planned by the proposed method (CCMPC-ARMA) and an
existing method (CCMPC-White).

by CCMPC-ARMA is slightly above the given risk bound,
5%, except for the scenario with 75% wind penetration.
This is because the actual probability distribution of wind
generation is not necessarily Gaussian. This issue is more
remarkable in CCMPC-White since it uses a fixed probability
distribution for CCMPC regardless of the current and past
observations.

Figure 6 shows the profile of spinning reserve, sik, at buses
1 and 2 over three days, generated by CCMPC-ARMA and
CCMPC-White with 6.2% wind penetration. In both results
the power plant at bus 1 is often utilized at the maximum
output level, 6 p.u., since it has the lowest cost of generation.
Observe in the figure that CCMPC-ARMA always results in
smaller amounts of spinning reserve. This is the main reason
of the cost reduction by CCMPC-ARMA, as shown in Table
II.

CCMPC-ARMA can satisfy the chance constraint with
less amounts of spinning reserve because of the improved
prediction accuracy by an ARMA model. Figure 7 shows the
one-sigma interval around the mean of the wind generation
on bus 1 over the 12-time-step prediction horizon, generated
at 0:00 on July 3. Since CCMPC-White assumes a time-
invariant probability distribution obtained off-line, its one-
sigma interval fails to contain the realized wind generation
profile, shown in the black solid line in Figure 7 even
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Fig. 7. Prediction of the mean and one-σ (standard deviation) interval
deviation over the prediction horizon generated by the ARMA model as
well as the mean and one-σ interval under the white noise assumption.

though having a large standard deviation. On the other hand,
CCMPC-ARMA generates on-line a time-varying probability
distribution conditioned on the observed data at past few time
steps. Note in Figure 7 that the predicted mean of CCMPC-
ARMA starts from the value at the present time step (i.e.,
0:00 on July 3). It correctly predicts the slightly decreasing
tendency of the realized wind generation profile. Also note
that standard deviation of CCMPC-ARMA is significantly
smaller than that of CCMPC-White, but increases over time.
Intuitively, this means that the prediction of far future is more
uncertain than that of near future.

In sum, the simulation results demonstrate that the pro-
posed method can reduce the cost of risk-limiting power grid
control by incorporating an ARMA model, which generates
the probability distributions of wind generation and demand
conditioned on the observed data.

V. CONCLUSIONS

We presented a risk-limiting power grid control method,
namely CCMPC-ARMA, which integrates a chance-
constrained model predictive control with an ARMA-based
prediction model of uncertain renewable generation and elec-
tricity demand. Unlike a white-noise model that is often as-
sumed by existing risk-limiting power grid control methods,
an ARMA-model can provide the probability distribution of
future renewable generation and demand conditioned on the
current and past observations, which typically has signif-
icantly smaller standard deviation. We deployed CCMPC-
ARMA on a risk-limiting power flow and dispatch problem
and empirically showed that the proposed method achieves
significant saving in cost, particularly when having a high
renewable penetration.
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