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Abstract— This paper presents a Model Predictive Control
(MPC) scheme for nonlinear continuous time systems where
an extra performance index, which is not a measure of the
distance to the set point, is introduced to influence the transient
behavior of the controlled system. The scheme is based on the
following fact, proven in the paper: Given a stabilizing MPC
controller, adding a function, integrable in the interval [t,+∞),
to the stage cost does not change the asymptotic convergence
property of the closed loop state trajectory. As a numerical
example, this result is applied to solve a simple visual servo
control problem where an MPC controller drives the state to
the origin while penalizing weakly observable trajectories.

I. INTRODUCTION

This paper addresses the design of a state feedback
sample-data MPC controller for continuous time nonlinear
systems where an additional performance index is introduced
to modify the transient behavior.

In classic MPC schemes, at every sampling time, the
controller selects among all the possible feasible future input
trajectories of the system, the control signal that minimizes
a given performance index. Then, according to the receding
horizon formulation, the initial part of such input signal is
applied to the plant and, once the next sampling time is
reached, the process is repeated. Many MPC schemes have
been proposed in the literature, we refer to [15], [14] and,
more recently, [17], [10] for an overview. From the class
of quasi-infinite horizon schemes, where both terminal cost
and a terminal set are employed, we refer to [3], [7] and
[12] (where the terminal constraint is implicitly satisfied).
In [16], [9], [11] the terminal set is dropped. In that case,
for these unconstrained MPC schemes, the emphasis is on
the computation of a “sufficiently long” horizon length that
ensures stability. In [18] the authors propose an interesting
unifying scheme that borrows from both previous families.

In the papers mentioned above, and in the majority of
MPC schemes, the performance index is chosen to be
a measure of the distance form the desired steady state.
Therefore, selecting the input trajectory that minimizes such
distance, together with an appropriate selection of the MPC
design parameters (e.g., terminal set, terminal cost, horizon
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length), the MPC controller drives the state to the desired
equilibrium point. There are however many applications
where it is desirable to have a more flexible performance
index that does not take into account only the input energy
and the distance to the desired steady-state trajectory. As
an example, in [2] the authors address the problem of
stabilizing a system avoiding weakly observable closed loop
trajectories and propose, among other solutions, an MPC
controller where an observability index that penalizes weakly
observable trajectories is introduced in the stage cost.

Prompted by this observation, in this work we propose an
MPC scheme where an additive stage cost, which determines
the desired transient behavior of the system, is introduced.
As a main result, we show that, if the additive function is
integrable in the interval [t,+∞), where t is the current time,
the convergence of the closed loop state trajectory to the set
point is not compromised.

The remaining of this paper is organized as follows:
The MPC law and the control problem is introduced in
Section II. Section III contains the main result, followed by
Section IV where some considerations on the design of the
additive stage cost and on stability and convergence of the
proposed method are discussed. An application of this result
is presented in Section V, where similarly to [2], an MPC
controller is used to drive the state of a system to the origin
while penalizing weakly observable trajectories. Although, in
contrast to [2], the observability index is used to influence
only the transient behavior and, thus, convergence to the
origin can be established.

II. PROBLEM DEFINITION

Consider the dynamic system

ẋ(t) = f(t, x(t), u(t)), x(0) = x0, t ≥ t0 (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and the input
vectors at time t, respectively, and x0 and t0 are the initial
state and time, respectively.

The system is subject to the following constraints

x(t) ∈ X (t) ⊆ Rn, u(t) ∈ U(t) ⊆ Rm, t ≥ 0, (2)

where the set-valued maps X : R ⇒ Rn and
U : R ⇒ Rm denote the time varying state and
input constraints set, respectively. Next, we define the MPC
optimization problem P(t, z), with (t, z) ∈ R×X (t), where
for a generic trajectory x(·), we denote by x([t1, t2]) the
trajectory considered in the time interval [t1, t2] and we use
the notation x(·; t, z) whenever we want to make explicit
the dependence of the trajectory x(·) on the optimization



problem parameters t and z. For sake of simplicity, the
dependence on time and parameters is dropped whenever
clear from the context.

Definition 1: (MPC problem) Given a pair
(t, z) ∈ R × Rn and a horizon length T ∈ R>0,
the open loop MPC optimization problem P(t, z) consists
of finding the optimal control signal ū∗([t, t + T ]) that
solves

J∗T (t, z) = min
ū([t,t+T ])

JT (t, z, ū([t, t+ T ])) (3a)

s.t. ˙̄x(τ) = f(τ, x̄(τ), ū(τ)) ∀τ ∈ [t, t+ T ]

x̄(t) = z

x̄(τ) ∈ X (τ) ∀τ ∈ [t, t+ T ]

ū(τ) ∈ U(τ) ∀τ ∈ [t, t+ T ]

x̄(t+ T ) ∈ Xf (t+ T )

with

JT (t, x, ū([t, t+ T ])) =∫ t+T

t

l(τ, x̄(τ), ū(τ))dτ + F (T, x̄(T )). (3b)

�
The finite horizon cost JT (·) is composed of the stage cost
l : R × Rn × Rm → R≥0 and the terminal cost
F : R × Rn → R≥0, which is defined over the
time varying terminal set Xf : R ⇒ Rn. We denote
by kf : R × Rn → Rm a feasible auxiliary control law
defined over the terminal set, i.e., kf (t, x(t)) ∈ U(t)
with x(t) ∈ Xf (t), ∀t ≥ t0. In a sample-data receding
horizon strategy, the control input is computed at discrete
sample times T := {t0, t1, . . . }, and the MPC control law
is defined as

u(t) = kMPC(t, x) := ū∗(t; btc, x(btc)), (4)

where btc is the maximum sampling time ti ∈ T smaller
or equal than t, i.e., btc = maxi{ti ∈ T : ti ≤ t}. This
work addresses the problem of designing an MPC controller
that (i) asymptotically drives the state to the origin and (ii)
accepts, as design input, a performance index for the transient
behavior. Toward this goal, the stage cost is defined as

l(t, x, u) := l1(t, x, u) + l2(t, x, u). (5)

where the primary stage cost l1 : R × Rn × Rm → R≥0

defines the desired asymptotic behavior of the closed loop
system, as will be more clear later, and the secondary stage
cost l2 : R × Rn × Rm → R≥0 characterizes the desired
transient behavior.

III. MAIN RESULT

The main assumption of the proposed method is the
following:

Assumption 1: The secondary stage cost function l2(·)
is uniformly upper bounded by a function b : R → R,
with b(·) integrable in the interval [t0,∞), i.e.,

l2(t, x, u) ≤ b(t), ∀ t ≥ t0, x ∈ X (t), u ∈ U(t)
and

L(t) :=

∫ ∞
t

b(τ)dτ < +∞, ∀ t ≥ t0. (6)

�
The bound in (6) guarantees that l2(·) can influence the
behavior of the MPC controller in the transient phase, leaving
the function l1(·) to determine the asymptotic closed loop
behavior. In Section IV-A we provide a meaningful class of
functions that satisfy (6).

Before stating the main result we introduce some assump-
tions, which are common in the MPC literature.

Assumption 2: The function f(·), introduced in (1), is
locally Lipschitz continuous in x and piecewise continuous
in t and u in the region of interest. Moreover, without loss
of generality, it satisfies f(·, 0, 0) = 0. �

Assumption 2, guarantee the existence and, together with
the boundedness of the state trajectory x(·) resulting from
Theorem 1, uniqueness of the solution x(·) of the initial value
problem (1) in closed-loop with the proposed controller.
Note that if the system has an equilibrium point different
from the origin, it is always possible to perform a change
of coordinates such that the origin of the system expressed
in the new coordinates is an equilibrium point. In general,
the region of interest coincides with the desired region of
attraction.

Assumption 3 (Initial feasibility): The optimization prob-
lem P(t0, x0) admits a feasible solution. �

Assumption 4 (Sufficient conditions for convergence):
(i) The state constraint set X (·) and the terminal set
Xf (·) ⊆ X (·) are closed, connected, and contain the
origin. Moreover, the input constraints set U(·) is com-
pact with 0 ∈ U(·).

(ii) The primary stage cost satisfies l1(·, 0, 0) = 0 and
there is a continuous positive definite and radially
unbounded1 function M : Rn → R≥0 such that
l1(t, x, u) ≥M(x) for all (t, x, u) ∈ R× Rn × Rm.

(iii) The function F (·) is positive semi-definite and contin-
uously differentiable almost everywhere2.

(iv) There exists a feasible control law
kf : R × Rn → Rm, defined over the
terminal set Xf (·) ⊆ Rn, such that, for the closed
loop system (1) with u(t) = kf (t, x), the state and
input vectors are such that x(t) ∈ Xf (t) ⊆ X (t)
and u(t) ∈ U(t), respectively, and the following cost
decrease condition holds:

Ḟ (t, x) = Ft(t, x) + Fx(t, x)f(t, x, kf (t, x))

≤ −l1(t, x, kf (t, x)) (7)

for all t ≥ t0 and x with F (·) differentiable at (t, x)
and initial conditions (t0, x0) ∈ R × Rn, with
x0 ∈ Xf (t0). �

1A function f : Rn → R is said to be radially unbounded if f(x) → ∞
as ‖x‖ → ∞.

2A property said to hold “almost everywhere” if the set of elements for
which the property does not hold is a set of Lebesgue measure zero.



The terms Ft(t, x) and Fx(t, x) denote the partial derivatives
of F (·) with respect of the time and the state variables,
respectively. Considering condition (7) to hold almost every-
where allows the use a terminal cost that is non differentiable
in some points (e.g., F (x) = ‖x‖), which can be useful in
the design phase. It is important to stress that replacing l1(·)
with l(·) in Assumption 4 we obtain the well known sufficient
conditions for convergence to the origin of the MPC strategy
(see, e.g., [6], [7], [4], [1] for similar results). It turns out, as
stated in the following Theorem, that Assumptions 1-4 are
sufficient to prove convergence for the proposed strategy, i.e.,
the convergence to the origin is not compromised by adding
an extra cost with bounded integral over [t,∞) to the stage
cost of a stable MPC controller.

Theorem 1: Consider system (1) in closed loop with (4),
where l(·) is decomposed as (5), and suppose that Assump-
tions 1-4 hold. Then, the vector x(t) converges to zero as
t→∞ with region of attraction consisting of the set of states
x for which P(t0, x), introduced in Definition 1, admits a
feasible solution. �

Proof: Consider the optimization problem P(t̂, x̂) and
assume that it admits a feasible solution. Using the minimizer
ū∗(·; t̂, x̂), and the associated state trajectory x̄∗(·; t̂, x̂), we
define the following function

V (t̂, x̂) :=

∫ t̂+T

t̂

l1(τ, x̄∗, ū∗) + l2(τ, x̄∗, ū∗)dτ

+ F (t̂+ T, x̄∗(t̂+ T )) + L(t̂+ T ) (8)

where, in contrast to some classical other functions
used to prove convergence (e.g., [3], [4], [8]), here we
introduce the term L(·). Let uei(t, x) be the extended
input trajectory obtained as a concatenation of the optimal
control input computed at time ti with the auxiliary law

kf (·), i.e., uei(t, x) :=

{
ū∗(t; ti, xi) t ∈ [ti, ti + T ]

kf (t, x) t > ti + T
,

where xi = x(ti), and let xei(·) be the associated
extended state trajectory, thus xei(t) = x̄∗(t; ti, xi), with
t ∈ [ti, ti + T ]. Note that, from Assumption 4 (iv),
the trajectories xei(·) and uei(·) are always feasible, i.e.,
they satisfy (2). Next, we prove that, for any pair (ti, xi)
such that the optimization problem P(ti, xi) admits a
feasible solution and for any δ ≥ 0, the following cost
decrease inequality holds along the extended state trajectory:
V (ti + δ, xei(ti + δ)) ≤ V (ti, xi)−

∫ ti + δ

ti
M(xei(τ))dτ.

To this end, let first consider δ ≤ T .

V (ti + δ, xei(ti + δ)) ≤
∫ ti+T+δ

ti+δ

l(τ, xei , uei)dτ

+ F (ti + T + δ, xei(ti + T + δ)) + L(ti + T + δ)

= V (ti, xei(ti))−
∫ ti+δ

ti

l(τ, x̄∗, ū∗)dτ

+

∫ ti+T+δ

ti+T

l1(τ, xei , uei)dτ +

∫ ti+T+δ

ti+T

l2(τ, xei , uei)dτ

+ F (ti + T + δ, xei(ti + T + δ))− F (ti + T, xei(ti + T ))

+ L(ti + T + δ)− L(ti + T )

where the first inequality arises from the fact that (i) the
extended trajectory is not optimal, and (ii) the minimizer
of JT (·) correspond with the minimizer of V (·) since, for
a given time t, the two functions differ only by a constant
term. Combining this with fact that

∫ ti+T+δ

ti+T
l2(·)dτ ≤∫ ti+T+δ

ti+T
b(τ)dτ = L(ti + T ) − L(ti + T + δ)

and −
∫ ti+T+δ

ti+T
l1(τ, x, kf (τ, x))dτ ≥

F (ti + T + δ, x(ti + T + δ))− F (ti + T, x(ti + T )),
which is obtained integrating both sides (7) from ti + T to
ti + T + δ, results in

V (ti + δ, xei(ti + δ))− V (ti, xei(ti))

≤ −
∫ ti+δ

ti

l(τ, x̄∗, ū∗)dτ ≤ −
∫ ti+δ

ti

M(xei)dτ. (9)

where the last where the last inequality follows from
Assumption 4 (ii) and the fact that l2(·) is nonnegative. Using
similar computations it is easy to conclude that the same
result applies for the case where δ > T .

Inequality (9) proves the decrease of the function V (·)
along the extended trajectory. Next, we show that the same
applies to the closed-loop (1) with (4), i.e., using recursively
the MPC optimization problem in the receding horizon
fashion. To this end, we first observe that the state trajectory
x(·) of the closed-loop (1) with (4) can be viewed as
a concatenation of pieces of extended trajectories, which
means that

V (t, x(t))− V (t0, x0)

≤ −
i−1∑
j=0

∫ tj+1

tj

M(xej (τ))dτ −
∫ t

ti

M(xei(τ))dτ

= −
∫ t

t0

M(x(τ))dτ (10)

with ti = btc. Note that the optimization problem
P(ti, x(ti)) is recursively feasible since, by Assumption 3, it
is feasible at time t0 and the extended input keeps it feasible
for all δ > 0 and, specifically, for the generic interval from
ti to ti+1. From (10) we have that any level set of V (t, x),
which are always compact sets from M(·) being radially
unbounded, is invariant. Thus the closed loop trajectory x(·)
is bounded and confined within the time varying bounded
set {x : V (t, x) ≤ V (t0, x0)} for t ≥ t0. At this
point, in order to prove convergence to the origin, we use
the Barbalat’s lemma (e.g., Lemma 8.2 in [13]). Note that
M(x(t)) is a uniformly continuous function of t because
it is continuous in x with x bounded and x is uniformly
continuous in t, since from Assumption 4 (i), u is bounded.
Moreover, from (10) we have that

lim
δ→∞

∫ t0+δ

t0

M(τ)dτ < + ∞

where the limit exists since the function
∫ t0+δ

t0
M(τ)dτ is

increasing in δ and, from (10), upper bounded. Thus, by
Barbalat’s lemma, M(x(t)) → 0 as t → 0 and, by the
positive-definitiveness of M(·), the state vector x(t) → 0
with t→ 0, which concludes the proof.



IV. CONSIDERATIONS

This section contains a discussion on the implications of
the result presented in the previous section. In particular,
we propose a design technique for the secondary stage cost
l2(·) that complies with Assumption 1. The convergence and
Lyapunov stability of the proposed MPC scheme are also
discussed.

A. Design of the secondary stage cost

Let g(t, x, u) be a performance index for the tran-
sient behavior that we wish to minimize. If Assump-
tion 1 with l2(·) = g(·) cannot be a priori verified,
a simple procedure is to introduce a function p(·), with∫∞
t

p(τ)dτ < + ∞, ∀ t ≥ t0, and

l2(·) = satS(g(·))p(t), satS(x) =


0 if x < 0,

x if 0 ≤ x ≤ S
S if x > S

,

for some arbitrarily big S ∈ [0,+∞). Broadly speaking, p(·)
modulates g(·) that is previously saturated and Assumption 1
is clearly satisfied. Note that, in general it is desirable to
choose a big value for the constant S since, depending on
on the solver used to solve the optimization problem P(·),
a saturated value of g(·) might be considered as a constant
and, thus, have no impact on the optimal solution.

Considering that the goal of l2(·) is to influence the
transient behavior, a natural choice for the function p(·) is
the an exponential function p(t) = Be−αt, where the design
parameters B ∈ R≥0 and α ∈ R≥0 determine the maximum
strength and the duration, respectively, of the effect of l2(·)
in the closed loop system.

Clearly, other choices are possible. For instance it may be
of interest to evaluate the performance index g(·) only within
a finite number of time windows. It this case, a suitable
choice is p(t) = B winW(t) with

winW(t) =

{
1 if t ∈ [ti, ti + Li], (ti, Li) ∈ W
0 otherwise

where a generic element w = (t̄, L̄) ∈ W ⊂ R≥t0 × R≥0

identifies a time window of length L̄ starting at time t̄,
and the set of time windows has a finite cardinality, i.e.,
| W | < + ∞ where, for a generic set A, |A| denotes
its cardinality. Consequently, the bound L(t) ≤ ∑|W|i=1 BLi
holds and, thus, Assumption 1 is satisfied.

B. Convergence and Lyapunov Stability

It is worth noting that, during the transient phase, the
proposed MPC controller can potentially drive the state away
from the origin in order to minimize the secondary stage cost
l2(·). This fact, which is the desired behavior, implies that
stability, in the classic Lyapunov sense (see, e.g., Definition
4.1 of [13]), cannot in general be established even when
convergence to the origin is guaranteed.

More precisely, in a classic MPC setting, under some
extra assumptions (see e.g. [8]), it is possible to show that
the typical function V (·) (i.e., (8) with l2(·) = 0 and

V (t, x)

L(t)

�2(�x�) + L(t)

�1(�x�)

Fig. 1. Illustrative figure of the effect of L(t) on the upper and lowed
bounds of the value function.

L(·) = 0), can be uniformly lower and upper bounded
by class-K functions3 σ1(‖x‖) and σ2(‖x‖), respectively.
This observation, together with the fact that V (·) decreases
along the closed loop trajectory, is used to prove asymptotic
stability of the origin (see, e.g., Theorem 4.16 of [13]). In the
proposed approach such uniform class-K upper bound cannot
be established. In fact, even if σ1(x) and σ2(x) are available
for the original problem (i.e., l2(·) = 0 and L(·) = 0), due to
the extra term L(·) in (8), the upper bound is shifted up by
the value of L(t), as graphically shown in Fig. 1 losing the
properties of the class-K functions. Thus, in general, only
convergence, and not stability, can be established.

Notice however, that guaranteeing only convergence, and
not Lyapunov stability, is not a new in the MPC literature,
see e.g., [5], [6], [4]. This is justified by the fact that
in many practical applications, especially for constrained
system, Lyapunov stability is impossible to satisfy, where
it is possible to design a control law that drives the system
to the origin. We refer to [1] for a nice insight on the topic.

V. SIMULATION RESULTS

Consider the following model

ẋ(t) = u(t), x(0) = x0, t ≥ t0 (11)

where x(t) ∈ R2 denotes the position of a simple holonomic
vehicle and the control input u(t) ∈ R2, its linear velocity,
is constrained as ‖u(t)‖∞ ≤ 3. Given that the system is
linear with polytopic constraints, and choosing the following
quadratic stage cost

l(x, u) = ‖x‖2 + ‖u‖2, (12)

a stabilizing MPC controller can be designed as follows:
(i) compute a linear controller u = Kx that stabilizes the

origin of the unconstrained system (11), e.g., using the
Linear Quadratic Regulator (LQR) approach,

3A continuous function α : [0, a) → [0,∞) is said to belong to class
K, or to be a class-K function, if it is strictly increasing and α(0) = 0. It
is said to belong to class K∞, or to be a class-K∞ function, if it belongs
to class K, a = ∞, and α(s) → 0 as s→ 0
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Fig. 2. System (11) in closed loop with the computed linear MPC controller,
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Fig. 3. Input trajectories of system (11) in closed loop with the computed
linear MPC controller, where the observability index is not considered.

(ii) find the matrix P that uniquely solve the Algebraic
Riccati Equation (ARE)

(A+BK)′P + P (A+BK) + (I +K ′K) = 0,

(iii) define the terminal cost F (x) = x′Px,
(iv) define the terminal set Xf to be the largest level set of

F (x) contained inside the constraints.
This procedure results in F (x) = x′Px,

Xf = { x : x′Px ≤ 9 } with P =

(
2.4142 0

0 2.4142

)
.

Choosing the horizon length T = 1 second and
T = {n0.1, n ∈ N≥0}, Fig. 2 and Fig. 3 show the
state and input trajectories, respectively, of system (11) in
closed loop with the resulting MPC controller associated
to the initial conditions x0 ∈ {[±4,±4]′, [0,±4]′, [±4, 0]′},
t0 = 0. For simulation purposes, system (11) was discretized
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Fig. 4. System (11) in closed loop with the proposed MPC law, and with
an observability index considered in the stage cost function.
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Fig. 5. Input trajectories of system (11) in closed loop with the proposed
MPC law, and with an observability index considered in the stage cost
function.

with a sampling time of 0.1 seconds.
Now, consider that the position of vehicle is continuously

observed by an omnidirectional camera centered at the origin.
Then, the observation model can be defined as

y(t) =
x(t)

‖x(t)‖ , (13)

where y(t) ∈ R2 is a bearing only observation, which
provides information about the direction of the vehicle but
not about the distance.

In order to obtain an index of observability for the sys-
tem under consideration we consider, similarly to [2], the
observability matrix

O(x, u) =
∂

∂x

(
y
ẏ

)
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and we use the fact that the system is locally observable
at a given state and input pair (x̄, ū) if O(x̄, ū) is full
rank. Let σmin(A) and σmax(A) denote the minimum and
maximum singular value of a generic matrix A. To obtain
a measure of the degree of observability, one possibility
is to use the index 1/σmin(O(x, u)), which increases as
O get close to singularity and becomes infinity when O
loses rank. Another index of interest is the condition number
of O, i.e., κ(O) := σmax(O)/σmin(O) , which broadly
speaking, provides a measure of the difference of the quality
of observability of the state components, where κ(O) = 1
if the all the state components have the same quality of
observability.

Analyzing the observability matrix of the system (11)-(13)
considered in this example, it is possible to see that the state
is locally not observable when the velocity vector is parallel
to the position vector, i.e., when the vehicle moves towards
or way from the camera, which means that all the closed
loop trajectories sketched in Fig. 2 are not observable. This
condition, well known in computer vision, comes from the
fact that we cannot observe the distance between the camera
and the vehicle and, thus, only the parallax of observation
(i.e., observation along different lines of sight) provides
meaningful information on the state.

In view of the above remarks, we use the method
proposed in this paper to drive the vehicle to the ori-
gin maintaining with some degree of observability. To
this end, we redefine the stage cost as (5) as (12)
where l1(x, u) = ‖x‖2 + ‖u‖2 and l2(t, x, u) =
sat10100(1/σ2

min(O(x, u)) + (κ(O(x, u)) − 1)2)e−t.

Fig. 4 and Fig. 5 show the associated state and input closed
loop trajectories, respectively, and in Fig. 6 the evolution
of the primarily and secondarily stage cost is displayed. As
result, the vehicle is driven to the origin trough curvilinear
trajectories, which bring more information for the estimation
of the position of the vehicle.

VI. CONCLUSION AND FUTURE WORK

This paper presents a state feedback sampled data MPC
scheme for nonlinear time varying continuous time system.
An additional stage cost, which in general is not a measure of
the distance to the set point, is used to influence the transient
behavior of the controlled system. Convergence to the origin
is guaranteed with the only extra assumption of integrability
of the additive stage cost in the interval [t,+∞), which as
shown in Section IV-A, can in general be enforced. This
MPC scheme is applied to a control problem, taken from
the literature, where an MPC controller is designed to drive
the state to the origin while penalizing weakly observable
trajectories.
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