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LQR performance for multi-agent systems: benefits of
introducing delayed inter-agent measurements

Alexandre Seuret!?, Prathyush Menon?, and Christopher Edwards?

Abstract— This paper deals with the design of an
optimal controller for a set of identical multi-agent
systems. The problem under consideration is to ex-
amine if there is any benefit to adding to the classical
local optimal control law, obtained from solving a
Riccati equation, a term which depends on delayed
relative information with respect to neighbouring
agents. The resulting control law has a local linear
feedback term (from solving the Riccati equation)
and a consensus-like term which depends on a de-
layed version of the relative states with respect to
its neighbours. The resulting closed loop system at
a network level is linear and involves delayed states.
A Lyapunov-Krasovskii approach is used to synthe-
size the gain associated with the consensus term
to provide sub-optimal LQR-like performance at a
network level. Situations are demonstrated when this
approach provides better performance (in terms of
the LQR cost) than when a traditional decentralised
approach is adopted.

I. INTRODUCTION

Research in multi-agent systems has received a great
deal of attention over the past decade. One problem
which is addressed in many of these papers involves
ensuring a collection of multiple agents, interconnected
over an information network, operate in agreement or
in a synchronized manner. Often the topology of the
interconnections is captured as a graph, and many
researchers have obtained novel results by combining
graph theory along with systems and control ideas.
See [1], [6], [16], [19], [21], [26], [28], [34], [39] and the
references therein for further details.

Recently progress has been made in terms of sta-
bilization and consensus in a network of dynamical
systems subject to performance guarantees such as the
rate of convergence and LQR/Hz performance. In [43],
the weights of the Laplacian matrix of the graph are
optimized to attain faster convergence to a consensus
value: this is posed as a convex optimization problem
and solved using LMI tools. The algebraic connectivity,
characterized by the second smallest eigenvalue of the
Laplacian matrix, is maximized in [18] to improve the
convergence performance. An optimal communication
topology for multi-agent systems is sought in [5] to
achieve a faster rate of convergence. A distributed con-
trol methodology ensuring LQR performance in the case
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of a network of linear homogenous systems is presented
in [2]. A decentralized receding horizon controller with
guaranteed LQR performance for coordinated problems
is proposed in [17] and its efficacy is demonstrated
by an application relating to coordination among a
collection of unmanned air vehicles. In [20], the rela-
tionship between the interconnection graph and closed-
loop performance in the design of distributed control
laws is studied using an LQR cost function. In [25],
decentralized static output feedback controllers are used
to stabilize a homogeneous network comprising a class
of dynamical systems with guaranteed Ho performance,
where an upper bound on the collective performance
is given, depending only on the node level quadratic
performance. LQ optimal control laws for a wide class
of systems, known as spatially distributed large scale
systems, are developed in [30] by making use of an
approximation method. In [4], LQR optimal algorithms
for continuous as well as discrete time consensus are
developed, where the agent dynamics are restricted
to be single integrators. However, interesting relations
between the optimality in LQR performance and the
Laplacian matrix of the underlying graph are also devel-
oped. In [24] procedures to design distributed controllers
with Hs and H,, performance have been proposed
for a certain class of decomposable systems. Although
delays are an ubiquitous factor associated with network
interconnections as a result of information exchange
over a communication medium, in all the above research
work ( [2], [4], [17], [20], [24], [25], [30]) no attempt is
made to explicitly address or exploit the effects.
Significant research efforts analyzing stability and
performance of collective dynamics (at network level)
in the face of different types of delays have taken place
in the recent past: references [3], [23], [31]-[33], [35],
[37], [40], [44] are few examples, although this list is not
exhaustive.! Necessary and sufficient conditions for av-
erage consensus problems in networks of linear agents in
the presence of communication delays have been derived
n [33]. Stability criteria associated with the consensus
dynamics in networks of agents in the presence of com-
munication delays was subsequently developed in [40]
using Lyapunov Krasovskii based techniques. Moreover,
the strong dependency of the magnitude of delay and
the initial conditions on the consensus value was also

L Another research area involving the stabilization of time-delay
systems is networked control systems [15], [42]. This is not the
class of problems considered in this paper.



established in [40]. In [31], a network of second order dy-
namical systems with heterogeneously delayed exchange
of information between agents is considered, where
flocking or rendezvous is obtained using decentralized
control. This can also be tuned locally, based only on
the delays to the local neighbours. Both frequency and
time domain approaches are utilized in [31] to establish
delay dependent and independent collective stability.
Subsequently the theory was extended in [35] to the case
of a network formed from a certain class of nonlinear
systems. The robustness of linear consensus algorithms
and conditions for convergence subject to node level self
delays and relative measurement delays were developed
and reported in [32] building on the research described
in [31] and [35]. ‘Scalable’ delay dependent synthesis
of consensus controllers for linear multi agent networks
making use of delay dependent conditions is proposed in
[32]. Reference [44] reports an independent attempt to
achieve second order consensus using delayed position
and velocity information. Recently another methodol-
ogy, based on a cluster treatment of characteristic roots,
has been proposed in [3] to study the effect of large and
uniform delays in second order consensus problems with
undirected graphs. In [37] the performance of consensus
algorithms in terms of providing a fast convergence rate
involving communication delays, was studied for second
order multi agent systems.

Previous efforts to investigate stability and robustness
in the face of delays clearly emphasizes the need to
account for these delays explicitly. However research in
this direction is limited when compared to the available
voluminous research in the case of ‘delay free’ consensus
algorithms. The main contribution of the present paper
is the idea of designing delay dependent distributed
optimal LQR control laws for homogeneous linear multi
agent networks. At a collective network level, a cer-
tain level of guaranteed cost is attained, which takes
into account the control effort. A Lyapunov-Krasovskii
functional approach is used for synthesizing the control
laws in the presence of fixed delays. The efficacy of the
proposed approaches are demonstrated by considering a
homogeneous linear multi agent network where the node
level dynamics are represented as double integrators as
in [31], [37], [44].

II. PRELIMINARIES

In this paper the set of real numbers is denoted by IR.
For all positive integers n, m, the sets R™ and R™*™ and
S;" represent the set of n dimensional vectors, the set of
nxm matrices and the set of symmetric positive definite
matrices of order n, respectively. For all M € R™"*"  the
notation He{M} stands for M + M7T. A column vector
is denoted by Col(.) and a diagonal matrix is denoted
by Diag(.). For € R", |z| is the Euclidian norm of
the vector x. An identity matrix of dimension n x n is

denoted by I,,. The Kronecker product is denoted by
the symbol ®.

The notations for time delay systems are standard.
For 7 > 0, the notation z; refers to a function defined
over the interval [—7, 0] and such that for all § €
[—7, 0], z:(0) = z(t + 0). Finally, the norm |z, =
supge[—r, o)|z(t +0)|.

Basic concepts from graph theory are described in
this section. Standard texts such as [11] can be referred
to for further reading on graph theory. In this paper
bidirectional communication is assumed and hence the
graphs for the networks are undirected. The graph is
assumed to contain no loops and no multiple edges
between two nodes. The adjacency matrix for the graph
A(G) = laij], is defined by a;; = 1 if ¢ and j are
adjacent nodes, and a;; = 0 otherwise. The adjacency
matrix thus defined is symmetric. The degree matrix
is represented by the symbol A(G) = [6;;]. The matrix
A(G) is a diagonal matrix, and each element §;; is the
degree of the i" vertex. The difference A(G) — A(G)
defines the Laplacian of G, written as £. For an undi-
rected graph, £ is symmetric positive semidefinite. The
smallest eigenvalue of the Laplacian £ is zero and the
corresponding eigenvector is given by 1 = Col(1,...1).
The Laplacian is always rank deficient and the rank of
L is n—1 if and only if G contains a spanning tree. The
maximal eigenvalue of the £ is bounded by 2max; §;;
[27].

III. PROBLEM FORMULATION

A. Optimal LQR control without delays

Consider a network of N identical linear systems
given by
ii(t) = AIi(t) + Bul(t) (1)

for i = 1,..., N, where the states z;(t) € R" and the
control inputs u;(t) € IR™. The matrices A € R™*" and
B € R™™ are constant and it is assumed that the pair
(A, B) is controllable. Each agent is assumed to have
knowledge of its own local state information.

The objective is to achieve a suboptimal level of LQR-
like closed-loop performance at each node. Specifically
the control design objective can be stated as one of
designing the gain matrix K such that the cost functions

[o )

3= [ Qe + ol ORu), (2)
0
are minimized for all i = 1,..., N, where Q € S/}

and R € S/ . It is well known that optimal control for
each agent is achieved by finding a symmetric positive
definite matrix P,,; which solves the algebraic Riccati
equation

AT P, + PoptA — Pypy BRT'BT P, + Q = 0.



The optimal control gain is then given by
ui(t) = —Kopeai(t) = —R™'BT Pypy4(t),
and the cost function satisfies
Ji < xl(0)Ppyxi(0).

The problem under consideration in this paper is to
include in the control law of each agent an additional
term which uses the (delayed) measurements of the
relative positions between the agent and its neighbours
viewed from a graph perspective.

B. Collaborative control law wusing delayed measure-
ments

Assume now that each agent has knowledge of delayed
relative state information. The motivation for the intro-
duction of delays in the relative position between agents
has been considered in the literature: see for example
28], [34], [45].

In this paper the relative information communicated
to each agent is given by

zi(t) = > (@it —7) — 2t — 7)) (3)
JET:
where 7 is a fixed delay in the communication of relative
information and J; C {1,2,...N}/{i} is the index set
of the neighbours to node i. Here it is assumed that the
delay is fixed and known. This assumption can be justi-
fied because of the use of buffers in the communication
protocols. This information will be exploited as part of
the design of the control law.
The intention is to design control laws of the form

uz(t) = - optxi(t) - Hzi(t)a (4)

where K, € R™*" results from the solution of the
Riccati equation, and the relative information scaling
matrix, H € R™*", is to be designed to achieve
consensus. Substituting from (4) into (1), the closed
loop system at node level is given by

i(t) = (A — BE op)1s(t) — BHz(t). (5)

Using Kronecker products, the system in (1) at a
network level is given by

X(t)=(In©AX() +(INneB)U®),  (6)
where the augmented state X (¢) = Col(z1(t),...,zn(t))
and U(t) = Col(uy(t),...,un(t)) represents the control

input. The relative informatlon in (3) at a network level
can be written as
Z(t) = (L& L)X(t—7), (7)

where Z(t) = Col(z1(t),...,zn(t)) and L is the Lapla-
cian matrix associated with the sets ;. Using (7) the
control law is given by

U(t) = —(Iny ® Kopt)X(t) — (L ® BH)X(t — 7). (8)

Substituting (8) into (6), the closed loop system at a
network level is given by

X(t) = (In ® Aopt) X (t) —

where Ay = A — BKopt.

Consider the global network level performance index
J = Zf\il J;. This can be rewritten using the aug-
mented vector X (t) as

(L@BH)X(t—1), (9)

[o )

J= / (XT()(Ix © Q)X(t) + UT(t)((In ® R)U(1))dt.
0
(10)
The objective is to design the gain matrix H € R"*™
in a scenario in which the communication delay 7 a
known and fixed.

IV. MAIN RESULT

The following theorem concerns the design of the gain
matrix H.

Theorem 4.1: For a given symmetric £ and a given
scalar € > 0, assume that there exist P, S and Z in S,
and a matrix Y in R™*", such that the following LMI
optimization is performed

ming g 7y . i

subject to
I1(0) < 0, TI(Apaz) <0, (11)
U(P) =0, W¥(S)=0, W(Z) =0,
where
[ YTQ YT'KL,R
o (N) 0 MHTR
o = 0 0
* —Q 0
| * * —R
[ S-Z4¥TQY  Z P
Mo(A) = z -S-Z 0
P 0 T2
= T
I YTAL,
+ He 0 —\HTBT ,
el YT
vy = |1 , VM eSt.

I Y+Y'-M

(12)

Then the gain matrix H given by H = HY ', and
the associated control law

Ul(t) = Koptxi(t) —+ HZZ(t),

guarantees that the closed loop system (9) is asymptot-
ically stable for the constant delay 7 > 0. Moreover the
cost functions (2) satisfy:

Ji < g (J2(0) + Tllzoll? + 72 /2l|0l7) - (13)



Proof: The proof is divided into three steps.
The first parts suggests a model transformation of the
multi-agent system into a single generic system with
parametric uncertainty. The second step deals with the
stability analysis of such systems. The final step propose
a method to optimize the gain matrix H.

Model transformation: Consider a set of multi-agent
systems governed by (1) and connected via an undi-
rected graph represented by a symmetric Laplacian L.
The delay 7 is positive and assumed to be known. Since
L is symmetric positive semi-definite, a spectral decom-
position allows re-writing the Laplacian as £ = VAV
where V € RV*¥ is an orthogonal matrix formed from
the eigenvectors of £ and A = Diag(A1,...Ay) is the
matrix of the eigenvalues of £. Moreover the symmetry
of the Laplacian ensures that the \;’s are real and can
be reordered as 0 < A\; < Apaz(L). Define an orthogonal
state transformation

X VT'eL)X =X, (14)

where X is an element of RV, The closed loop system
(9) in the new coordinates is given by

X(t) = (In ® Ap) X(t) — (A @ BH)X (t —7) (15)

Since A is a diagonal matrix, the system in (15) is
equivalent to the collection of systems

Vi=1,...,N, &) = Aopdi(t) + NBHZ;(t — 7),
(16)

where the variables #; in R"™ represent the " com-

ponents of the augmented vector X. The performance

index J in (10) can also be rewritten as

J, = / (] (1)QE;(t) + a; (H)Ru;(t)dt,  (17)
0

where
ﬂl(t) = Kopt.f?i(t) + )\iHji(t),

for i =1...N. In order to provide an efficient stability
analysis of this set of system, a polytopic representation
is adopted. Indeed the matrices \; H can be viewed as
a set of matrices which belong to a polytope whereby a
real parameter A varies in an interval [0, A\paz]-.

Therefore the problem has become to find the optimal
gain matrix H for the delay system with a polytopic
uncertainty P(\) given by

PN &(t) = Agpra(t) + \BHz(t — 1), (18)

where z is a vector of R™ and A is an uncertain param-
eter in [0, A\jqz] such that the performance index

Jr = /(:ET(t)Q:c(t) +uT () Ru(t))dt, (19)
0

is minimized.

Stability analysis: To solve this problem, a Lyapunov-
Krasovskii theorem dedicated to time-delay systems will
be used. Consider the Lyapunov-Krasovskii functional
given by

Vizy) = acT(t)Px(t)—|—ftt7TacT(s)Sx(s)ds

Hr [L (T —t + 5)d7 (5) Z(5)ds. (20)

Differentiating the functional given in (20) leads to
the expression

V(ze) = 2iT(t)Px(t) + 27 (t)Sz(t)
—at'(t — 7)Sz(t — 1) + 7227 (1) Zi(t)
— [! @7 (s)Zi(s)ds.
(21)
Applying Jensen’s inequality [13] to the last integral
term in (21) leads to
<

V(xy) 22T (t) Px(t) + 2T (t)Sx(t)
o' (t — 7)Sx(t — 7) + 7231 (t) Z2(¢)
— (@) =2t —)TZ(2(t) — 2(t — 7).
(22)
In order to achieve a sub-optimal control design, the
cost function is manipulated in the following manner:

define a new functional
W () = V() + 2" ()Qu(t) + u” (t)Ru(t),  (23)

where the matrices @) and R are from the cost function
defined in (19). Then the objective is to find the ma-
trices P, @ and Z such that W(-) is negative definite.
Note that for all matrices Y € R3"*" the inequality

EN )Y (Appe(t) — ABHz(t — 1) — (1)) = 0,

holds, where
£(t) ==

The the right hand side of (23) can be written as

S—Z+Q Z P
Wi(z) < €7(t) Z -S—-2Z 0 |&@)
P 0 27
KT KT 1"
+&7' (1) { AHT | R| AHT | £
0 0
+26T()Y [ Aope —ABH —I | (1)
(24)

Assume that the matrix Y has the particular struc-

ture
y-1

where € is a positive scalar and where the matrix Y
in R™*™ is nonsingular. This manipulation corresponds



to the use of the descriptor approach proposed in [22].
Define the vector

Y~ ta(t)
§t)=| Y 'a(t —7)
Y~ Li(t)
Then W(-) can be rewritten as
S-z Z p
Wi(x,) < €7(t) Z -S-Z 0
P 0 27
I yrar, 1"
+ 210 \YTHT BT
el —y7T
YTKT R V'K R "
+ XYTHTR | R7! NXYTHTR
0 | 0
YTQ YT 1T\
+ 0 Q| 0 £(1),
0 0
(25)
where

P=YT'PY, S=YTSY, Z=Y"2Y,

Finally, defining the matrix variable H = HY and
applying the Schur complement ensures that the func-
tional W is definite negative if the LMI condition
TI(A\) < 0 for all values of X in the interval [0, Anaz]-
Since the LMI is affine in the unknown parameter A,
the condition II(A) < 0 is equivalent to solving the two
LMI II(0) < 0 and IT(A\pqs) < 0.

Then if these two conditions hold, the functional W)
is negative definite. Integrating W (-) in (25) over the
interval [0, 7] ensures that

T
V(zr) — V(zo) + /(xT(t)Qx(t) +uT () Ru(t))dt < 0.
0
Since V(zr) > 0, a bound of the performance index
is given by
T
VT > 0, / (2T (H)Qx(t) + uT (1) Ru(t))dt < V (xp).
0
By letting T tend to infinity

o0

/ (27 (H)Qu(t) + uT () Ru(t))dt < V(xo).
0
The last step consists of obtaining an expression for
the upper bound V' (x() using the matrix variables of the
LMI. From the definition of the Lyapunov-Krasovskii
functional, V' (zo) is given by

V(xo) = xT(O)Y_TPY_lx(O)
+ fi),r T (s)Y =T SY ~la(s)ds (26)
+ [0 (r+5)aT ()Y T 2V Li(s)ds.

This leads to
Ji < nple(O) + rigllaoll? + pzr2/2lz0 |2,

where, for M = P,S,Z, uyr is the largest eigenvalue
Y-IMY.

Optimization: The optimization corresponds to the
minimization of up, pg and pyz. Consider first the
matrix P. Introduce the parameter y such that up <
1 which can be re-written in the form of a matrix
inequality as follows:

Y T'PY~!t < pul. (27)

The applying the Schur complement

wl 1

1 oyrpy |70

Finally noting that

YT —P)P~Y(Y — P) = 0,

it follows that

YIp'%Y =y +YT - P. (28)

This proves that the condition ¥(P) > 0 implies (27).
Repeating the same procedure, it can be shown that the
LMIs ¥(S) = 0 and ¥(Z) = 0 ensure that Y =TSy ~1 <
wl and Y~-TZY =1 < ul respectively.

The proof is concluded by solving the minimization
of p as suggested in (11). [ |

Remark 1: Following the initialization of the consen-
sus algorithm provided in [40], a pragmatic choice of the
initial conditions for the system (9) is

z(t) = z(0), Vt<O0.

Using such initial conditions, equation (13) becomes
Ji < p(1+7)[2(0)]*. (29)

V. EXAMPLE

In order to illustrate the result of the previous section,
consider a set of 6 systems governed by

0 0 1 0 0 0

. 0 0 0 1 0 0

l‘z(t) = 000 0 IL'%(t) + 10 uz(t) (30)
0 0 0 O 0 1

where the agents are connected according to the graph

2 -1 0 0 0 -1
-1 2 -1 0 0 0

o 0 -1 2 -1 0 0
L= 0 0 -1 2 -1 0
o 0 0 -1 2 -1

-1 0 0 0 -1 2

The eigenvalues of this matrix are 0, 1,3 and 4.
Several different pairs of matrices in the performance
index are considered. The matrix R is chosen equal to



tau=0
tau=0.33
tau=0.66
tau=1 14

14 - = = Without H

tau=0
tau=0.33 }
tau=0.66
tau=1

tau=0 18
tau=0.33
tau=0.66 17
tau=1

~ = = Without H

= = = Without H

(a) Performance index with Q = Q1

Fig. 1.

be equal to 10/ and the matrix @) takes three possible
value, i.e. Q1 = I, and

05 0 0 0 1 0 0 0
Qs — 0 05 0 0 Qs — 0 2 0 0
2= 0 0 2 0 |»%¥3— |0 0 2 0

0 0 0 2 00 0 2

(31)
Figure 1 represents the performance index for the dif-
ferent choices of ). The performance index is computed
according to the initialization setup provided in Remark
1 and with |z(0)|?> = 1. This means that J; < p(1+ 7).

The first comment to make is that, depending on
the choice of @, the shape of the performance index
is significantly modified.

For @ = @i, Figure 1(a) shows that the delay
does not affect the performance index since the curves
obtained for the four delays 0,0.33,0.66 and 1 are
superposed. In this case the minimal cost is obtained for
€ = 1.6. Since this minimum is below the performance
index obtained without introducing interconnections
among the agents, represented by the dash line, this
means that in this particular situation, there is a benefit
to introducing (delayed or not) relative information.

For Q = @2, Figure 1(b) shows similar results to
Figure 1(a) except that the minimum is above the
performance level obtained without introducing rela-
tive information. This means that in this situation the
inclusion of relative information does not improve the
performance index.

For @Q = Qs, Figure 1(c) shows that, in this situation,
the delay affects the performance index. Indeed, the
greater the delay, the greater the performance index.
The interesting issue here is that, depending on the
value of the delay 7, the minimum of the performance
index can be above or below the optimal case without
relative information.

Consider now a set of 4 agents connected through the
Laplacian

2 -1 0 -1

L=] " 1 2

-1 0 -1 2
Since its eigenvalues are 0,2 and 4, the same results are
directly obtained from the previous example despite the

(b) Performance index with Q = Q2

(¢) Performance index with Q@ = Q3

Evolution of the performance index for different matrices @, and different delay with respect to the parameter e.

significant change to £. This shows the strengths of our
approach based on the polytopic representation in (18).

VI. CONCLUSIONS

This paper has considered the design of an optimal
controller for a set of N identical multi-agent systems.
The proposed control law has a local linear feedback
term (from solving a local Riccati equation) and a
consensus-like term which depends on a delayed version
of the relative states with respect to its neighbours.
The resulting closed loop system at a network level
has been decomposed using spectral decomposition of
the associated Laplacian into N independent systems
which depend on the eigenvalues of the Laplacian. This
collection of systems has been viewed from a poly-
topic systems perspective, and a Lyapunov-Krasovskii
approach has been used to synthesize the gain associ-
ated with the consensus term to provide sub-optimal
LQR-like performance at a network level. Situations
are demonstrated when this approach provides better
performance (in terms of the LQR cost) than when
a traditional decentralised approach is adopted. The
examples show that the answer to this problem depends
not only on the value of the delay but also on the
definition of the cost function.
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