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Abstract—Quorum sensing is a decentralized biological process, through which a community of cells with no global awareness
coordinate their functional behaviors based solely on cell-medium interactions and local decisions. This paper draws inspirations from
quorum sensing and colony competition to derive a new algorithm for data clustering.

The algorithm treats each data as a single cell, and uses knowledge of local connectivity to cluster cells into multiple colonies
simultaneously. It simulates “auto-inducers secretion in quorum sensing to tune the influence radius for each cell. At the same time,
sparsely distributed “core cells spread their influences to form colonies, and interactions between colonies eventually determine each
cell’s identity. The algorithm has the flexibility to analyze not only static but also time-varying data, which surpasses the capacity of
many existing algorithms. Its stability and convergence properties are established.

The algorithm is tested on several applications, including both synthetic and real benchmarks data sets, alleles clustering, community
detection, image segmentation. In particular, the algorithm’s distinctive capability to deal with time-varying data allows us to experiment
it on novel applications such as robotic swarms grouping and switching model identification. We believe that the algorithm’s promising

performance would stimulate many more exciting applications.

Index Terms—Quorum sensing, Clustering analysis, Bio-inspired algorithm, Dynamic system, Time-varying data

1 INTRODUCTION

In this paper we develop a novel clustering algorithm,
inspired by biological quorum sensin, and applicable to
time-varying data.

Quorum sensing [1] [2] [3] [4] [5], is a decentralized
biological process by which a community of bacteria cells
interact through their local environment, with no global
information to coordinate collective behaviors. Each cell
secretes signaling molecules called auto-inducers into its
environment and builds up concentration. These auto-
inducers can be captured by receptors, which activate
transcription of certain genes in the cell (Fig. [[). When
few cells of the same kind exist in the neighborhood,
the density of the inducers is low, and no functional
behavior is awakened. However, when the concentration
reaches a certain threshold, a positive feedback loop is
triggered to secrete more auto-inducers and fully activate
the receptors. Specific genes start being transcribed in
all cells, and functions expressed by the genes are per-
formed collectively. Cells can determine whether they
are surrounded in a colony by measuring the autoin-
ducer concentration with the response regulators. Such
colony identification results in cell clustering, and we
draw inspirations from it to develop a new computa-
tional algorithm for data clustering analysis.
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We propose this novel learning clustering algorithm
to integrate real-time applications where data evolves
over-time. We are now faced with novel and challenging
control problems for groups or swarms of dynamic
systems, such as manipulators, robots and basic os-
cilators. Especially as researches in robotics advance,
traditional control theories are no longer sufficient to
provide ideal solutions to all problems in the field. Al-
though many algorithms of self-organization and group
behavior work well on static data sets - we gain the
toolbox of synchronization and contraction analysis from
control theory and we learn the ideas of tracking and
community detection from machine learning, rarely have
these learning algorithms been applied to controlling
real-time dynamic systems. we must acknowledge that
successful applications on time-varying data in image
processing, video and audio recognition have thrived in
the past decades, but we believe more can be done.

Clustering is a basic problem in data analysis and
machine learning. Its task is to separate a set of unlabeled
objects into clusters, so that objects in the same clusters
are more similar to each other than those in other clus-
ters. Many clustering algorithms have been developed:

Hierarchical clustering methods as discussed in
CURE [6], BIRCH [7], have two types: one is a bottom
up approach, also known as the “Agglomerative”, which
starts from a state in which every single data forms its
own cluster and merges small clusters as the hierarchy
moves up; the other is a top down approach, also know
as the “Divisive”, which starts from only one whole
cluster and splits recursively as the hierarchy moves
down. The hierarchical clustering algorithms intend to
connect “objects” to “clusters” based on their distance.



However, the hierarchical clustering algorithms are quite
sensitive to outliers and noise. Once a misclassification
happens, the algorithm is not capable of correcting the
mistake in any future period.

Centroid-based clustering methods (K-means [§],
Mean-shift [9], Medoid-shift [10]), attempt to find a cen-
troid vector to represent a cluster, although this centroid
may not be a member of the dataset. The rule to find this
centroid is to optimize a certain cost function, while on
the other hand, the belongings of the data are updated
as the centroid is repetitively updated.

Distribution based clustering methods such as
expectation-maximization algorithms are closely related
to statistics. They tend to define clusters using some
distribution candidates and gradually tune the param-
eters of the functions to fit the data better. However, the
expectation-maximization algorithm is also very sensi-
tive to the initial selection of parameters. It also suffers
from the possibility of converging to a local optimum
and the slow convergence rate.

Density based clustering methods as discussed in
DBSCAN [11] Mean-shift [9], Medoid-shift [10] define
clusters as areas of the highest density. The low density
areas are usually borders or noise region. The algorithm
handles well noise and outliers in data sets because their
local density is often too low to pass the threshold of
clustering. However by using a predefined reachability
radius, the algorithm loses its flexibility. Also, it relies
on density drop to detect cluster borders, which is not
easily distinguishable, and the algorithm fails to detect
intrinsic cluster structures.

Spectral clustering methods such as Ng-Jordan-Weiss
algorithm [12], Normalized Cuts [13], Power iteration
clustering [14] and Diffusion maps [15], use the spec-
trum(eigenvalues) of proximity matrix to perform di-
mensionality reduction to data sets. The algorithm has
solid mathematical background, but computing eigen-
values and eigenvectors is extremely time-consuming.
Furthermore, since computations in the past provide no
reference for future evolution, the algorithm must be
rerun entirely if the data varies with time. In contrast, the
quorum sensing algorithm we develop in this paper runs
continuously, tracks the variance of data and updates the
result step by step.

To summarize, current techniques suffer from several
limitations: requirements of cluster number inputs; sen-
sitivity to outliers and noise; inability to adapt to clusters
of different density or arbitrary shapes; and most impor-
tantly the discrete and uni-direction process is hard to be
integrated into real-time applications. Meanwhile, these
problems are easily circumvented in nature by herds of
animals - flocks of birds, schools of fish and colonies
of cells all cluster with robustness and flexibility far
exceeding those of artificial algorithms. Therefore, we
seek inspirations from clustering methods employed by
nature to develop novel algorithms that may overcome
these limitations.

Computer science has long benefited from nature-

inspired theories. Similar requirements and mechanisms
may be shared by computational science and biology,
providing a basis for developing various joint appli-
cations related e.g. to coordination, network analysis,
tracking, or vision. Biological insights can inspire new
algorithms [16], as in the work of Yehuda et al. on
borrowing ideas from biology to solve the maximal inde-
pendent set problem [17]. We believe they can also help
establish connections between dynamic system control
and machine learning algorithms for several reasons.
First, a biologically inspired algorithm can be designed
as a dynamical process, which suits real-time control
systems. Second, biological processes perform robustly
in an environment full of disturbances, satisfying the
robustness and stability requirements for learning al-
gorithms and dynamic control. Third, swarms of dy-
namic systems are usually controlled by global decisions.
Applying biological processes to the system, which are
usually distributed environment such as molecules, cells,
or organisms, opens the possibility of local decision mak-
ing. Therefore, bridging dynamic system control with
machine learning through biology inspired algorithms
is promising.

In this paper, we develop a clustering algorithm in-
spired by quorum sensing and colony competition. It
performs well on clustering benchmark datasets. The
unique contribution of the algorithm is its smooth in-
tegration with dynamic systems and control strategies.
With further extensions, control theory may be more
intelligent and flexible. In the rest of the paper, we
describe our algorithm in section 2. Experiment results
are presented in section 3. Lastly, we discuss potential
future works and areas of extensions.

2 ALGORITHM MODEL

To design the algorithm, we model the process of
quorum sensing and colony competitions, including
the auto-inducer discretion, the local influence radius
tuning, the colony establishments, interactions between
colonies and colony splitting and merging processes.
This chapter devotes to the making of the algorithm. We
first provide a succinct overview of the entire process.
The following sections explain the mathematical meth-
ods used in each stage of the simulation.

Based on the characteristics introduced above about
quorum sensing, we design the algorithm as a bio-mimic
process as the following:

a) Every single cell expands its influence by increasing
an “influence radius” in its density distribution function.
Local density, which captures the total amount of influ-
ence around a particular cell, is hence maintained at a
level above zero. This can be viewed as an exploration
stage, when all cells reach out to check whether there
exists a surrounding colony.

b) When the density of any cell reaches a threshold, a
core cell and a colony are established simultaneously.
The newly-established colony then begins to spread its
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Fig. 1. Quorum sensing model in V. fisheri cells, adapted
from [18]. Auto-inducers are secreted in the environment
by Luxl and can be captured by receptor LuxR. The com-
bination of auto-inducer and LuxR in turn stimulates more
secretion of auto-inducers and activates gene expression
for collective behaviors.

influence onto its neighboring cells and local affinity.
Any influence from an established colony would also in-
hibit the infected cells from growing into new core cells,
hence reducing the likelihood of overlapping colonies.
¢) Existing colonies interact with each other to minimize
a cost function to achieve optimized clustering results.
In the mean time merging and splitting happen among
colonies.

d) We obtain the clustering result by analyzing the
colony vector of each cell.

2.1 Gaussian Distributed Density Diffusion

We treat each data as a single cell and use the Gaussian
kernel function to describe secretion of auto-inducers as:
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The Gaussian distribution defines the influence of any
single cell in a local region. And o, acts as the “influence

radius” measuring the secretion ability of each cell. In
such way, we map all the data into a matrix M,
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As we know, f(z,Z;) is cell i’s influence over the en-
vironment. So m;; is the influence of cell j on cell i.

Moreover, d= M x Tt represents local density of each
cell, where
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If the density of a cell is high, we say this cell is “well
recognized” by its neighbors and located in a well-
established colony. Also it is sensible to set a lower
threshold on m;; to make M sparse, since only local
neighbors have major contributions to local density, and
by doing so we can hugely save computation efforts.

2.2 Local Decision for Influence Radius Tuning

Cells tune their influence radius to connect with neigh-
bors and maintain local density. We design the process
to minimize quadratic error between the density vector
and a goal vector @ = a - 1,1, which aims to maintain
each cell’s density level close to a. The vector @ — d is the
error or the “hunger factor”. Biologically, the “hunger
factor” information is carried with the auto-inducers and
captured by receptors. The minimized quadratic error

function is:
Viensity = 1@ — d]|* = J|la - Tnxy — M - T ||?

To minimize it, we take the time derivative of Viensity
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We name the Jacobian matrix as J = (Zd)
Then
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Proposition I
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With this tuning policy for &;’s, we have
d
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In more details,
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Here, the (a — d;) term represents the “hunger factor”
of surrounding cells, and J;; describes cell i’s potential
to satisfy their needs. This proposition, however, can
trigger “over-fitting” problems. To achieve the goal that
every cell’s local density reaches a certain value, the
algorithm may produce some ill-posed results, such as
some “super cells” with infinite influence radius, while
all other cells” influence radius are reduced to 0. We
improve it by adding regularization terms:

G=JTG—d)+B(M—D)é—ad+ i (7)
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additional term ) m;;(o; —o;) provides diffusive bond-
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ing between itsjneighboring cells’ influence radius. In
addition, we add inhibition term —ad to inhibit “super
cell” from taking shape despite of existing needs. The
finit term activates the exploration stage by providing
initial actuation for each cell to expand its influence.
The exploration stage ends when most of the cells have
been recognized by their neighbors. This term acts as
an activator of quorum sensing when stable interactions
between cells and colonies have not yet been established.

Adding these regularization terms also helps stabilize
the system. Since (M — D) is a semi-negative definite
matrix, adding vectors S(M — D)é and —ad makes
the eigenvalues of the system Jacobian more negative,
causing faster convergence to the equilibrium or a region
close to it.

Unfortunately, this proposition is not feasible for
distributed computation. In a distributed computation
system, a cell requires information of all other members
to make decisions. The agent-to-agent communication
we describe in Proposition I. would form a complex
network that makes the task of information collection
of all members too ponderous to complete.

Proposition II.
G=M(@@—d) +B(M—D)G—ad+ i (8)

To overcome the difficulty, we replace J7 with matrix M.
Here M (d— (f) is the local hunger factor vector accumu-
lated at the location of each cell. When local environment
appears to be “hungry” (local hunger factor is positive),
a cell tends to increase its influence radius to satisfy the
demand, and vice versa. The design imitates the biolog-
ical process in nature, in which auto-inducers transmits
the information of each cell’s needs into surrounding
environment following the density distribution.

Assume that influence radius in the same colony
are mostly similar, i.e. M ~ M7, substituting J? with
matrix M does not alter the nature of the model because
the entries in J7 are all proportional to those in M at
the ratio of w
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Proposition III.
For time varying data:
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The time derivative of the cost function has an additional
term d.- x =J X)? . Here Jx is not a Jacobian matrix, since
X is a matrix whose rows represent each data. We just use
the term to represent the local density changes caused
by data varying. The exact term should be:
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It can also be calculated as dx = d — .J,& as an approxi-
mation without expensive calculation.
To reduce the density fluctuation inflicted by data
variation, theoretically we should have
G=JT(G—d)— J IxX
so that ) . B
J,0 4+ JxX = JV(@—d)

However, one problem emerges: calculating the inverse
of a matrix is computationally expensive, especially
when J, is sparse and unlikely to be full rank. So
we introduce an alternative way that does not erase
the density fluctuation caused by motion, yet removes
its influence on the cost function. In more details, by
making
G=1J Ta- 65 +dx

we are tuning Gx’s to make sure that
(CY— Cf)T(Jg(j"X + Jx)?) =0
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In such case, we can precalculate
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Note here that we cannot define
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because of two problems. First, the absolute value of 4
can be very large or even infinite; k; measures the cost
function variation caused by the motion on “cell” i, so
the responsibility to counteract the effects of k; should
be distributed to the cell’s local neighbors instead of
tuning its own influence radius. So we re-designed the
Fxi tuning policy: we define ¥ = M D~ 1k, where D
is a diagonal matrix of density vector d. Moreover, the

total variation of cost function caused by motionis >, k;.



For any k; < 0, keeping it would be beneficial for cost
function minimization. In such case, we can replace any
k; < 0 with 0 to have a saturated and improved version
of tuning policy. Thus, the tuning policy is changed to
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. k!
Oxi = —TZ

I = JZ(@'—J),

K = MD 'k

k, = dXi(a—di) Zf k; <0

dx = d—J,¢ (10)

Contraction Analysis
We use contraction analysis [19] to prove the conver-
gence of both Proposition I and II. Contraction analysis
shows that, given a system & = f(Z,?), if there exists a
constant 5 > 0, such that for VZ,Vt > 0

l(g + 87]:
2°0% 0%
then all solutions converge exponentially to a single
trajectory, independent of the initial conditions. For both
propositions, we treat them as 7 = f(3) — ad, with the
Jacobian matrix F' = %. For Proposition I, after rescaling
the data such that
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Assume after setting a threshold for m;;’s each cell has
less than 5a neighbors, then |}, F;;| < 15. Let o = 15,

we can have % = F — ol as a negative diagonally

dominant matrix, so that the system is contracting, and
converging to a single equilibrium.
For Proposition 11, after rescaling the data such that
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Similarly with the less than 5a neighbors assumption,
|>2; Fijl < 5. Let a = 5, we have the system for
Proposition II contracting, and converging to a single
equilibrium.

The convergence proof by contraction analysis here is
relatively conservative. With other metrics other than the
unity matrix, we may be able to achieve contraction with
less stringent conditions. For example, in our simulations
(shown in ), we can get the system converging to a stable
equilibrium with much smaller a choice.

2.3 Colony Establishments and Interactions

In quorum sensing, when concentration surpasses a
certain threshold, cells begin to produce specific func-
tional genes to perform group behavior. We use this
phenomenon as the criterion for establishing a colony.
When the density of a cell d; surpasses a predefined
threshold, we establish a new jth colony originating
from it and add a n x 1 colony vector ¢; into the colony
matrix C, where C = [¢],¢3,...,¢;21]. €; starts with the
only non-zero entry as 1 in the ith term, which is also
Cij.

In the Normalized Cuts algorithm [13], which is a spec-
tral clustering algorithm widely used for image segmen-
tation tasks, it is designed to minimize the cost function:

cut(A, B) cut(B, A)
Ncuts(A, B) =
cuts(4, B) assoc(A, V)  assoc(B,V)
where
cut(A, B) Z M
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Likewise, we design the colony interactions to mini-
mize a cost function similar to the Normalized Cuts:
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Here Y, . &/ (M + M T)E’j represents the inter-colony
connectivity and ", &/ (M + M7T)¢; represents the intra-
colony connectivity.

Our optimization goal is to separate the colonies so
that cells in the same colony have dense connection
with each other, and cells belonging to different colonies
barely have connections among them, which is equiv-
alently to minimize the cost function Vciony. Conse-
quently, we make
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Adopting the environmental vector ¢, simplifies the
calculation by using global variable updates, which fol-
lows the idea of quorum sensing. We can view the
interaction equations in a matrix form, where C. is a
matrix with each column same as c.:

C=—-(M+M"Co+ (y+1)(M+MT)C



Entries in C are saturated in the range of [0, 1]. Interac-
tions between colonies are composed of two parts: self-
expansion and mutual inhibition. When initial colonies
have not been established, colony expansion pervades.
It simulates a neighbor-to-neighbor infection in which
cells of a colony activate their neighboring cells and pass
on the colony identity. After initial colony expansion,
some colonies become neighboring to each other, thus
mutual inhibition comes into effect. Eventually, it reaches
balance between self-expansion and inhibitions from
others.

Furthermore, we can illustrate such interaction in a
micro view at the boundary of two competing colonies
as shown in Fig. 2t colonies A and B neighboring each
other, with colony vector ¢4 and ¢p, respectively. For
a single cell ¢ in the boundary area, we define the
interaction rules as follows:

Cai ==Y (myj+myi)ep; +7 ) (mij +myi)ea;

J J
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J J
«v is the parameter measuring relative strength of colony
inhibition and expansion. When v = 1, we have ¢4; =
—¢Bi, so if accumulated influence from colony A is larger
than B, as

> (mij +mgi)ea; > Y (mij +myi)en;
J J

then finally c4; = 1,¢p; = 0. Eventually each row in C
has at most one non-zero entry of 1 that appears on the
column whose colony has most accumulated influence
towards the cell. When ~ < 1, inhibition is enhanced,
there might exist blank boundaries between colonies as
the inhibition force from neighboring colonies are so
strong that expanding from neither colony could reach
the cell. Meanwhile when ~ > 1, it is easier for colonies
to spread influence into well connected neighboring
colonies despite of mutual inhibition. At the beginning
stage it is wise to tune up 7, to speed up newborn
colonies growing, and enhance small colonies merging.
Later when interactions become stable, we tune v back
to 1 to achieve a distinct clustering result.

2.4 Colony Merging and Splitting

Among the established colonies, some may be well
connected to each other, while new colonies may still
emerge. Such scenarios require rules for colony merging
and splitting. We calculate a ratio between inter colony
connections and intra colony connections measuring the
possibility of merging one colony into another. We set a
threshold of r;; for colony 4 to be merged into colony j.

& (M +M")E;
Ti; =
T (M4 M)
On the other hand, there may be new clusters splitting
from existing colonies. Since M matrix is made to be
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Fig. 2. The interactions between two colonies

sparse by setting a threshold,inter colony connections
between two well segmented clusters are all zero. As
a result, auto-inducers from one colony can not diffuse
into other colonies. Thus, we set a continuity detecting
vector s; for each colony: evolution of s; follows the
same rules of colony interactions. When the saturated
continuity detecting process reaches a stable equilibrium,
we restart the entire process. Cells identified as outliers
in each iteration are marked as “not recognized” in the
current round and become available for forming new
colonies in next iteration.

2.5 Clustering Result

Finally, we get the result by choosing the maximal entry
of each row in matrix C. The column belongs of such
entries determines the colony identity of each cell. Cells
with null rows are regarded as outliers.

The Pseudo Code of the proposed algorithm is presented
below:

1. Initialize & as 0, form the M matrix, set the parameters
a,b, B,y
2. Begin the process: .
52M(Ei—d)-i—ﬁ(M—D)&—OzO_”-f—fimt
Detect new cluster:

if 3d; > b(b < a) and cell ¢ not recognized by any
colony

create a new colony using cell i as core cell

end
C=—(M+M")C.—C)+~M+M"C
S=—(M+MS.—89)+vy(M+MTS
Cluster segmented detection:

if in the stable state, S # C

update C = S and accept new born clusters

_ & w+MTE

Tij = QLT
Cluster merging:

if Iry; >02,i#j

then we can merge the colony ¢ into colony j

end



3. Achieve the clustering results by counting the C
matrix

For the parameters: v defines the ability of penetration
and crossing density gaps; 3 measures the similarities of
o;’s in local neighborhood; and a measures the sparsity
of the connection graph. With a more connected graph,
we tend to have fewer clusters. Hence, we have derived
the rules for tuning the parameters: if the result suggests
fewer clusters than we expect, we can tune down a and
7, and if influence radius of some cells become too large,
we can tune up § and a.

2.6 Comparison to Other Algorithms

The quorum sensing algorithm we develop in this paper
is not unique in applying the Gaussian affinity matrix
- for example, both the density based clustering algo-
rithms(DBSCAN, DENCLUE) and the spectral clustering
algorithms( Normalized Cuts, Power Iteration Method)
employ similar techniques. However, our algorithm dif-
ferentiates from other clustering algorithms in many as-
pects. First, the density maintaining strategy we develop
makes our algorithm scale-free on the cluster density
issue by keeping the “influence radius” or bandwidth
adaptive for every single data. Clusters, whether dense
or sparse, can all be recognized because they are not
bounded by a unified bandwidth. Second, by making
the bandwidth adaptive for every data, when new data
flows in or drops out and the local density fluctuates, or
when the data moves around which makes the cluster
denser or sparser, the clustering result won’t be influ-
enced. Third, our algorithm can be extended directly
to community detection applications while other algo-
rithms cannot. Unlike the Mean-shift [9] and medoid-
shift [10] methods which use matrices to maximize local
density as a guidance for the data to shift to a represen-
tative center, we establish a sparsely connected network
with relatively constant weights between the nodes. The
network then becomes the influence transmission media
that determines the structure of the data and location
of the clusters. The intrinsic connections in the network
analysis

We borrow the idea of normalized cuts to build
a cost function that measures inter colony and intra
colony connections, but we segment the clusters using
different methods. The spectral clustering algorithms
build on deep mathematical foundations. They analyze
thoroughly the eigenvalue and eigenvector distributions
of the M matrix or its modifications. The quorum sensing
algorithm, as a nature-inspired algorithm, is designed
heuristically by following the nature patterns. The local
connectivity and diffusion are the most central properties
of natural clustering among plants and animals. We
therefore focus on these aspects when developing the
algorithm. The spectral clustering methods, on the other
hand, provide solid theoretical support to our method.

Our estimation of the bandwidth using contraction
analysis grounded in control theory is novel and sound.

Various versions of clustering or density kernel estima-
tion algorithms have been developed recently, such as
Comaniciu et al’s [20], Raykar et al’s [21], and Wu et
al’s [22]. However, they either require complex opti-
mization process to estimate the bandwidth, or rely on
simply guiding rules that don’t have solid theoretical
support. In contrast, our influence radius update rules is
straightforward and provides satisfying results without
over-fitting.

One distinctive advantage of the quorum sensing algo-
rithm is its ability to solve real-time dynamic problems
thanks to its self-organizing natures. Current solutions
for the online clustering problem are abundant: Yixin
et al [23] develop a density-based method requiring
discretization with grids, Zhong et al’s [24] and Zanghi
et al’s [25] study incremental clustering. But majority of
these methods either use the grids configuration which
is not plausible for high dimensional data, or stay in
incremental clustering which means when new data
flows in, relative clustering result can be updated in
real-time. These algorithms, though work effectively on
steaming data or growing databse, are not sufficient in
processing time-varying data such as the locations of
swarms of mobile robots or sensor information from
hundreds of manipulators working on several different
tasks.

Current algorithms cannot process time-varying data
because the designed processes are uni-directional, irre-
versible, discrete and not adaptive. They may be able
to render perfect clustering results on any dataset in
a single instant, yet the results soon collapse if the
data change in the next millisecond; due to the discrete
nature of these algorithms, history provides no valuable
reference to current calculation. All computations need
to be repeated to obtain updated results. In contrast,
our algorithm tackles the problem. The quorum sensing
algorithm possesses the characters of time-consistency,
flexibility, continuity, adaptability. Our clustering result
represents an integral progress where historical results
can provide referring information to future result, so
that calculations in the past are also utilized. Therefore,
besides the satisfying performance in traditional static
datasets, our algorithm is more efficient , flexible and
friendly to novel applications, which will be shown in
the following experiments, especially in the last two
applications.

3 EXPERIMENTS

Our algorithm is tested on several applications, includ-
ing synthetic and real benchmarks datasets, commu-
nity detection, image segmentation, alleles classifica-
tions, and dynamic systems grouping and identification.

3.1 Synthetic Benchmarks Experiments

We provide clustering results in Fig. [3| on four synthetic
datasets that are only nonlinearly separable and cannot
be solved by K-means or distribution based algorithms:



the two-chains model(224 samples), the double-spirals
model(525 samples), the two-moons model(200 samples)
and the island model(236 samples). Our influence ra-
dius tuning policy ensures that the density distribution
closely fits the data topology, which provides distinct
separation boundaries.

3.2 Real Benchmarks Experiments

Iris flower dataset

The Iris flower dataset [26], introduced by Sir Ronald
Fisher, consists of 150 instances forming 3 clusters, of
which two are only nonlinearly separable. The dataset is
to quantify the morphologic variation of Iris flowers of
three species(Iris setosa, Iris virginica and Iris versicolor)
on four features, the length and the width of the sepals
and petals.

Pendigits dataset

The Pendigits datasets [27] is a 16-attributes dataset of
10992 instances. The dataset is a good benchmark for
testing the ability of the algorithm to cluster the data
into much more than 2 clusters simultaneously in a high
dimensional space. We randomly choose 1000 instances
for clustering. Also, we build two subsets of the dataset,
PenDigits01 with digits “0”, “1”(easier) and PenDigits17
with digits “1”, “7”(harder), each with 200 samples.
Polbooks dataset

PolBooks [28] is a co-purchase network of 105 political
books. Each book is labeled “liberal”, “conservative”, or
“neutral”, mostly in the first two category.

We compare our results with cutting-edge algorithms
including Normalized Cuts [13]], Ng-Jordan-Weiss algo-
rithm [12] and Power Iteration Clustering [14], shown
in Table [I} For Iris, our performance is comparable to
the cutting edge methods, we can successfully cluster
the dataset into three clusters with 4 errors out of 150
samples, a 97.3% correctness rate. For Pen-digits, we can
cluster 10 classes simultaneously with overall correctness
rate 86.6% while other methods don’t have such ability.
Moreover, for the two subcases, we outperform the com-
parisons. For the network segmentation task of Polbooks
dataset, although our algorithm is not designed to solve
such tasks, the result is still very satisfying. And we
will discuss more in details about community detection
applications in later sections.

TABLE 1
Clustering result comparison with NCut, NJW and PIC

NCut NJW PIC Ours

Dataset ‘ Instances | Clusters (%) (%) (%) (%)
Iris 150 3 67.3 80.7 98.0 97.3
Pendigits 1000 10 86.6
PenDigits01 200 2 100.0 100.0 100.0 100.0
PenDigits17 200 2 75.5 75.5 75.5 81.5
Polbooks 105 3 84.8 82.3 86.7 83.8

High-dimension Semeion Handwritten Digit dataset
The Semeion handwritten digit dataset [29] was cre-
ated by Tactile Srl, Brecia, Italy. It is consisted of 1593

handwritten digits stretched in a 16x16 rectangular box
in a gray scale of 256 values. So this is a dataset of
1593 instances with 256 attributes, which makes it a
proper dataset to test our algorithm’s performance on
high-dimension data and see whether the “curse of
dimensionality” will influence the overall results.

For our clustering result shown in Fig. 4] we have
achieved 24 clusters with 76.6% overall correctness rate.
As we can see, the averaged image shown in Fig. [4]
adequately reflects the clustered shape of different digits.
Detailed differentiation from writing habits for digits
“27,8”, and “9” has been recognized and segmented in
respective clusters. Among the mis-classifications, pairs
of digits “3” and “9”, “2” and “8”, “1” and “7” were the
major source of confusion, which is intuitive since those
are also the easily misclassified pairs of hand-written
digits that even sometimes confuse human readers, yet
digits like “0” and “5” barely cause any problem.

3.3 Experiments on Community Detection Applica-
tions

Community detection in complex networks is currently
a hot topic which attracts lots of attention in recent years.
The term refers to a process that detects community
structures among networked nodes and divides them
into sets such that each set of nodes is densely connected
internally and sparsely connected between groups. Such
networks could be the internet, metabolic networks, food
webs, neural networks and social networks. There are
various algorithms dealing with the problem, such as
minimum-cut, hierarchical clustering, GirvanNewman
algorithm, clique based methods and modularity max-
imization. Details about each method can be found in
summarizing papers such as [30] and [31]. One critical
advance in the area was made by Newman and Gir-
van [32], whose efforts provided a quantitative measure
for the quality of a partition of a network into commu-
nities, the modularity. The modularity of a partition of
a network can be written as

Q=21 (5

where m is the number of the modules(communities) of
the partition, [, is the number of links inside module
s, L is total number of links in the network and d; is
the total degree of the nodes in module s. What the
modularity measures is actually a sum up of comparison
between the fraction of links inside each module with
the expected fraction of links in that module if links
were located at random. Though suffering from the
resolution limit as introduced in [33] because of lack
of local information, it is still provides a good measure
of the quality of a chosen partition, especially for the
modularity optimization methods that rely totally on it.
Here we also use modularity for reference to compare
our clustering result with a well-known fast algorithm
proposed by Clauset, Newman and Moore (CNM) [34],
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TABLE 2
Clustering result of Pendigits dataset

Cluster I:)I?ré\;zr o 1 2 3 4 5 6 7 8 9 ragzﬁ/o)
1 84 &% 0 0 0 0 0 0 0 2 0 976
2 81 0O 7% 0 0 0 0 0 5 0 0 938
3 31 31 0 0 0 0 0 O 0 0 0 1000
4 81 0O 3 0 0 0 0 78 0 0 0 93
5 143 0 25 115 0 0 0 0 2 1 0 804
6 107 0O 0 o0 0 12 0 0 1 0 4 953
7 63 O 0 0O 0 0 0 0 6 0 0 1000
8 134 0 8 0 9 0 9 0 3 6 18 672
9 60 O 0 o0 0 0 7 0 0 0 5 83
10 1 O 0 o ©0 0 0 ©0 1 0 0 1000
11 61 0O 0 0 0 0 6 0 0 0 0 1000
12 18 O 0 o ©0 0 0 0 0 0 18 1000
13 7 7 0 0 O O 0 O 0 0 0 1000
14 21 0O 0 0 0 0 0 0 0 21 0 1000
15 20 O 0 0 0 0 0 0 0 2 0 1000
16 14 o 0 o o0 ©0 1 0 0 o0 13 98
17 25 O 0 0 0 0 0 0 0 25 0 1000

Overall 261 86.6

(39 as outliers)

and one of its extensions proposed by Biao Xiang, En-
Hong Chen, and Tao Zhou (XCZ) in [35] on a American
football games network Football[32] and a protein inter-
action network Yeast[36]. Also we compare our results
with the betweenness-based algorithm of Girvan and
Newman [32], the fast algorithm of Clauset, Newman
and Moore [34], the extremal optimization algorithm of
Duch and Arenas [37] and another updated algorithm of
Newman [38] on five other datasets. The networks are,
in order, the karate club network of Zachary [39], the
network of collaborations between early jazz musicians
of Gleiser and Danon [40], a metabolic network for the

nematode Caenorhabditis elegans [41], a network of e-
mail contacts at a university [42]and a trust network of
mutual signing of cryptography keys [43].

TABLE 3
Modularity compared with CNM, XCZ and CNM+XCZ

Dataset | Nodes | Edges | CNM  XCZ CNM+XCZ Ours
Football 115 613 0.577  0.538 0.605 0.585
Yeast 2631 7182 0.565 0.566 0.590 0.556

With the results shown in Table 3] and Table [ we
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TABLE 4
Modularity compared with GN, CNM DA and NM

Dataset | Nodes | Edges | GN  CNM DA NM  Ours
Karate 34 156 0.401 0.381 0.419 0419 0404
Jazz 198 5484 0.405 0.439 0.445 0442 0419
Metabolic 453 4065 0.403 0402 0434 0435 0.308
E-mail 1133 10902 | 0.532 0.494 0.574 0572 0.507
Key singing 10680 48632 | 0.816 0.733 0.846 0.855 0.807

can find that our results applying the proposed clus-
tering algorithm on community detection applications
are comparable to top-notch algorithms in the field.
Regarding the performance, we need to keep in mind
that all these algorithms are modularity optimization
methods that focus purely on modularity maximization,
while we don’t know whether they truly achieve the
best partition of the network because of the limits of
modularity measurement. Here we use modularity as a
reference to prove our capability of solving the problem
with satisfying performance.

It is an established fact that clustering and community
detection are similar in many aspects: both problems
share the mission of dividing dataset/network into a
series of sets of data/nodes where data/nodes belonging
to the same group are closer or more densely connected
to each other; both problems require some measure of
distance between data/nodes or clusters/groups. It is
based on these shared properties that some clustering
algorithms including ours can be used on network parti-
tion problems. Among these techniques, the hierarchical
clustering methods are the most frequently used. The
algorithms measure a distance between each pair of
mini-communities and merge them all the way up. Our
algorithm tackles the problem differently. We rebuild the
similarity matrix while maintaining the local density at a
certain level, after which we utilize the network achieved
and local connectivity to determine the influence trans-
mission.

On the other hand, critical differences between cluster-
ing and community detection exist. One key difference is
the proximity measurement. For many clustering meth-
ods other than the hierarchical ones, they require a met-
ric for distance measurement between each pair of data.
In network problems, we have connectivity strength be-
tween nodes, however how to convert such information
into proximity matrix that can be used by clustering
algorithms creates difficult problems. In Euclidean space,
if two data are far away from each other, there would
be no shared neighboring data that is simultaneously
close to both of them. However, in networks, influence
transmission can happen easily, which makes differen-
tiating communities using clustering methods difficult.
Even two well separated nodes who respectively belongs
to a densely connected community can be linked by
some sparsely shared nodes, let alone in cases that some
“super-hub” nodes connecting to a large number of
members in different communities.

We propose several distance measurements.

We know that shortest path between two nodes cannot
provide good measurement because shared neighboring
nodes can make members from two distant communi-
ties closely connected. So we use the proximity matrix
directly as the data matrix and measure distance in
Euclidean space, which means Z;, = [x;1,%;2,..., i, 7]
where z; ; is the link weight between the nodes i, j. We
define the distance between nodea i,j as ||#; — Z;||? in
Euclidean space. Though this metric provides good mea-



surement on nodes connectivity, it suffers from several
problems. First, it cannot deal with weighted network,
since weights on the edges bring in additional differen-
tiation other than connectivity. Second, it fails to provide
enough resolution; for example when we have two nodes
both disconnected from any other nodes in the network,
the distance between the two nodes becomes zero , a
contradiction to the assumption that they are well sep-
arated. Therefore, direct distance measurement is only
one backup plan that works best in dense networks.

The most frequently used distance metric, which we
adopt, is measuring the ratio between the product of
the degrees of two nodes and the square of their shared
connectivity as:

Degree of i Degree of j

Dij =
Y (Shared connectivity between node i,j)2

whose mathematical representation is:

D — sum(A) = sum(AST
A+ DA+ o (A4 1)+

where € is a small positive number to avoid singularity

and sum(A) is a column vector calculating totaled degree
of each node. In this case, we are measuring the ratio of
shared neighbors between two nodes against their total
degrees, such that for some sparse connections between
two dense communities, when compared to the degree
of the connected nodes, the sparse connections is heavily
weakened because the end nodes of such edges share rel-
atively little neighbors rather than with nodes from same
community. The hub nodes problem can also be reduced.
Though the hub nodes may have connections sparsely
distributed in every community, if taking against their
total degrees, such influence can be quickly weakened.
Because they are not “focused”, one can regard these
nodes as close to every community as actually far away
from every community. Though this measurement is by
no means perfect, our algorithm which relies on such
distance definition provides satisfying clustering results
on the series of network datasets presented above.

3.4 Novel Experiment on Application for Alleles
Clustering

This section specifies the application of classifying the
supertypes of the major histocompatibility complex
(MHC, also called HLA in humans) alleles, especially
the DRB (HLA-DR chain) alleles. As introduced in [44],
it is important to understand similarities of DRB alleles
for the designation of high population coverage vaccines.
There are only no more than 12 HLA II alleles in each
HLA gene, and an HLA gene has the ability to produce a
large amount of allelic variants. It is difficult to design a
vaccine that can be effective when dealing with a large
population. Yet, the HLA molecules have overlapping
peptide binding sets, so by grouping them into clusters,
or supertypes, molecules in the same supertype will
have similar peptide binding specificity. Although the
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Nomenclature Committee of the World Health Orga-
nization has given extensive tables on serological type
assignments to DRB alleles, the information is not yet
complete. So the work of grouping the alleles into groups
and compare them with the WHO labels would be
helpful to the understanding of similarities of alleles and
also provide predictions to the unlabeled DRB alleles. In
the work of [44], Wen-Jun et al. analyzed 559 DRB alleles,
and proposed a kernel matrix based on BLOSUM62
matrix measuring the distance between the alleles as

K':AxA—Ras
Ly _ Q(z,y) B
K= G 77"

where

=Y Qx,y),Vx € A

yeA

Based on this, for two amino acid strings of the same
length k, u = (u1,ug, ..., ux), v = (v1, V2, ..., Ug)

k

H Kl(ui,vi)

i=1

K (u,v) =

and further, for two amino acid with different length f

and g
Z K3 (u,0)

HUH H H %
all k=1,2,...

K3(f.9) =

and the normalized kernel K
K(z,y)
K(z,y)K(y,y)

And finally, based on the kernel matrix, for the alleles
set N with 559 components, the distance between the

alleles is
IIN | 2 (KR

ceN

K(.I],y) =

Dy2(a,b) — K3,(b,0))?)2

We utilize the proposed distance in our Gaussian ker-
nel, with the same tuning policy. The clustering result
compared to [44] is shown in Table Our result has
no misclassifications. Yet we have classified 25 alleles as
outliers, which fall into some clusters in [44] using hier-
archical clustering methods. Outliers such as DRB5*0112,
DRB1*1525, DRB1*1425, DRB1*1442, DRB1*1469 and
DRB1*0832 are discussed as exceptions in [44], which
makes them more doubtful. Also we share same con-
clusions on exceptions like DRB1*0338, DRB3*0115; and
likewise classify DRB1*1440 , DRB1*1469, DRB1*1477,
DRB1*1484, DRB1*14116 and DRB1*14102 into the ST8
supertype.

Our algorithm is proved to be effective on clustering
multiple clusters simultaneously for alleles data, and
also our results support the conclusions of Wen-jun
et al.’s work on the mathematical foundation analysis
of amino acid chains. The detected outliers may lead
further analysis and provide potential directions to bio-
logical researchers.



TABLE 5
Clustering result comparison of alleles clustering

Supertype | Number of Alleles Misclassified Outliers
ST52 43 0 0
ST3 63 0 6
ST6 100 0 2
ST8 52 0 2
ST4 93 0 6
ST2 68 0 1
ST5 34 0 1
ST53 6 0 0
ST9 16 0 1
ST7 18 0 1
ST51 15 0 0
ST1 34 0 2
ST10 3 0 3
Overall 25 0 25

3.5 Experiments on Image Segmentation

Here we test our algorithm on the applications of im-
age segmentation, which is the process of partitioning
an image into multiple segments. Image segmentation
can simplify the representation of an image. One very
popular method of image segmentation is normalized
cuts developed by Jianbo Shi and Jitendra Malik [13] as
mentioned in previous part of the article. It is designed
to minimize the cost function:

cut(A, B) cut(B, A)
Ncuts(A,B) =
cuts(4, B) assoc(A, V)  assoc(B,V)
where
cut(A, B) Z Myj
i€A,jEB
assoc(A, V) Zm”
i€A

By taking the spectral methods the second smallest
eigenvector and the following eigenvectors of matrix
D2 (D — W)D? provide the segmentation of the image
part by part, where D is the diagonal matrix of each
node’s degree and W is the proximity matrix of the
network.

To apply our algorithm on image segmentation, we
use both the spatial location and the intensity of pixels
to formulate the distance between nodes as:

X)) = XD if IXG) =X)I? <r
Dij=||1i—fj||2*{(l ()= X i 1X() - XG)|2 <

otherwise
where X (i) is the spatial location of node i, and I(i) is
the pixel intensity of node i. We compare our image seg-
mentation results on selections of Berkeley benchmark
images [45] against results of both normalized cuts and a
novel algorithm using visual oscillators [46]. The results
are shown in Fig. As we can see from the results,
our algorithm is fully capable of dealing with the image
segmentation tasks, reflecting some details and merging
connected segments with similar intensities. Based on
the results, we will consider testing applications on
object tracking for videos incorporating optical flows
information in the future.
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3.6 Experiments on Dynamic System Grouping

In this section, we introduce applications on clustering
dynamic systems, which show our algorithm’s capability
on processing time varying data in a continuous way.
The clustering results are flexible: they change according
to the variation of data, which can be regarded as an
integral over time.

3.6.1 Application I. Real-time clustering of mobile robots

For natural colonies such as schools of fish, flocks of
birds and hordes of buffaloes, groups merging and split-
ting are smooth and elegant, which gives the colonies
flexibility to circumvent obstacles and dangers. There
are no absolute leaders or regional coordinators in the
herd, yet the members coordinate and interact with local
neighbors, that eventually realizes global coordination.
There are already researchers working on the projects
of swarm intelligence and swarm robotics, such as Vijay
Kumars group in University of Pennsylvania and The
Kilobot Project from Radhika Nagpals group in Harvard
University. However, current researches mostly focus on
the grouping behavior of tens of robots. When con-
sidering communi- cations among thousands of robot
agents, we need to design a wholly novel mechanism for
agents to communicate and interact with neighborhoods
efficiently and quickly.

Our first application is to cluster time-varying data
such as locations of mobile robots to test flexible group-
ing. As explained in [47], synchronization will enhance
resistance to noise and improve robustness of network.
Hence potentially, we can couple agents together to
achieve synchronization by forming contracting systems
as introduced in [48] and [49]. Such dynamic grouping
and coupling would help enhance control performance,
which can be analyzed in the future.

In our simulation, 200 robots are located as the two-
moon shape as previously introduced, moving around
locally with radius of 0.5 and random speed in the
range of [2, 4]. During that time, 30 new robots join
the group, and another subset of robots migrate to form
new clusters. For potential real world application, we
can use electromagnetic emitters and intensity sensors
to actualize the mechanism of agent-environment-agent
interaction.

From Vide Fig. E] and Fig. [8) we see that the cluster
number is first merged down to 3, and then varies with
the merging and splitting events, exactly describing the
real-time changes of robots migration. And shown in Fig.
[7} the influence radius tuning is capable of handling local
density variations: it is tuned down responding to local
high density, and vice versa, to preserve balance. The re-
sults prove our capability of clustering time varying data
with accumulated information, and handling variations
of cluster numbers.

1. http:/ /www.youtube.com/watch?v=EshxTGNpQC4
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Fig. 5. Image segmentation results compared with normalized cuts and visual oscillators on the Berkeley dataset.
First column: original images. Second: our segmentation results. Third and fourth column: results of two-layer neural
oscillators and normalized cuts. Last column: human segmentation results.
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3.6.2 Application Il. Multi-model switching with cluster-
ing of adaptive systems

As introduced in [50] [51], multi-model switching control
can improve transient control performance and preci-
sion. Suppose we have many unknown dynamic sys-
tems to control, with the condition that we have the
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Fig. 8. Cluster numbers of over the simulation time

information that the parameters configurations can only
fall into certain limited choices. It is possible to cluster
the dynamic systems and figure out who share the same
parameters configuration as one group. Here we propose
a new method for multi-model switching control:
Suppose we have a system with unknown parameters,
which fall in limited possible parameters configurations.

1) Initially, we use adaptive control to assure ac-
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Fig. 6. Dynamic grouping of mobile robots locations

2)

3)

ceptable performance. Simultaneously, groups of
virtual systems are simulated with the same control
input whose parameters scatter around the pre-
known choices.

When the density of virtual system is stable after
tuning, we calculate local density of the real sys-

tem: o
n.oo_ Hfrr-*2fiH2

deo=Y e (12)

i

where f, and f; are Fourier transform of the input
signals.

If d, exceeds a predefined threshold, we know
the real system belongs to a virtual cluster. Hence

we can achieve the according real parameters and
switch to robust control which provides more pre-
cise transient control performance.

4) Further, if the parameters vary again, by detecting
d, dropping, we can resume adaptive control to
maintain acceptive performance and wait for the
next time that d, surpasses the threshold.

For experiment, we use 60 virtual dynamic systems as

m;, b;, k; are unknown parameters m,, b;, k; scattering
around three known choices: [4,3,2],[2,4,3] and [3,2,4],
with 20 systems each. And we have a “real” system,
whose parameters m,,b,, k, are set as [4,3,2] initially,



and then changed to [24,3]. To track the trajectory

xq(t) = sin(2wt), define s = & — &4 + Mo — x4)
and the Lyapunov function as
V = 0.5ms® +0.5(m —m)? + 0.5(b— b)? +0.5(k — k)> > 0
(13)
then
vV o= msé—l—ﬁz*ﬁ’t—&—lg*i)—i—jcfc

= i+ bxb+ kk +ms(i — iq+ Mi — iq))
= 4 bxb+ ko k+ s(u—miq— bli|d — ka
+Am (i — &4))

So by choosing control law:
u = 1(iq — MNd — £4)) + bli|d + kx — ks (14)

where s = 7 + A%, k; > 0 is a constant, and adaptation
law:

m = —s(Zq — N& — 2q)) (15)
b= —sl|i|@ (16)
k=—sz 17)

We can get V = —k152 < 0. Also since V is bounded,
by using Barbalat’s lemma, we can have V converging
to 0 asymptotically. And thus s and = —z4 will converge
to 0 asymptotically since s can be considered as a first
order filter for x — x4.

We know

(ig — N — dq)) + bla|a + ka
converges to 0 asymptotically and thus
u e m(Ey — Na — &q)) + b|2|z + ka

from adaptive control theory. Systems with similar pa-
rameters require similar inputs. So that we can use
the input Fourier transform vector to measure distance
between systems in our algorithm in this case.
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Fig. 9. Parameter estimations of the real system

Shown in Fig.[9|and Fig.[I0} soon after the multi-model
switching starts at ¢ = 10s, density of the real system
surpasses the threshold 5, and parameters are estimated
correctly. After the parameters change at ¢ = 20s, the
density drops with the control mode switched to adap-
tive control. After about another 10 seconds, the density
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is high again, and the system is correctly estimated with
new parameters.

With the applications above, we show the potential
of combining our algorithm with dynamic systems. The
proposed algorithm imitates the smooth grouping and
coordination of natural colonies and the results prove
the reliability of it.

4 CONCLUSIONS

This paper presents a dynamic clustering algorithm
inspired by quorum sensing. Our goal is to present
a potential bridge between modern machine learning
technologies and adaptive estimation and control. Clus-
tering problem is chosen as a breakthrough point. We
take inspirations from natural colonies that have great
coordination and synchronization to search for answers
and solutions. Experiments show that our algorithm per-
forms as well as some state-of-the-art clustering methods
on static datasets, and also performs well on dynamic
clustering tasks with time-varying data. Extensions to
applications such as community detection and image
segmentation both prove to be promising. Our algo-
rithm’s advantages may be viewed as follows.

1) Since the influence radius is tuned to preserve local
connectivity, the algorithm can adapt to clusters
with different sizes and variations, even in the
presence of noise and outliers. Also, it can naturally
cluster data that are not linearly separable.

2) Its decentralized nature is suitable for distributed
computation. For instance, robot communication
may be realized with agent-environment interac-
tion.

3) By building the adaptive density matrix or say
weight evolving network, the algorithm is versatile
enough to be used in community detection, image
segmentation and further extending application.

4) The algorithm itself is consisted with combination
of continuous dynamic systems, which is quite
different from most other clustering techniques.
Such differentiation endowed by the inspiration of
nature contributes to the possibility of applying
it to dynamic systems where other discrete algo-
rithms are incompatible or incompetent to perform.

5) The most important merit that differentiates our
algorithm from other existing ones is its highly
adaptability with the varying data. The algorithm



can not only adapt to new situations quickly when
new data flows in, but also provide consistent
clustering results on time-varying data through
flexible merging and splitting. Such real-time clus-
tering results can be used on other dynamic or
real-time systems with no need of re-committing
the whole process, and this is exactly what other
existing algorithms cannot provide. The quorum
sensing algorithm breaks free the limits of current
applications of clustering and extends applications
to cases like grouping swarms of robots.

The computation complexity would be O(n)® with
single processor, which means computation time is not
one of our strengths. However, by making the density
matrix more sparse, computation can be hugely reduced.
Also, with computation power becoming more and more
inexpensive, if we use the algorithm on real robots
clustering, with distributed computation, the advantage
of quorum sensing as a decentralized process can be
fully utilized and computation of single robot would
be hugely reduced to linear time. The other potential
problem of this algorithm comes from the choice of a
few parameters. During our experiments, we found that
with our fixed set of parameters of radius tuning part,
steady performance on various dataset is guaranteed. Yet
different sets of parameters in the colony interaction part
may bring different clustering results, yet they mostly
fit with the distribution of data, what matters is which
subgroups get merged into large ones and which not.
Deeper understanding of the influence of configuration
of parameters is one of our further topic.

For future work, we should study developing rules
for dynamically tuning parameters, such that in different
stages of algorithm, the algorithm itself can be evolving.
In addition, dynamic system metrics may require more
general methods for extracting feature vectors. Last but
not least, more applications involving interactions with
other dynamical systems should be developed, such as
video segmentation, object tracking with optical flow,
and more, in particular in the contexts of synchronization
and self-organizing coordination.
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