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Abstract— We consider the problem of estimating the discrete
state of an aircraft electric system under a distributed control
architecture through active sensing. The main idea is to use
a set of controllable switches to reconfigure the system in
order to gather more information about the unknown state. By
adaptively making a sequence of reconfiguration decisions with
uncertain outcome, then correlating measurements and prior
information to make the next decision, we aim to reduce the
uncertainty. A greedy strategy is developed that maximizes the
one-step expected uncertainty reduction. By exploiting recent
results on adaptive submodularity, we give theoretical guaran-
tees on the worst-case performance of the greedy strategy. We
apply the proposed method in a fault detection scenario where
the discrete state captures possible faults in various circuit
components. In addition, simple abstraction rules are proposed
to alleviate state space explosion and to scale up the strategy.
Finally, the efficiency of the proposed method is demonstrated
empirically on different circuits.

I. INTRODUCTION AND MOTIVATION

The increasing focus on more-electric aircraft within the
aerospace industry signifies progress in the direction of
more energy efficient vehicles. Electric systems are replac-
ing pneumatic, mechanical, and hydraulic subsystems, thus
reducing weight, easing maintenance, and improving aircraft
controllability and configurability [14]. Yet as more subsys-
tems rely on electric power, the flight-criticality of an aircraft
becomes more dependent on the electric power system as
well. Because the state of the system is determined solely
from sensor measurements, the problem of state estimation
from sensor readings is crucial to the safety of the entire
aircraft.

Estimation of electric power systems using optimization-
based techniques is a well-established area [1], [4], [15]. A
large body of work exists on diagnostics of electric power
systems focusing on AC systems [5], as well as large vehicle
systems. [12] examines the diagnostics for the international
space station, [10] for an aircraft electric system, and [7] for
a marine vehicle power system. For a DC system, [8] uses
an optimization-based approach to estimate fault states.

Previous work in electric power system state estimation
has focused on static, centralized estimation problems with
continuous states. We perform discrete state estimation us-
ing active control of switches within a distributed control
architecture. The system reconfigures itself through a set of
controllable contactors (i.e., electrically controlled switches).
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Once reconfigured, new sensor measurements are taken to
gain more information about the unknown state. We adap-
tively sequence switching actions by use of a greedy strategy
that maximizes the one-step expected uncertainty reduction.
By exploiting recent results in adaptive submodularity [11],
[6], we provide theoretical bounds for the worst-case perfor-
mance of the greedy strategy. Such dynamic state estimation
techniques have been proposed in the context of Markov
jump linear systems [3], information gathering in robotics
[13], [20], active hypothesis testing [16], and active learning
[9]. To the best of our knowledge, these ideas have not been
applied before in electric power system state estimation and
fault diagnosis problems.

Recently, correct-by-construction control synthesis has
been applied to power allocation and distribution in aircraft
electric power systems [21], [17], [22]. A critical assumption
in these papers is that the high-level reactive control protocol
has an accurate knowledge of the system states, including
fault states, so that it can reroute the power accordingly. An
expensive, hence undesirable, solution to achieve accurate
state estimates is to equip the system with a large number of
sensors. Software, however, is cheaper and more amenable
to change than hardware.

The goal of the current paper is to obtain high-accuracy
state estimates with a limited number of sensors by utilizing
software-based dynamic estimation strategies. We are par-
ticularly interested in detecting and localizing faults in the
system. As it is common to use discrete models for fault
diagnosis [19], continuous values of voltage and current, as
well as health statuses of components in the system, are dis-
cretized before performing state estimation. Additionally, a
discrete framework is well-suited for combining the proposed
estimation strategy with control synthesis results described
in [22] in future work.

II. PROBLEM SETUP

A. General problem description

Consider an aircraft electric power system topology, which
can be represented by a graph data structure G = (N , E).
Figure 1 shows a representative single-line diagram. The set
N of nodes in the graph contains the following components:
generators (G), rectifier units (R), and voltage sensors (S).
The set E of edges contains all contactors (and solid wire
links) between components. The status of contactors C ⊆
E can either be open or closed. A node corresponding to
a rectifier unit has no outgoing edges on the AC side and
no incoming edges on the DC side to reflect the fact that



they contain a diode. The rest of the edges in the graph are
bidirectional.

Elements in the set of generators G ⊆ N and rectifier units
R ⊆ N are uncontrollable, and can take values of unhealthy
(i.e., the component is online but outputting a voltage not
in admissible range), healthy (i.e., the component is online
and outputting the correct voltage), or offline (i.e., no power
output, open circuit). Measurements read from the sensors
S ⊆ N will depend on the status of generators, rectifier units,
and contactors. We say that there is a live path between two
components if there exists a simple path in the graph G that
connects the two nodes corresponding to these components,
there is no offline component along the path including end
nodes, and the contactors along this path are all closed. The
readings of a sensor s ∈ S can then take the following values
(i) improper voltage: if there is a live path between s and
some g ∈ G (not offline by definition of live path), and either
g or some rectifier r ∈ R along such a path is unhealthy;
(ii) admissible voltage: for all g ∈ G that have a live path
to s, both g and r along such paths are healthy; or (iii) no
voltage: there is no live path between s and any generator
g ∈ G.

On top of the circuit and sensing topology is a distributed
control architecture with a dynamic state estimation mech-
anism. We assume that one of the embedded controllers is
responsible for dynamic state estimation, hereafter referred to
as the fault detection controller. The fault detection controller
is able to control a subset C \ C′ of contactors (e.g., those
labelled with blue in Fig. 1).

Fig. 1. A single-line diagram of a simple circuit with AC components (in
black) and DC components (in red).

The state x of the system is defined as a valuation on
all components n ∈ G ∪ R and uncontrollable contactors
e ∈ C′ ⊆ C. We define Ω as the set of all states, i.e all
the different valuations of the components. The state x is
unknown and hence modeled as a random variable X that
can only be determined by sensor measurements mapped
back to a set of possible states in which the circuit may be.
The overall goal is to design a strategy the fault detection
controller runs to adaptively estimate the discrete state of
the circuit by taking “actions” (i.e., closing and opening
controllable contactors), and then reading voltage sensor

measurements.

B. Mathematical formulation

In this section we introduce the relevant notations used
throughout the rest of the paper and mathematically formu-
late the estimation problem.

The state X of the circuit is modeled as a random
variable. Data on component types and reliability levels can
be used to build a probability measure P[x] on Ω. At the
beginning of the state estimation process the system is in
the (unknown) state x0 ∈ Ω. We assume that faults in the
system are independent, and that x0 remains fixed during the
estimation process. This is a reasonable assumption because
the timescale of the estimation process is meant to be much
smaller than the failure rates of the components and the
timescales of the other controllers in the system.

For the controllable subset of contactors, there exists a
set V of actions v that can be performed and a set Y
of measurements y that can be observed. For an action
v ∈ V , y = µ(v, x) ∈ (Y ) is the unique outcome of
performing action v if the system is in the state x. The actions
{v0, ..., vt} performed and outcomes {y0, ..., yt} observed
up until step t are represented by the partial realization
ψt = {(vi, yi)}i∈{0,...,t}. Given two partial realizations ψt
and ψt′ , we say that ψt is a subrealization of ψt′ if ψt ⊆ ψt′ .
At each step t, the probability measure P[x] can be updated
by conditioning it on ψt to obtain P[x | ψt].

We are interested in an estimation process adaptively
eliminating “invalid” states to get to the actual state x0.
We define D(y, v), with y = µ(v, x0), to be the set of
states x ∈ Ω that are indistinguishable from x0 under
the action v. Formally, D(µ(v, x0), v) = {x ∈ Ω |
µ(v, x) = µ(v, x0)}. We further extend this concept by
defining h(v0:t, x0), the set of states that produce the same
set of outcomes {µ(v0, x0), . . . , µ(vt, x0)} as x0 under the
same set of actions {v0, . . . , vt}. In the remainder of the
paper, we use St as a shorthand for h(v0:t, x0). If, at step
t, we perform a new action v′ /∈ ψt, there exists a recursive
relation between the two sets of states:

h(v0:t ∪ {v′}, x0) = h(v0:t, x0) ∩D(µ(v′, x0), v′), (1)

which leads immediately to

St = ∩i∈{0,...,t}D(µ(vi, x0), vi). (2)

As only intersections are taken, the order of actions vi does
not matter.

To represent the uncertainty in the state estimate, we define
an objective function f : 2V×Y ×Ω→ R+ that maps the the
set of actions A ⊆ V under state x0 to reward f(A, x0). A
strategy π is a function from partial realizations to actions
such that π(ψt) is the action vt+1 taken by π when observing
ψt. We denote Ṽ(π, x0) ⊆ V the set of all the actions
performed under the strategy π, the state of the system being
x0. In the general case, Ṽ(π, x0) 6= V .

The fault detection controller is assigned a budget k �
|V|, indicating the number of steps within which the es-
timation process should terminate. The system is initially



in the state x0, which is fixed and unknown, and the
controlled contactors are in some initial configuration v0.
Initial configuration v0 and the corresponding measurement
y0 constitute ψ0. Then, for i = 1, . . . , k, we consider the
following process:

vi = π(ψi−1) (3a)
yi = µ(vi, x0) (3b)
ψi = ψi−1 ∪ (vi, yi). (3c)

Equations (3a) - (3c) represent the decision making, mea-
surement, and update in the estimation process, respectively.

The goal is to reduce the uncertainty of X represented
by the probability distribution P[x] through performing k
actions. To that end, the following reward function is con-
sidered:

f(v0:k, x0) = −P[Sk] = −
∑
x∈Sk

P[x]. (4)

The behavior driven by the maximization of f is to remove
as much probability mass from Ω as possible in k steps. It
is also worth noting that when the underlying probability
distribution on Ω is uniform, f is just proportional to the
size of Sk and so maximizing f is equivalent to minimizing
the number of indistinguishable states.

The goal of estimation is to find the strategy that allows
the “best expected estimate” for the state, i.e, the strategy π∗

such that

π∗ ∈ arg max
π

E[f(Ṽ(π,X), X)], (5)

subject to |Ṽ(π, x)| 6 k for all x, and with expectation taken
with respect to P[x].

III. STRATEGY

In this section, we describe the algorithm used to solve the
state estimation problem and give performance guarantees on
the worst-case execution.

A. Greedy strategy

The optimal strategy for the fault detection controller
would plan ahead for k steps. Complexity, however, scales
up exponentially with k. To address the problem efficiently
we develop a greedy strategy that selects, at each step, the
action maximizing the expected one-step gain in uncertainty
reduction. At step t, the greedy strategy uses the available
information ψt to compute the probability measure P[x | ψt]
on the set St, using a Bayesian update:

P[x | ψt] =
P[ψt | x] P[x]

P[ψt]
, ∀ x ∈ Ω. (6)

As the measurement process is deterministic, for a given
x ∈ Ω we have P[x | ψt] = 1{x∈St}, meaning that P[x |
ψt] = 1 if x belongs to St, and P[x | ψt] = 0 otherwise.
From (6) we then get:

P[x | ψt] =

{
P[x]

P[ψt]
∀ x ∈ St

0 elsewhere
(7)

The term P[ψt] is the same for all x. It is a normalization
coefficient that can be computed using

∑
x∈St

P[x | ψt] = 1
to obtain

P[ψt] =
∑
x∈St

P[x]. (8)

At each step t, the strategy consists of choosing the next
action vt+1 that maximizes the gain in uncertainty reduction.
Our measure of uncertainty comes from the value of the
function f , established in Eq. (4), and therefore the benefit
is expressed in terms of the change in f as we choose the
action v. Consistent with our goal, we choose to maximize
in mean the benefit at each step, the expectation taken with
respect to the updated probability measure P[x | ψt]. We
obtain the greedy strategy:

vt+1 ∈ arg max
v∈V

E[f(v0:t ∪ {v}, X)− f(v0:t, X) | ψt]. (9)

B. Worst-case performance guarantees

Greedy strategies in general can perform arbitrarily bad
[2]. However, by exploiting recent results on adaptive sub-
modularity, we give a lower bound on the performance
of the proposed strategy. For a brief overview of adaptive
submodularity and related definitions, see Appendix A. We
next show that the function f defined in Eq. (4), is adaptive
monotone and adaptive submodular (Def. 2 and 3).

Proposition 1: The function f defined in Eq. (4) is adap-
tive monotone.

Proof: Given an action v ∈ V and partial realization
ψt at step t, we need to show the expected marginal benefit
∆(v|ψt) (see Def. 1) is nonnegative. For the cost function
f , ∆(v|ψt) can be written as:

∆(v | ψt) = E[f(v0:t, X) | ψt]− E[f(v0:t ∪ {v}, X) | ψt].
(10)

By Eq. (7), we get

∆(v | ψt) =
∑

x∈h(v0:t,x0)

P[x|ψt] φ(x), (11)

with

φ(x) =
∑

x̃∈h(v0:t,x)

P[x̃] −
∑

x̃∈h(v0:t∪{v},x)

P[x̃]. (12)

By Eq. (1), h(v0:t ∪ {v}, x) is a subset of h(v0:t, x) for
every x ∈ Ω. Thus, φ(x) > 0, all the terms in the sum in
Eq. (11) are non-negative, and ∆(v|ψt) > 0.

Proposition 2: The function f defined in Eq. (4) is adap-
tive submodular.

Proof: Given in Appendix B.
Theorem 1: For any true state x0 ∈ Ω, the uncertainty

reduction achieved in k steps by the greedy strategy given
in Algorithm 1 is no worse than (1 − 1/e) of what can be
achieved in k steps by any other strategy, including the best
possible strategy.

Proof: Follows directly from Propositions 1 and 2 and
Theorem 2 given in Appendix A.



IV. IMPLEMENTATION

In this section, we give implementation details on the
dynamic estimator employing the greedy strategy on some
typical aircraft electric power system topologies. In order to
reduce online computation, the inverse mapping from sensor
measurements to compatible states of the circuit is conducted
offline. Additionally, we propose some abstraction rules to
reduce the size of the circuit as well as computation time.

A. Implementation details

The overall estimation process is summarized in Algo-
rithm 1.

Algorithm 1 Adaptive greedy strategy
Input: Probability measure P[x] on Ω, number of actions to per-

form k. The system is in the state x0 ∈ Ω, fixed and unknown,
and the controlled contactors are in some configuration v0.

Output: Partial realization ψk and the set Sk of compatible states
after k actions are taken based on the strategy πgreedy

1: Take the measurement y0 = µ(v0, x0).
2: ψ0 = {(v0, y0)}
3: for t ∈ {1, . . . , k} do
4: vt = πgreedy(ψt−1)
5: Perform action vt
6: Take the measurement yt = µ(vt, x0)
7: ψt = ψt−1 ∪ {vt, yt}
8: St = St−1 ∩D(yt, vt)
9: Compute P[x | ψt] (Bayesian update)

10: end for
11: return (ψk, Sk,P[x | ψk])

In this algorithm, some items can be precomputed to
improve run time. In particular, the inverse mapping from
sensor measurements to compatible states does not have a
closed form expression and the computation of the inverse
map involves searching for paths on the graph G = (N , E)
representing the circuit topology. Therefore, for all measure-
ments y ∈ Y and all actions v ∈ V , the sets D(y, v) of
states consistent with the action-measurement pairs (v, y) are
computed offline to achieve a faster implementation. This
collection is then accessed on the fly to significantly reduce
the computation time as it is the most costly part of the
algorithm.

Assumptions about the components and circuit can be
easily incorporated in our framework. In particular, because
these circuits are designed to achieve certain reliability levels,
one common assumption is that at least one generator and
one rectifier unit are online (delivering correct or improper
voltage). These assumptions render certain states impossible,
which are removed from the initial state set Ω.

B. Model reduction via abstraction

Although the greedy strategy provides an efficient way
(with performance guarantees) to solve the dynamic state
estimation problem, the offline computation for complex
topologies can be very demanding as the number of possible
states is exponential in the number of components whose
states are being estimated. In this section, we give a set of
rules that can be recursively applied to reduce the size of

the circuit by clustering certain components together into
metacomponents.

Components (generators, rectifier units, contactors) are
connected through their ports to form the circuit, and sensors
are placed on some of these ports. The main reduction idea
is that when two uncontrolled components are connected
together and there is no sensor on their internal connecting
port, some of the individual states of the components may
become indistinguishable from what can be measured with
the available sensors. Therefore, they can be treated as a
single basic component, called a metacomponent, having
the same global overall behavior. It is then possible to
hierarchically estimate the system state, first by estimating
the state of the metacomponent, and then mapping this
state to possible states of individual components forming
the metacomponent. When running the greedy algorithm
on the reduced circuit, the probabilities of metacomponent
states should be adjusted accordingly to ensure a lossless
abstraction.

The rules we use to simplify the circuits are summarized in
Fig. 2. Figure 2(a), for example, shows how the combination
of generator and contactor can be abstracted into a single
“generator” metacomponent. For the original combination of
components, the contactor can either be open (o) or closed
(c), and the generator can either be healthy (h), unhealthy
(u), or offline (o). Thus, the set Ω has six possible states,
represented as a tuple of contactor status and generator
health: x1 = (c, h), x2 = (c, u), x3 = (c, o), x4 = (o, h),
x5 = (o, u), and x6 = (o, o). The “generator” metacom-
ponent, however, has three possible states, corresponding to
healthy, unhealthy, and offline: x̃1 = h, x̃2 = u, and x̃3 = o.
These metacomponent states can be mapped back to the
corresponding original components, such that x̃1 = {x1},
x̃2 = {x2}, and x̃3 = {x3, x4, x5, x6}.

!"

(a) Generator Metacom-
ponent.

!"#

!"#
!"#!" !"

(b) Rectifier Unit Metacompo-
nent.

!" !"

(c) Contactor Metacomponent.

Fig. 2. Metacomponents used for abstraction. In terms of possible
external behaviors (i.e., what can be measured from the external ports),
two-component circuit units (shown in black) are equivalent to the single
component units (shown in red).



V. EXAMPLES

To assess the performance of the greedy strategy, we
have systematically tested the dynamic estimator described
in Algorithm 1 on multiple circuits typical of those found in
electric power systems. For these experiments we have taken
a uniform probability distribution over Ω, the reward function
f defined in Eq. (4) becoming the size of the feasible set.

In many cases it is not possible to completely eliminate the
uncertainty on the state of the system when there is a limited
number of sensors. In order to evaluate the performance of
the greedy strategy, we compare it with a brute force strategy,
which exhaustively tries every action v ∈ V . Hence, no
strategy can gather more information than the brute force
strategy. Although the brute force strategy is not practically
applicable, as |V| can be very large, it gives an upper bound
on achievable performance, and can be used as a benchmark.
Overall test methodology is summarized in Algorithm 2
and has been performed for every or some of the initial
configurations v0 ∈ V of the uncontrolled contactors.

Algorithm 2 Test methodology
Input: Initial configuration of the controlled contactors v0 ∈ V

1: for x0 ∈ Ω do
2: Set the circuit in the state x0
3: Put the controlled contactors in the configuration v
4: Run the strategy tested (Greedy or brute force strategy)
5: Record the computation time and the value of f at the end

for statistics.
6: end for

A. Tests on a small-size circuit

The test small-size circuit, shown in Fig. 1 is com-
prised of 12 components. Six components are unknown
(G1, G2, R1, R2, C2, C5), four contactors are controlled
(C1, C3, C4, C6), depicted in blue in Fig. 1, and two voltage
sensors are available (S1 and S2). The size of the state-space
generated, taking into account the assumptions on faults, is
1600. A more precise description of the actual hardware
circuit can be found in [18]. On this particular example there
are four controlled contactors, so the brute force strategy
performs |V| = 24 = 16 actions. Both strategies have been
run on the same Intelr CoreTM i3-2310M 64 bits CPU
2.10 GHz, 6.00 Gb RAM.

Simulation result: The greedy strategy with a horizon
length of k = 6 performs as well as the brute force strategy,
i.e., the value of the objective function f at the end of the 6
steps using the greedy strategy is the same as after the brute
force strategy with 16 steps.

1) Average execution time: The average execution time
for the greedy strategy is shown in Fig. 3. It takes on the
order of milliseconds to compute the next best action to
perform. On the other hand, the offline computation takes
30 seconds for this circuit.

2) Final value of the reward function f : Using our
metric of performance and comparing greedy and brute force
strategies, Fig. 4 shows that the greedy strategy performs
as well as the brute force. A point at coordinates (n,m)

Fig. 3. Histogram of execution time for the greedy strategy.

signifies that in m% of the cases, there are n or fewer
indistinguishable states after the strategy (greedy or brute
force) stops. Starting from 1600 possible states, the greedy
strategy reduces the number of candidates to less than 20 in
100% of the cases. In approximately half of the cases, there
are four states or fewer that are still indistinguishable after
the k = 6 steps.

Fig. 4. Performance comparison between greedy and brute-force strategies.

While the greedy strategy shows potential, real-world
problems are bigger and more complex. To that end, the
lossless abstraction process designed in Subsection IV-B
proves useful for scaling up the strategy.

B. Tests on larger circuit

We also test the greedy strategy on a larger circuit repre-
sentative of more-electric aircraft power distribution systems
with multiple generators and demonstrate how abstraction
can reduce the offline computation time. The circuit topol-
ogy is shown in Fig. 5. Contactors controlled by the fault
detection controller are depicted in blue.

Applying the lossless abstraction established in IV-B leads
to a reduced circuit that eliminates four uncontrolled con-
tactors. Comparing the offline computation for the full and
reduced circuit, abstraction reduces the offline computation
time from 3795 to 378 seconds, i.e, by a factor of 10.

We have tested the performance of the greedy strategy on
this circuit with the methodology described in Algorithm 2.
The results obtained on this test set by the greedy strategy
(with k = 6 actions) were again equivalent to the results for
the brute-force strategy (with |V| = 32 actions).

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We proposed a greedy strategy for dynamic state estima-
tion and fault detection in aircraft electric power systems.



Fig. 5. A single-line diagram of a larger circuit with AC and DC
components.

The proposed strategy was shown to have theoretical worst-
case performance guarantees. Moreover, the practical per-
formance of the strategy is well above the theoretical lower
bound as demonstrated by examples.

The output of the overall estimation process is the set of
all states consistent with observations, or the unique feasible
state if possible. Future work will integrate these results with
partial information games and synthesis of reactive control
protocols. We are also interested in incorporating safety
requirements while performing estimation. Although one can
incorporate such information to disallow potentially unsafe
actions, the main difficulty here is to obtain performance
bounds when the set of available actions are changing in
time. Currently, placement of sensors on the circuit topology
is a given. By changing the number and locations of sensors,
however, it may be possible to improve state estimation
performance. Exploring this design space and trade-offs
therein are likewise topics for future work.

APPENDIX

A. Background results in submodularity

We give some definitions and results on adaptive submod-
ularity that follow the exposition provided in [6] and [11].
Notations used here are defined in Subsections II-A and II-B.

Definition 1: Given an objective function f , an action
v ∈ V , and a partial realization ψt, ∆(v|ψt) is the condi-
tional expected marginal benefit of v conditioned on having
observed ψt, defined as

∆(v|ψt)
.
= E[f(v0:t ∪ {v}, X)− f(v0:t, X)|ψt],

and the expectation taken with respect to P[x|ψt].
Definition 2: The function f : 2V×Y × Ω → R+ is

adaptive monotone with respect to distribution P[x] if the
conditional expected marginal benefit of any action is non-
negative. Thus, for all v ∈ V and ψt with P[ψt] > 0,

∆(v|ψt) ≥ 0.
Definition 3: The function f : 2V×Y × Ω → R+ is

adaptive submodular with respect to distribution P[x] if the

conditional expected marginal benefit of any fixed action
v does not increase as more actions are performed and
measurements are taken. Thus, f is adaptive submodular with
respect to distribution P[x] if for all ψt, ψt′ such that ψt is
a subrealization of ψt′ , and for all v ∈ V \ {v0, . . . , vt′},

∆(v|ψt) ≥ ∆(v|ψt′).
The adaptive greedy algorithm, a generalization of the

greedy algorithm [11], is a strategy that selects the action
maximizing the conditional expected marginal benefit, con-
ditioned on outcomes from all previous actions.

Theorem 2 (Theorem 1.14 in [11]): Let πgreedyl be a
greedy strategy run for l iterations (so that it selects l
actions). Let π∗k be any policy selecting at most k actions
for any realization x. Then,

favg(π
greedy
l ) ≥

(
1− e−l/k

)
favg(π

∗
k),

where favg(π)
.
= E[f(Ṽ (π,X), X)] is the expected reward

of π.
In particular, by setting k = l we see that the greedy

strategy selecting k items step by step obtains at least (1−
1/e) of the value of the optimal strategy that selects k items
step by step.

B. Proof of proposition 2

We first state a lemma that will be useful in the proof.
Lemma 1: The function b : RY → R, defined as

b(τ1, τ2, . . . , τY ) =

Y∑
i=1

τi −
∑Y
i=1 τ

2
i∑Y

i=1 τi
, (13)

is increasing on the positive orthant, i.e., b(τ1, τ2, . . . , τY ) ≥
b(s1, s2, . . . , sY ) if τi ≥ si ≥ 0 for all 1 ≤ i ≤ Y .

Proof: Note that because b is symmetric, i.e., permu-
tation invariant with respect to its arguments, it is enough
to show that it is increasing in one of its arguments.
Let k1

.
=
∑Y
i=2 τi and k2

.
=
∑Y
i=2 τ

2
i . Define b̃(x)

.
=

b(x, τ2, . . . , τY ) = k1 + x − k2+x
2

k1+x
. The partial derivative

of b with respect to state x is ∂b̃/∂x =
k21+k2
(k1+x)2

, which is
non-negative by definitions of k1 and k2.

Now, we are ready to prove Proposition 2.
Consider two partial realizations ψt and ψt′ s.t ψt ⊆ ψt′

and the corresponding sets St and St′ . Fix an action v ∈
V \ v0:t′ . To prove adaptive submodularity, ∆(v, ψt) can be
expressed as a function dependent on the size of St. We
examine the variation of ∆ between St and St′ .

Since the probability measure is non-uniform and can take
values in some set {p1, . . . , pN}, we define the subsets of
Ω where P[x] is constant: Fn = {x ∈ Ω | P[x] = pn} for
n ∈ {1, . . . , N}. The collection F1:N is trivially a partition
of Ω. It is possible to show that the sets {D(y, v∗)∩Fn|y ∈
Y, n ∈ 1 : N} form a partition of Ω and thus a partition of
St.

Let αn,y
.
= St ∩D(y, v) ∩ Fn. Then for all x ∈ αn,y , we

have
µ(v, x) = y and P[x] = pn. (14)



By Eq. (8) , we get a new expression for P[ψt]:

P[ψt] =
∑
x∈St

P[x] =
∑
y∈Y

∑
n∈1:N

pn|St∩D(y, v)∩Fn|. (15)

Let τy
.
=
∑
n∈1:N pn|αn,y|. Then, conditional probabilities

on Fn can be rewritten as

∀x ∈ Fn, P[x | ψt] =
pn∑
y∈Y τy

. (16)

We then separately compute the two terms in Eq. (10). First
term becomes:

E[f(v0:t, X) | ψt] =
∑
x0∈St

P[x0 | ψt]
∑

x∈h(v0:t,x0)

P[x]. (17)

For x0 ∈ St, h(v0:t, x0) = St, we obtain

E[f(v0:t, X) | ψt] =
∑
y∈Y

τy. (18)

For the second term in Eq. (10), we first get

f(v0:t ∪ {v}, x) =
∑

x̃∈h(v0:t,x)∩D(µ(v,x),x)

P[x̃]

= τµ(v,x).

From Eq. (14) and Eq. (16), we obtain:

E[f(v0:t ∪ {v}, X) | ψt] =
∑
x∈St

f(v0:t ∪ {v}, x)P[x | ψt]

=
∑
n∈1:N

∑
y∈Y

∑
x∈αn,y

τy
pn∑
z∈Y τz

=
∑
y∈Y

τy∑
z∈Y τz

∑
n∈1:N

pn|αn,y|

=
∑
y∈Y

τ2y∑
z∈Y τz

.

Finally, putting the two terms of Eq. (10) leads to

∆(v|ψt) = b(τ1, τ2, . . . , τY ) =

Y∑
i=1

τi −
∑Y
i=1 τ

2
i∑Y

i=1 τi
, (19)

where Y .
= |Y|.

This expression of ∆(v|ψt) in terms of the variables τi is
similar for the partial realization ψt′ ; the only change is the
set St, which is represented in the function b by a different
value of the τi denoted τ ′i . Since ψt ⊆ ψt′ and St′ ⊆ St, τi
and τ ′i satisfy τ ′i 6 τi for all i.

Therefore, adaptive submodularity is equivalent to show-
ing that b is increasing on the positive orthant, and Lemma
1 concludes the proof.

ACKNOWLEDGMENTS

The authors would like to thank Jean-Michel Maillet and
Eric Wolff for very useful and enlightening discussions. This
work was supported in part by IBM and UTC through the
iCyPhy consortium.

REFERENCES

[1] A. Abur and A.G. Exposito. Power system state estimation: theory
and implementation, volume 24. CRC, 2004.

[2] J. Bang-Jensen, G. Gutin, and A. Yeo. When the greedy algorithm
fails. Discrete Optimization, 1(2):121–127, 2004.

[3] L. Blackmore, S. Rajamanoharan, and B.C. Williams. Active esti-
mation for jump markov linear systems. Automatic Control, IEEE
Transactions on, 53(10):2223–2236, 2008.

[4] A. Bose and K.A. Clements. Real-time modeling of power networks.
Proc. of the IEEE, 75(12):1607–1622, 1987.

[5] E.M. Davidson, S.D.J. McArthur, and J.R. McDonald. A toolset for
applying model-based reasoning techniques to diagnostics for power
systems protection. Power Systems, IEEE Transactions on, 18(2):680
– 687, may 2003.

[6] D. Golovin and A. Krause. Adaptive submodularity: Theory and
applications in active learning and stochastic optimization. Journal
of Artificial Intelligence Research, 42(1):427–486, 2011.

[7] A.J. Gonzalez, R.A. Morris, F.D. McKenzie, D.J. Carreira, and B.K.
Gann. Model-based, real-time control of electrical power systems.
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 26(4):470–482, 1996.

[8] D. Gorinevsky, S. Boyd, and S. Poll. Estimation of faults in dc
electrical power system. In American Control Conference, pages
4334–4339. IEEE, 2009.

[9] A. Guillory and J. Bilmes. Average-case active learning with costs.
In Algorithmic Learning Theory, pages 141–155. Springer, 2009.

[10] K. Keller, K. Swearingen, J. Sheahan, M. Bailey, J. Dunsdon, K.W.
Przytula, and B. Jordan. Aircraft electrical power systems prognostics
and health management. In Aerospace Conference, 2006 IEEE, pages
12–pp. IEEE, 2006.

[11] A. Krause and D. Golovin. Submodular function maximization. In
Tractability: Practical Approaches to Hard Problems (to appear).
Cambridge University Press, 2012.

[12] L. Liu, K.P. Logan, D.A. Cartes, and S.K. Srivastava. Fault detection,
diagnostics, and prognostics: software agent solutions. Vehicular
Technology, IEEE Transactions on, 56(4):1613–1622, 2007.

[13] L. Mihaylova, T. Lefebvre, H. Bruyninckx, K. Gadeyne, and
J. De Schutter. A comparison of decision making criteria and
optimization methods for active robotic sensing. Numerical Methods
and Applications, pages 316–324, 2003.

[14] I. Moir and A. Seabridge. Aircraft Systems: Mechanical, Electrical
and Avionics Subsystems Integration. AIAA Ed. Series, 2001.

[15] A. Monticelli. Electric power system state estimation. Proc. of the
IEEE, 88(2):262–282, 2000.

[16] M. Naghshvar and T. Javidi. Active sequential hypothesis testing.
CoRR, abs/1203.4626, 2012.

[17] N. Ozay, U. Topcu, and R. M. Murray. Distributed power allocation for
vehicle management systems. In Proc. IEEE Conference on Decision
and Control and European Control Conference, pages 4841–4848,
2011.

[18] R. Rogersten, H. Xu, N. Ozay, U. Topcu, and R. M. Murray. An
aircraft electric power testbed for validating automatically synthesized
reactive control protocols. In Proc. of the 16th international conference
on Hybrid systems: computation and control, HSCC ’13, 2013.

[19] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.C.
Teneketzis. Failure diagnosis using discrete-event models. Control
Systems Technology, IEEE Transactions on, 4(2):105–124, 1996.

[20] A. Singh, A. Krause, C. Guestrin, W. Kaiser, and M. Batalin. Ef-
ficient planning of informative paths for multiple robots. Carnegie
Mellon University, School of Computer Science, Machine Learning
Department, 2006.

[21] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Formal synthesis of
embedded control software for vehicle management systems. In AIAA
Infotech@Aerospace, 2011.

[22] H. Xu, U. Topcu, and R. M. Murray. A case study on reactive protocols
for aircraft electric power distribution. In Proc. IEEE Conference on
Decision and Control, 2012.


	INTRODUCTION AND MOTIVATION
	PROBLEM SETUP
	General problem description
	Mathematical formulation

	STRATEGY
	Greedy strategy
	Worst-case performance guarantees

	IMPLEMENTATION
	Implementation details
	Model reduction via abstraction

	EXAMPLES
	Tests on a small-size circuit
	Average execution time
	Final value of the reward function f

	Tests on larger circuit

	CONCLUSIONS AND FUTURE DIRECTIONS
	Appendix
	Background results in submodularity
	Proof of proposition 2

	References

