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Optimal input design for non-linear dynamic systems: a grap theory
approach

Patricio E. Valenzuela, Cristian R. Rojas and Hakan Hjassan

Abstract— In this article a new algorithm for the design of input design for nonlinear systems is presented in [15]. The
stationary input sequences for system identification is preented.  results presented allow to design input signals when the
The stationary input signal is generated by optimizing an  gystem contains nonlinear functions, but the constraints o

approximation of a scalar function of the information matri x, th t d . d th tati | t ired t
based on stationary input sequences generated from prime e System dynamics an € computational cost required 1o

cycles, which describe the set of finite Markov chains of a Solve the problem are the main limitations of these results.
given order. This method can be used for solving input design Therefore, it is necessary to develop a method for input

problems for nonlinear systems. In particular it can handle design suited for a wide class of nonlinear models and

amplitude constraints on the input. .Numerlcal examples sha requiring low computational effort.

that the new algorithm is computationally attractive and that . . . .

is consistent with previously reported results In this article we present a method to solve input design
Index Terms— System identification, input design, Markov probl_ems with amplltude |'m'tat|0n5_- The proposed techriq

chains. also includes nonlinear systems with more general strestur

than those presented in [14]. The method designs an input
I. INTRODUCTION signal which is restricted to a finite set of values, and it

Input design concerns the generation of an input Sign‘lﬂsl, a realization of the optimal stationary process. Since

to maximize the information obtained from an experiment, e problem is solved over the set of stationary processes,

Some of the first contributions in this area have beeﬂ:e feasible set needs to be described by basis functions.
introduced in [1], [2]. From the roots of [1], [2], many owever, finding the basis functions for this set is a hard

contributions on the subject have been developed (see [ ,Sk' This drawback is solved_b_y using |d_eas from graph
. eory [16], [17], [18]. By deriving the prime cycles of
[4], [5], [6] and the references therein). i . .
: . . the de Brujin’s graph associated to the feasible set, we can
In the case of dynamic systems, the input design problem ) e
NS ._express any element in the set as a convex sum of a finite
can be formulated as the optimization of a cost function : . : .
) o . -number of elements. The information matrices associated to
related to the model to be identified. The results in thi

. . _Mhese elements can be approximated by a simple average,
area are mainly focused on linear systems. In [7], [8], linea . :

. 2. . which reduces the computational costs compared to the
matrix inequalities (LMI) are employed to solve the input

design problem. In [9], the input signal is modelled as thmethod in [15]. A nice feature of this approach is that, if

output of a Markov chain. Robust input design is covered i?gee SC;\S/te;urt])Ct'ansi'ns ngr\:sg)’( tthoeoIcs)pt:amvlezr?tli?nthperosblitrgrr?air;
[10], where the input signal is designed to optimize a €9onlinear Thye nun?erical exam Ie’s show that thiZ method
function over the feasible set of the true parameters. A time - . P : :

IS consistent with the results presented in [14], and that it

domain approach for input design for system identification . . .
) X an be successfully applied to solve input design problems
is developed in [11]. The results presented above (except f0. : LT
. ; . . : - _with amplitude limitations.
[9]) design an input signal without amplitude constraints. ; . . .
: ' o / . As with most optimal input design methods, the one
However, in practical applications, amplitude constrsiom S o .
; . . . roposed in this contribution relies on knowledge of thetru
the input signal are required due to physical and/or perfol- L . :
S . . . . system. This difficulty can be overcome by implementing a
mance limitations. Therefore, input design with amplitudé ! . . :
. . robust experiment design scheme on top of it [10] or via an
constraints needs more analysis. . . . . .
o adaptive procedure, where the input signal is re-desigsed a
In recent years, we see growing interest to extend the . S .
ore information is being collected from the system [19].

results of input design to nonlinear systems. An approach @ue to space limitations, however, we will not address these
input design for nonlinear systems by using the knowledg%gsueS in the present pa,per '

of linear systems is presented in [12]. Input design for The rest of this paper is organized as follows. Section

structured nonlinear systems has been introduced in [W].@P presents basic concepts in graph theory. Secih I

approach of input design for a particular class of nonline . !
PP . P 9 P . : introduces the input design problem. Sectfod IV presents
systems is presented in [14]. A particle filter method fog . )
he newly proposed method to compute an optimal input
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the probability measure are denoted BY-}, and P{-}, such thatG(U; 6y) = Go(U:) [20], i.e., that there is no
respectively. Finallydet and tr stand for the determinant undermodelling; we will make this assumption in the sequel.
and the trace functions, respectively. Equation [[(b) does not depend on the noise realization.

Il. PRELIMINARIES ON GRAPH THEORY Therefore, we can rewrité|(3) as

The purpose in this section is to provide a brief back- Iy = i/
ground on graph theory to understand the discussion in the Ae Ju
next sections. The definitions presented here come from [1\Zl
pp. 77].

; : U, -

A directed graphG, := (V, X’) consists of a nonempty “"sca .

and finite set of vertices (OE’ nodé]s?)and a sett’ of ordered We note thatIIk_S) dep_ends d?(u"seq).' Thgref_ore_, the |npu_t
pairs of distinct vertices calleedges A pathin Gy is a deosign pmb'em_ Is to f_mql a cumulative d|str!but|on function
sequence of vertices,, :— (v = v1, v, ..., v, — ) such PPt (U, . ) which optimizes a scalar function ofl(6). We

1 e 1 . mxXm H
that (v;, vis1) € X fori € {1, ..., k—1}. A cycleis a path define this scalar function ds: R — R. To obtain the
in which the first and last vertices are identical. A cycle i

fesired resultsh must be a matrix nondecreasing function
elementary if no vertex but the first and last appears twic 21, pp. 108]. Different choices ok have been proposed
Two elementary cycles are distinct if one is not a cycli

Ngeq

> 6(00)¢(00)" AP Up,.,), (6)
ERMsea

Mseq

here P(U,

Ngeq

) is the cumulative distribution function of

n the literature [10]. Some examples farare h = det,

permutation of the other. andh = —tr{(-)~'}. In this work, we leave to the user the
' selection ofh.
I1l. PROBLEM FORMULATION Since P°P*(Uy,,,) has to be a stationary cumulative dis-

system depicted in Figufd 1. Her@, is a dynamic system the set
(possibly nonlinear){e; } is a white noise sequence with zero

mean and varianca., u; € R is the input andy, € R is Pi={F: R%a = R|F(x) 2 0, ¥x € R"™;

the measured output. We will assume that we have a model F'is monotone non-decreasing
structure forGy. Notice that we assume that the noise mlgnoo F(x)=1;
enters only at the output. i={1, ..., Neeq }

X:(Il, w0y Tngeq

uy The last condition in[{7) (with slight abuse of notation)
— GO 1\ guarantees thdt € P is the cumulative distribution function
of a stationary sequence [16].
To simplify our analysis, we will assume that can only
Fig. 1. Block diagram of a dynamic system (possibly nonlinea adopt a finite numbee,., of values. We define this set of
values asC. With the previous assumption, we can define
The objective in this article is to design an input signathe following subset ofP:

/ dF (v, z):/ dF (z, v),VzeR<"seq—1>}. 7)
veER veER
Yt

Un,o = (Un,,, .., u1) as a realization of a stationary . .
process, such that the system Pe = {f: C"1 = R|f(x) 20, Vx € C";
v = GolU™) + et ® 2, f=1
xE Nseq
U = (ugy ooy Uooo) (2)
. g . . . _ (Nseq—1)
can be identified with maximum accuracy as defined by a Zf(”’ z) = Zf(Z’ v),vVz el } - (8)
scalar function of the Fisher information matfiy- [20]. Zr vee vee
can be computed as The set introduced in[{8) will be used to constrain the
Noeq probability mass functiop(U,,.. ).
Tp = iE Z¢(90)¢(90)T ©) The discussion presented in this section can be summa-
Ae | & ’ rized as
Where Problem 1: Design an optimal input signal,‘;f; € (Msea
as a realization from°P(U,,,.,), where
v = A @ ovt g4 WI o
o |,y P Un,.,) = arg max h(Zr(p)) ©9)
y(t) = GUs 0), () whereh : R™*™ _s R is a matrix nondecreasing function,
and 6, 6, € © C R™. The expected value irf](3) is with Neeq

respect to the realizations of,_.. In addition, the result — Zg(p) = )\i S (00)y(00)" pUhn..,) . (10)
introduced in [(B){(b) assumes that there exist§pac © € Upypq€CTo0a t=1



section.

IV. INPUT DESIGN VIA GRAPH THEORY

Problem 1 is hard to solve explicitly. The main issues are
1) We need to describe the elements in theBetas a
linear combination of basis functions, and
2) the sumin[(T0) is of dimension..,, wherens., could
be potentially very large.

These issues make Problem 1 computationally intractable. ‘

and(6y) € R™ is defined as in[{4)=(5). [ |
A solution for this problem will be discussed in the next m

Therefore, we need to develop an approach to solve this
problem by using a computational feasible method.
Since ngq could be Iarge, Problem 1 can be unfeasibl 9. 2. Example of graph derived fro@I'™ , With coeq = 2, m = 2,
to solve. To address this, we restrict the memory of thgqc .— (o, 1}.
stationary process,, i.e., we consider only finite stationary
sequences of length, say,,.
To address the first issue, we notice thit is a convex
set. In particularPc is a polyhedron [21, pp. 31]. Hence, any ‘
element ofP; can be described as a convex combination of
the extreme points dP¢ [21, pp. 24]. Therefore, if we define
Vp. as the set of all the extreme points®, composed by Fig 3. Example of graph derived fro®m, with ceeq = 2, nm = 1,

ny elements, then for alf € P we have andC := {0, 1}.
ny
f=Y aiv;, (11)
=1 Therefore, the elements ¥p, can be described by finding
wherea; >0,i € {1,..., ny}, all the prime cycles associated to the stationary giGph.
o drawn fromC"m.
Zo‘i =1, (12) It is known that all the prime cycles associatedGg. ..
i=1 can be derived from the elementary cycles associated to

Getnm—1 [16, Lemma 4]. In the literature there are many

algorithms for finding all the elementary cycles in a graph.

For the examples in Sectién V, we have used the algorithm
To find all the elements inp,, we need to shift our presented_in [17, pp. 79-80] complemented with the one

focus to graph theory. Indeed, we can analyze thecget ~Proposed in [18, pp. 157].

as follows.C" is composed of(c.q)" elements. Each ~ Once all the elementary cycles Gf...-1 are found, we

element inC"» can be viewed as one node in a graph¢an find all the prime cycles associatedde... by using

In addition, the transitions among the elementg’ir are the idea introduced in [16, Lemma 4]. To illustrate this,

given by the feasible values of, .11 when we move Wwe consider the graph depicted in Figlie 3. One elementary

from (wes, ..., ug) 10 (Uiphits---, urs1), for all integers cycle for this graph is given bg0, 1, 0). Using Lemma 4 in

k > 0. The edges among the elementsCifr denote the [16], the elements of one prime cycle for the gragh are

possible transitions between the states, representedepy fibtained as a concatenation of the elements in the elenyentar

nodes of the graph. Figurid 2 illustrates this idea, whe@ycle (0, 1, 0). Hence, the prime cycle ic- associated to

Cseq = 2, ny = 2, andC = {0, 1}. From this figure we this elementary cycle is given b0, 1), (1, 0), (0, 1)).

can see that, if we are in node, 1) at timet, then we can  With all the prime cycles clearly defined f@i¢x.., then

only end at nodé€1, 0) or (1, 1) at timet + 1. all the elements in the sétp, are found. Hence, we can use
The idea to use graph theory to find all the elementgdn (@) to describe all the elements .. Thus, the solution

is related with the concept of prime cycles. In graph theorylescribed here presents a computationally feasible method

a prime cycleis an elementary cycle whose set of nodeaddress the first issue.

do not have a proper subset which is an elementary cyclesince we know the distribution; for each prime cycle,

[16, pp. 678]. It has been proved that the prime cycles of gjth 4, Vp., We can generate an input sign@ki}i=
stationary graph can describe all the elements in th&’sgt  grawn fromv;, so that

[16, Theorem 6]. In other words, each prime cycle defines

one element; € Vp.. Furthermore, each; corresponds to . 1 N
a uniform distribution whose support is the set of elements I}f) = Z Z?/}(%)?/}(%)T v (Un,)
of its prime cycle, for alli € {1,..., ny} [16, pp. 681]. € U,,, eCrm t—1

andv; € Vp,, foralli € {1,..., ny}.
Equation [[I1) says that all the elements7ig can be
described by usingy, elements in the se¥p,.



N
1
~ T 2 Y 00)v(B0)” (13)
¢ t=1
for all « € {1,...,ny}, and N sufficiently largd (in

relation to the length of the prime cycles). Notice tlidd, )
depends implicitly o{!}!=)" through [#){(5). Furthermore,
eachIfJ) is associated to théth prime cycle, for alli €
{1, ey np}.

As an example of how to generafe:}!=% from v;, we
use the graph depicted in Figuté 2. One prime cycle for
this graph is given by(0, 1), (1, 0), (0, 1)). Therefore, the
sequencdu’ }!=)V is given by taking the last element of each
node, i.e. {ui}i= = {1,0, 1,0, ..., (-D)N +1)/2}.

The approximation of eacﬁff;) given by [I3) reduces
the sum [(ID) from dimensiom., to dimension 1. This ‘ ‘
simplification reduces significantly the computation effor -1 0
obtain [I0). With this approach, issue 2) is also addressed. Ut

. To su_mmarlze, the propo_sed method for Input deS|gn ing. 4. Plot with the stationary probabilities for the opdiinput signal
signals inC™= can be described as follows of Example 1. The radius of each disc is proportional to thebability of

1) Compute all the elementary cycles Gf,, ., by e St@te{ue u—i}

using, e.g., [17, pp. 79-80], [18, pp. 157].

2) Compute all the prime cycles @fc~.. from the ele-
mentary cycles oG,..,-1) as explained above (c.f.
[16, Lemma 4]).

3) Generate the input signals:¢}!=) from the prime

1

To obtain an input signal fromp°**(4,, ), we need to
compute a Markov chain associated to the elements'in.
We can find one transition matrix € R(¢sea)”™ X(coca)™™
for the equivalent Markov chain

cycles ofGen... , for eachi € {1, ..., ny}.

4) For eachi € {1, ..., ny}, approximaté[l(j) by using Mjqq = ATl (18)
@13). : : : .

5) Definey := {ai,..., an,} € R™. Find 4°pt := by using algorithms presented in the literature (e.g.,
{aS™,..., a2} by solving an approximation of Metropolls—Hastmgsﬂggnthm [22], [23]). Notice thatodea.
Problem 1, given by entry of IT;, € R(¢«)"™ in (@8) represents one element in

C™m. To use the algorithms presented in [22], [23] we need
APt = arg max h(ZZP(v)), (14) to determine the stationary probabilities of each element i
eRTY C"=, which can be computed as follows. We know that each
where vertex inVp, has a uniform distribution with support equal
ny to the set of input vectors in the associated prime cycle.
T3PP(y) = Zo‘i Ifwi), (15) Therefore, the stationary probability of eaghe C™ is
i1 given by
ny ny
Z a; =1, (16) P{X=x}= Z APl vi(x) . (19)
i=1 =1
a; 20, forallie{1,..., ny}, (17)  Equation [IP) can be used to constrift € R(cwea)"™

Do . where each entry inll® is associated to the stationary
andZ;; is given by [IB), for alli € {1...... ny}. probability of one element i€”. GivenII®, we can find
The procedure mentioned above compue® to describe one matrixA such that

the optimal probability density functiop®®(Z4,,, ) using

(). Notice thatZ:*(~) in (@H) is linear in the decision IP = AI°. (20)

variables. Therefore, for a suitable choicehgfthe problem Finally, the transition matrix4 can be used to compute the

(I4)-(17) becomes convex. ) ; e
On the other hand, notice that the steps (1)-(3) mention%ﬁpm sequence by running the Markov chain with a random

above are independent of the system for which the exper|-Itlal statellp.
ment is designed. Therefore, once steps (1)-(3) are compute V. NUMERICAL EXAMPLES
then can be reused to design input sequences for different

The previous section described a method to compute a
solution for Problem 1. In this section we will show that

INote thatN is the number of Monte Carlo simulations to comp{iid (13),t_he method is consistent with reported algorithms in the
and it is not necessarily equal to the length of the experimeg,. literature.

systems.



Example 1: In this example we will solve the input design We will solve Problem 1 for two cost functiongi(-) =
problem for the system in Figufé 1, with —tr{(-)~'} andh(-) = det(-), subject to a binary sequence
(cseq = 2) of lengthn,,, = 2. In this example, we define

— 2
Golth) = G(g,0) w + Ga(g,0) e, @h) o= {—1,1}, andN = 5-10%. The optimization is carried
where out onMat lab by usingcvx toolbox.
The solution of Problem 1 for this example gives
G1(4,0) =01 + 620", (22) B Fic

tr{(Zz*?)~'} = 0.1108 anddet(Z7") = 1.8036 - 10'2. Fig-
G2(q,0) =03+ 61q~", (23)  ure[B presents the stationary probabilities of the optimalit
signal for both cost functions. We can see that the statjonar
probabilities depend on the cost functibnHowever, we see
that both cost functions assign higher stationary prohigssil

and ¢ denotes the shift operator, i.e; ! u; == u;_1. We
assume that; is Gaussian white noise with variangdg = 1.
This system has been introduced as an example in [14].
We will solve Problem 1 by considering(-) = det(-), to the stateg—1, —1) and(1, 1). )
and a ternary sequence., = 3) of length n,, = 2. For We can compare the_ performanc_e of our approach with
this example, we definé := {—1, 0, 1}. the_method introduced in [9]. For thl_s purpose, we gengrate
To solve [I#){(I7) we conside¥ = 5 - 10% in (I3). The an mplut sequence of Igngﬂvi by running the Markov chain
implementation of [I4){(17) was madelmt 1ab by using associated to the stationary dlstrlbut!on in Fighre]5(ay a
cvx toolbox [24]. the 4-states Markov chain presented in [9]. To guarantde tha

The simulation results give an optimal caBtt(Z:PP) = the input is a realization of a stationary process, we discar
0.1796 (c.f. det(P~') = 0.18 for the same exgmple in the first 10% outputs of the Markov chain. The results for

; ; ; —1y _
[14]). Figure[2 shows the optimal stationary probabilitieéhe_fampled information matrix &gr{(lp) } = 18233
for each state{u,, u;_1} (c.f. Figure 4(a) in [14f. The 10 forlthe 4-states Malrkov chain presented in [9], and
results presented here show that the proposed method!ié(Zr)” "} = 1.6525-107" for our method. Therefore, the
consistent with previous results in the literature [14],ewh @PProach in this paper gives better results for the example
Gy is defined as[{21)=(23). m ntroduced in [9]. o _

Example 1 shows that this method is equivalent to the TO have an idea of the computation time required for
method introduced in [14] wheri, has a nonlinear FIR- this example, the optimization was solved in a laptop Dell
type structure. Latitude E6430, equipped with Intel Core 276 [GHZz] pro-

The results in this article can be also employed whef€SS0r, and [Gb] of RAM memory. The time required from
amplitude constraints are considered in the input sequeynce the computation of elementary cycles to the computation of
forcing u; to belong to a finite alphabet. The next examplétationary probabilities is.9 second$ o - u
shows an application in that direction. The numerical examples presented in this section show

Example 2: In this example we consider the mass-springthat the proposed method is suitable for input design for
damper system introduced in [9]. The continuous inpus ~ SYStems with output-error-type structure, and when anmit
the force applied to the mass and the outpus the mass Constraints on the input are required.
position. The continuous-time system is described by the VI. CONCLUSIONS

transfer function
1 In this paper we have developed a new method to compute
Go(s) = - % - o (24) input signals for systems with arbitrary nonlinearitiefhieT
s+ =S+ — : iz At ;

m m method is based on the optimization of a scalar cost function
with m = 100 [Kg], £ = 10 [N/m], andc = 6.3246 [Ns/m].  of the information matrix with respect to the probability
This choice results in the natural frequeney = 0.3162 density function of a stationary input. The optimal proba-
[rad/s], and the damping = 0.1. The noisee; is white bility density function is used to compute the optimal input
with zero mean and variance. = 10~*. The system[{24) signal. An approach based on graph theory is used to derive a
is sampled by using a zero-order-hold with sampling periodomputationally efficient algorithm. This approach asssime

T, = 1 [s]. This gives the discrete-time system that the input can adopt a finite set of values. An important
4.86-10"3 ¢~ + 4.75-1073¢2 feature of this method is that, by a suitable definition of
Go(Ur) = — — us.  (25) the cost function, the optimization problem is convex even
1-1.84q¢140.94¢q . . .
) for nonlinear systems. Numerical examples show that this
As a model, we define method is consistent with previous results in the liteatur
_ 011 + 0xq72 when we assume that the system has a particular structure.
G(U; 0) = 1+0;q 1 +04q2 Ut (26) " The method can also be used for input design with amplitude
Where . limitations.
0= [91 02 03 94} . (27) SNotice that our results are consistent with those repontef], since
the scaling factorV is not considered here.
2The use of disc plots to represent the optimal input in Fiddrés 4A time bound for the computation of elementary cycles is imy

considered to ease comparison with the results in [14], evtieis visual — O(cidy (cseq + 1)(ce + 1)), Wherec. is the number of elementary cycles
representation is used. [17, p. 77].



Fig. 5.
state{u¢, u¢—1}. Figure[5@):h(-)
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