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Optimal input design for non-linear dynamic systems: a graph theory
approach

Patricio E. Valenzuela, Cristian R. Rojas and Håkan Hjalmarsson

Abstract— In this article a new algorithm for the design of
stationary input sequences for system identification is presented.
The stationary input signal is generated by optimizing an
approximation of a scalar function of the information matri x,
based on stationary input sequences generated from prime
cycles, which describe the set of finite Markov chains of a
given order. This method can be used for solving input design
problems for nonlinear systems. In particular it can handle
amplitude constraints on the input. Numerical examples show
that the new algorithm is computationally attractive and that
is consistent with previously reported results.

Index Terms— System identification, input design, Markov
chains.

I. INTRODUCTION

Input design concerns the generation of an input signal
to maximize the information obtained from an experiment.
Some of the first contributions in this area have been
introduced in [1], [2]. From the roots of [1], [2], many
contributions on the subject have been developed (see [3],
[4], [5], [6] and the references therein).

In the case of dynamic systems, the input design problem
can be formulated as the optimization of a cost function
related to the model to be identified. The results in this
area are mainly focused on linear systems. In [7], [8], linear
matrix inequalities (LMI) are employed to solve the input
design problem. In [9], the input signal is modelled as the
output of a Markov chain. Robust input design is covered in
[10], where the input signal is designed to optimize a cost
function over the feasible set of the true parameters. A time
domain approach for input design for system identification
is developed in [11]. The results presented above (except for
[9]) design an input signal without amplitude constraints.
However, in practical applications, amplitude constraints on
the input signal are required due to physical and/or perfor-
mance limitations. Therefore, input design with amplitude
constraints needs more analysis.

In recent years, we see growing interest to extend the
results of input design to nonlinear systems. An approach to
input design for nonlinear systems by using the knowledge
of linear systems is presented in [12]. Input design for
structured nonlinear systems has been introduced in [13]. An
approach of input design for a particular class of nonlinear
systems is presented in [14]. A particle filter method for
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input design for nonlinear systems is presented in [15]. The
results presented allow to design input signals when the
system contains nonlinear functions, but the constraints on
the system dynamics and the computational cost required to
solve the problem are the main limitations of these results.
Therefore, it is necessary to develop a method for input
design suited for a wide class of nonlinear models and
requiring low computational effort.

In this article we present a method to solve input design
problems with amplitude limitations. The proposed technique
also includes nonlinear systems with more general structures
than those presented in [14]. The method designs an input
signal which is restricted to a finite set of values, and it
is a realization of the optimal stationary process. Since
the problem is solved over the set of stationary processes,
the feasible set needs to be described by basis functions.
However, finding the basis functions for this set is a hard
task. This drawback is solved by using ideas from graph
theory [16], [17], [18]. By deriving the prime cycles of
the de Brujin’s graph associated to the feasible set, we can
express any element in the set as a convex sum of a finite
number of elements. The information matrices associated to
these elements can be approximated by a simple average,
which reduces the computational costs compared to the
method in [15]. A nice feature of this approach is that, if
the cost function is convex, the optimization problem can
be solved by using convex tools, even if the system is
nonlinear. The numerical examples show that this method
is consistent with the results presented in [14], and that it
can be successfully applied to solve input design problems
with amplitude limitations.

As with most optimal input design methods, the one
proposed in this contribution relies on knowledge of the true
system. This difficulty can be overcome by implementing a
robust experiment design scheme on top of it [10] or via an
adaptive procedure, where the input signal is re-designed as
more information is being collected from the system [19].
Due to space limitations, however, we will not address these
issues in the present paper.

The rest of this paper is organized as follows. Section
II presents basic concepts in graph theory. Section III
introduces the input design problem. Section IV presents
the newly proposed method to compute an optimal input
signal. In Section V some numerical examples are presented.
Finally, Section VI concludes the paper.

Remark: In the sequel, we denote byR the real set,
by R

p the set of realp-dimensional vectors, and byRr×s

the set of realr × s matrices. The expected value and
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the probability measure are denoted byE{·}, and P{·},
respectively. Finally,det and tr stand for the determinant
and the trace functions, respectively.

II. PRELIMINARIES ON GRAPH THEORY

The purpose in this section is to provide a brief back-
ground on graph theory to understand the discussion in the
next sections. The definitions presented here come from [17,
pp. 77].

A directed graphGV := (V ,X ) consists of a nonempty
and finite set of vertices (or nodes)V and a setX of ordered
pairs of distinct vertices callededges. A path in GV is a
sequence of verticespvu := (v = v1, v2, . . . , vk = u) such
that(vi, vi+1) ∈ X for i ∈ {1, . . . , k−1}. A cycleis a path
in which the first and last vertices are identical. A cycle is
elementary if no vertex but the first and last appears twice.
Two elementary cycles are distinct if one is not a cyclic
permutation of the other.

III. PROBLEM FORMULATION

Consider the single-input, single-output time invariant
system depicted in Figure 1. Here,G0 is a dynamic system
(possibly nonlinear),{et} is a white noise sequence with zero
mean and varianceλe, ut ∈ R is the input andyt ∈ R is
the measured output. We will assume that we have a model
structure forG0. Notice that we assume that the noiseet
enters only at the output.

et

G0
ut yt

Fig. 1. Block diagram of a dynamic system (possibly nonlinear).

The objective in this article is to design an input signal
Unseq := (unseq , . . . , u1) as a realization of a stationary
process, such that the system

yt = G0(U
∞
t ) + et , (1)

U∞
t := (ut, . . . , u−∞) , (2)

can be identified with maximum accuracy as defined by a
scalar function of the Fisher information matrixIF [20]. IF
can be computed as

IF :=
1

λe
E

{

nseq
∑

t=1

ψ(θ0)ψ(θ0)
T

}

, (3)

where

ψ(θ0) :=
d ŷ(t)

dθ

∣

∣

∣

∣

θ=θ0

, (4)

ŷ(t) := G(Ut; θ) , (5)

and θ, θ0 ∈ Θ ⊂ R
m. The expected value in (3) is with

respect to the realizations ofUnseq . In addition, the result
introduced in (3)-(5) assumes that there exists aθ0 ∈ Θ

such thatG(Ut; θ0) = G0(Ut) [20], i.e., that there is no
undermodelling; we will make this assumption in the sequel.

Equation (5) does not depend on the noise realization.
Therefore, we can rewrite (3) as

IF =
1

λe

∫

Unseq∈R
nseq

nseq
∑

t=1

ψ(θ0)ψ(θ0)
T dP (Unseq) , (6)

whereP (Unseq) is the cumulative distribution function of
Unseq .

We note that (6) depends onP (Unseq). Therefore, the input
design problem is to find a cumulative distribution function
P opt(Unseq) which optimizes a scalar function of (6). We
define this scalar function ash : Rm×m → R. To obtain the
desired results,h must be a matrix nondecreasing function
[21, pp. 108]. Different choices ofh have been proposed
in the literature [10]. Some examples forh are h = det,
andh = − tr{(·)−1}. In this work, we leave to the user the
selection ofh.

SinceP opt(Unseq) has to be a stationary cumulative dis-
tribution function, the optimization must be constrained to
the set

P := {F : Rnseq → R|F (x) ≥ 0, ∀x ∈ R
nseq ;

F is monotone non-decreasing;

lim
xi→∞

i={1, ..., nseq}
x=(x1, ..., xnseq )

F (x) = 1;

∫

v∈R

dF (v, z) =

∫

v∈R

dF (z, v) , ∀z ∈ R
(nseq−1)

}

. (7)

The last condition in (7) (with slight abuse of notation)
guarantees thatF ∈ P is the cumulative distribution function
of a stationary sequence [16].

To simplify our analysis, we will assume thatut can only
adopt a finite numbercseq of values. We define this set of
values asC. With the previous assumption, we can define
the following subset ofP :

PC := {f : Cnseq → R| f(x) ≥ 0, ∀x ∈ Cnseq ;
∑

x∈Cnseq

f(x) = 1;

∑

v∈C

f(v, z) =
∑

v∈C

f(z, v) , ∀z ∈ C(nseq−1)

}

. (8)

The set introduced in (8) will be used to constrain the
probability mass functionp(Unseq).

The discussion presented in this section can be summa-
rized as

Problem 1: Design an optimal input signalUopt
nseq

∈ Cnseq

as a realization frompopt(Unseq
), where

popt(Unseq
) := arg max

p∈PC

h(IF (p)) , (9)

whereh : Rm×m → R is a matrix nondecreasing function,

IF (p) =
1

λe

∑

Unseq∈Cnseq

nseq
∑

t=1

ψ(θ0)ψ(θ0)
T p(Unseq) , (10)



andψ(θ0) ∈ R
m is defined as in (4)-(5). �

A solution for this problem will be discussed in the next
section.

IV. INPUT DESIGN VIA GRAPH THEORY

Problem 1 is hard to solve explicitly. The main issues are

1) We need to describe the elements in the setPC as a
linear combination of basis functions, and

2) the sum in (10) is of dimensionnseq, wherenseq could
be potentially very large.

These issues make Problem 1 computationally intractable.
Therefore, we need to develop an approach to solve this
problem by using a computational feasible method.

Sincenseq could be large, Problem 1 can be unfeasible
to solve. To address this, we restrict the memory of the
stationary processut, i.e., we consider only finite stationary
sequences of length, say,nm.

To address the first issue, we notice thatPC is a convex
set. In particular,PC is a polyhedron [21, pp. 31]. Hence, any
element ofPC can be described as a convex combination of
the extreme points ofPC [21, pp. 24]. Therefore, if we define
VPC

as the set of all the extreme points ofPC , composed by
nV elements, then for allf ∈ PC we have

f =

nV
∑

i=1

αi vi , (11)

whereαi ≥ 0, i ∈ {1, . . . , nV},
nV
∑

i=1

αi = 1 , (12)

andvi ∈ VPC
, for all i ∈ {1, . . . , nV}.

Equation (11) says that all the elements inPC can be
described by usingnV elements in the setVPC

.
To find all the elements inVPC

, we need to shift our
focus to graph theory. Indeed, we can analyze the setCnm

as follows.Cnm is composed of(cseq)nm elements. Each
element inCnm can be viewed as one node in a graph.
In addition, the transitions among the elements inCnm are
given by the feasible values ofut+k+1 when we move
from (ut+k, . . . , uk) to (ut+k+1, . . . , uk+1), for all integers
k ≥ 0. The edges among the elements inCnm denote the
possible transitions between the states, represented by the
nodes of the graph. Figure 2 illustrates this idea, when
cseq = 2, nm = 2, and C = {0, 1}. From this figure we
can see that, if we are in node(0, 1) at timet, then we can
only end at node(1, 0) or (1, 1) at time t+ 1.

The idea to use graph theory to find all the elements inVPC

is related with the concept of prime cycles. In graph theory,
a prime cycle is an elementary cycle whose set of nodes
do not have a proper subset which is an elementary cycle
[16, pp. 678]. It has been proved that the prime cycles of a
stationary graph can describe all the elements in the setVPC

[16, Theorem 6]. In other words, each prime cycle defines
one elementvi ∈ VPC

. Furthermore, eachvi corresponds to
a uniform distribution whose support is the set of elements
of its prime cycle, for alli ∈ {1, . . . , nV} [16, pp. 681].

(ut−1, ut)
(1, 1)

(ut−1, ut)
(0, 0)

(ut−1, ut)
(1, 0)

(ut−1, ut)
(0, 1)

Fig. 2. Example of graph derived fromCnm , with cseq = 2, nm = 2,
andC := {0, 1}.

ut = 0 ut = 1

Fig. 3. Example of graph derived fromCnm , with cseq = 2, nm = 1,
andC := {0, 1}.

Therefore, the elements inVPC
can be described by finding

all the prime cycles associated to the stationary graphGCnm

drawn fromCnm .

It is known that all the prime cycles associated toGCnm

can be derived from the elementary cycles associated to
GC(nm−1) [16, Lemma 4]. In the literature there are many
algorithms for finding all the elementary cycles in a graph.
For the examples in Section V, we have used the algorithm
presented in [17, pp. 79–80] complemented with the one
proposed in [18, pp. 157].

Once all the elementary cycles ofGC(nm−1) are found, we
can find all the prime cycles associated toGCnm by using
the idea introduced in [16, Lemma 4]. To illustrate this,
we consider the graph depicted in Figure 3. One elementary
cycle for this graph is given by(0, 1, 0). Using Lemma 4 in
[16], the elements of one prime cycle for the graphGC2 are
obtained as a concatenation of the elements in the elementary
cycle (0, 1, 0). Hence, the prime cycle inGC2 associated to
this elementary cycle is given by((0, 1), (1, 0), (0, 1)).

With all the prime cycles clearly defined forGCnm , then
all the elements in the setVPC

are found. Hence, we can use
(11) to describe all the elements inPC . Thus, the solution
described here presents a computationally feasible methodto
address the first issue.

Since we know the distributionvi for each prime cycle,
with vi ∈ VPC

, we can generate an input signal{uit}
t=N
t=0

drawn fromvi, so that

I
(i)
F :=

1

λe

∑

Unm∈Cnm

nm
∑

t=1

ψ(θ0)ψ(θ0)
T vi(Unm

)



≈
1

λeN

N
∑

t=1

ψ(θ0)ψ(θ0)
T , (13)

for all i ∈ {1, . . . , nV}, and N sufficiently large1 (in
relation to the length of the prime cycles). Notice thatψ(θ0)
depends implicitly on{uit}

t=N
t=0 through (4)-(5). Furthermore,

eachI(i)
F is associated to thei-th prime cycle, for alli ∈

{1, . . . , nV}.
As an example of how to generate{uit}

t=N
t=0 from vi, we

use the graph depicted in Figure 2. One prime cycle for
this graph is given by((0, 1), (1, 0), (0, 1)). Therefore, the
sequence{uit}

t=N
t=0 is given by taking the last element of each

node, i.e.,{uit}
t=N
t=0 = {1, 0, 1, 0, . . . , ((−1)N + 1)/2}.

The approximation of eachI(i)
F given by (13) reduces

the sum (10) from dimensionnseq to dimension 1. This
simplification reduces significantly the computation effort to
obtain (10). With this approach, issue 2) is also addressed.

To summarize, the proposed method for input design of
signals inCnm can be described as follows

1) Compute all the elementary cycles ofGC(nm−1) by
using, e.g., [17, pp. 79–80], [18, pp. 157].

2) Compute all the prime cycles ofGCnm from the ele-
mentary cycles ofGC(nm−1) as explained above (c.f.
[16, Lemma 4]).

3) Generate the input signals{uit}
t=N
t=0 from the prime

cycles ofGCnm , for eachi ∈ {1, . . . , nV}.
4) For eachi ∈ {1, . . . , nV}, approximateI(i)

F by using
(13).

5) Define γ := {α1, . . . , αnV
} ∈ R

nV . Find γopt :=
{αopt

1 , . . . , αopt
nV

} by solving an approximation of
Problem 1, given by

γopt := arg max
γ∈R

nV

h(Iapp
F (γ)) , (14)

where

Iapp
F (γ) :=

nV
∑

i=1

αi I
(i)
F , (15)

nV
∑

i=1

αi = 1 , (16)

αi ≥ 0 , for all i ∈ {1, . . . , nV} , (17)

andI(i)
F is given by (13), for alli ∈ {1, . . . , nV}.

The procedure mentioned above computesγopt to describe
the optimal probability density functionpopt(Unm

) using
(11). Notice thatIapp

F (γ) in (15) is linear in the decision
variables. Therefore, for a suitable choice ofh, the problem
(14)-(17) becomes convex.

On the other hand, notice that the steps (1)-(3) mentioned
above are independent of the system for which the experi-
ment is designed. Therefore, once steps (1)-(3) are computed,
then can be reused to design input sequences for different
systems.

1Note thatN is the number of Monte Carlo simulations to compute (13),
and it is not necessarily equal to the length of the experiment nseq.

−1 0 1

−1

0

1

ut

u
t
−

1

Fig. 4. Plot with the stationary probabilities for the optimal input signal
of Example 1. The radius of each disc is proportional to the probability of
the state{ut, ut−1}.

To obtain an input signal frompopt(Unm
), we need to

compute a Markov chain associated to the elements inCnm .
We can find one transition matrixA ∈ R

(cseq)
nm×(cseq)

nm

for the equivalent Markov chain

Πk+1 := AΠk , (18)

by using algorithms presented in the literature (e.g.,
Metropolis-Hastings algorithm [22], [23]). Notice that each
entry of Πk ∈ R

(cseq)
nm

in (18) represents one element in
Cnm . To use the algorithms presented in [22], [23] we need
to determine the stationary probabilities of each element in
Cnm , which can be computed as follows. We know that each
vertex inVPC

has a uniform distribution with support equal
to the set of input vectors in the associated prime cycle.
Therefore, the stationary probability of eachx ∈ Cnm is
given by

P{X = x} =

nV
∑

i=1

αopt
i vi(x) . (19)

Equation (19) can be used to constructΠs ∈ R
(cseq)

nm

,
where each entry inΠs is associated to the stationary
probability of one element inCnm . Given Πs, we can find
one matrixA such that

Πs = AΠs . (20)

Finally, the transition matrixA can be used to compute the
input sequence by running the Markov chain with a random
initial stateΠ0.

V. NUMERICAL EXAMPLES

The previous section described a method to compute a
solution for Problem 1. In this section we will show that
the method is consistent with reported algorithms in the
literature.



Example 1: In this example we will solve the input design
problem for the system in Figure 1, with

G0(Ut) = G1(q, θ)ut +G2(q, θ)u
2
t , (21)

where

G1(q, θ) = θ1 + θ2 q
−1 , (22)

G2(q, θ) = θ3 + θ4 q
−1 , (23)

and q denotes the shift operator, i.e.,q−1 ut := ut−1. We
assume thatet is Gaussian white noise with varianceλe = 1.
This system has been introduced as an example in [14].

We will solve Problem 1 by consideringh(·) = det(·),
and a ternary sequence (cseq = 3) of length nm = 2. For
this example, we defineC := {−1, 0, 1}.

To solve (14)-(17) we considerN = 5 · 103 in (13). The
implementation of (14)-(17) was made inMatlab by using
cvx toolbox [24].

The simulation results give an optimal costdet(Iapp
F ) =

0.1796 (c.f. det(P−1) = 0.18 for the same example in
[14]). Figure 4 shows the optimal stationary probabilities
for each state{ut, ut−1} (c.f. Figure 4(a) in [14])2. The
results presented here show that the proposed method is
consistent with previous results in the literature [14], when
G0 is defined as (21)-(23). �

Example 1 shows that this method is equivalent to the
method introduced in [14] whenG0 has a nonlinear FIR-
type structure.

The results in this article can be also employed when
amplitude constraints are considered in the input sequenceby
forcing ut to belong to a finite alphabet. The next example
shows an application in that direction.

Example 2: In this example we consider the mass-spring-
damper system introduced in [9]. The continuous inputu is
the force applied to the mass and the outputy is the mass
position. The continuous-time system is described by the
transfer function

G0(s) =
1
m

s2 + c
m
s+ k

m

, (24)

with m = 100 [Kg], k = 10 [N/m], andc = 6.3246 [Ns/m].
This choice results in the natural frequencyωn = 0.3162
[rad/s], and the dampingξ = 0.1. The noiseet is white
with zero mean and varianceλe = 10−4. The system (24)
is sampled by using a zero-order-hold with sampling period
Ts = 1 [s]. This gives the discrete-time system

G0(Ut) =
4.86 · 10−3 q−1 + 4.75 · 10−3q−2

1− 1.84 q−1 + 0.94q−2
ut . (25)

As a model, we define

G(Ut; θ) =
θ1 q

−1 + θ2q
−2

1 + θ3 q−1 + θ4q−2
ut , (26)

where
θ =

[

θ1 θ2 θ3 θ4
]T

. (27)

2The use of disc plots to represent the optimal input in Figure4 is
considered to ease comparison with the results in [14], where this visual
representation is used.

We will solve Problem 1 for two cost functions:h(·) =
− tr{(·)−1} andh(·) = det(·), subject to a binary sequence
(cseq = 2) of length nm = 2. In this example, we define
C := {−1, 1}, andN = 5 · 103. The optimization is carried
out onMatlab by usingcvx toolbox.

The solution of Problem 1 for this example gives
tr{(Iapp

F )−1} = 0.1108 anddet(Iapp
F ) = 1.8036 ·1012. Fig-

ure 5 presents the stationary probabilities of the optimal input
signal for both cost functions. We can see that the stationary
probabilities depend on the cost functionh. However, we see
that both cost functions assign higher stationary probabilities
to the states(−1, −1) and (1, 1).

We can compare the performance of our approach with
the method introduced in [9]. For this purpose, we generate
an input sequence of lengthN by running the Markov chain
associated to the stationary distribution in Figure 5(a), and
the 4-states Markov chain presented in [9]. To guarantee that
the input is a realization of a stationary process, we discard
the first 106 outputs of the Markov chain. The results for
the sampled information matrix are3 tr{(IF )

−1} = 1.8233 ·
10−4 for the 4-states Markov chain presented in [9], and
tr{(IF )

−1} = 1.6525 · 10−4 for our method. Therefore, the
approach in this paper gives better results for the example
introduced in [9].

To have an idea of the computation time required for
this example, the optimization was solved in a laptop Dell
Latitude E6430, equipped with Intel Core i72.6 [GHz] pro-
cessor, and8 [Gb] of RAM memory. The time required from
the computation of elementary cycles to the computation of
stationary probabilities is1.9 seconds4. �

The numerical examples presented in this section show
that the proposed method is suitable for input design for
systems with output-error-type structure, and when amplitude
constraints on the input are required.

VI. CONCLUSIONS

In this paper we have developed a new method to compute
input signals for systems with arbitrary nonlinearities. The
method is based on the optimization of a scalar cost function
of the information matrix with respect to the probability
density function of a stationary input. The optimal proba-
bility density function is used to compute the optimal input
signal. An approach based on graph theory is used to derive a
computationally efficient algorithm. This approach assumes
that the input can adopt a finite set of values. An important
feature of this method is that, by a suitable definition of
the cost function, the optimization problem is convex even
for nonlinear systems. Numerical examples show that this
method is consistent with previous results in the literature,
when we assume that the system has a particular structure.
The method can also be used for input design with amplitude
limitations.

3Notice that our results are consistent with those reported in [9], since
the scaling factorN is not considered here.

4A time bound for the computation of elementary cycles is given by
O(cnm

seq (cseq + 1)(ce + 1)), wherece is the number of elementary cycles
[17, p. 77].
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Fig. 5. Plot with the stationary probabilities for the optimal input signal in Example 2. The radius of each disc is proportional to the probability of the
state{ut, ut−1}. Figure 5(a):h(·) = − tr{(·)−1}. Figure 5(b):h(·) = det(·).
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