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Abstract— This paper derives a differential contraction con-
dition for the existence of an orbitally-stable limit cycle in an au-
tonomous system. This transverse contraction condition can be
represented as a pointwise linear matrix inequality (LMI), thus
allowing convex optimization tools such as sum-of-squares pro-
gramming to be used to search for certificates of the existence
of a stable limit cycle. Many desirable properties of contracting
dynamics are extended to this context, including preservation of
contraction under a broad class of interconnections. In addition,
by introducing the concepts of differential dissipativity and
transverse differential dissipativity, contraction and transverse
contraction can be established for large scale systems via LMI
conditions on component subsystems.

I. INTRODUCTION

Dynamic systems with periodic solutions are important in
many areas of engineering, including biologically-inspired
robot locomotion, phase-locked loops, vortex shedding from
aircraft wings, and combustion oscillations, to name just a
few. In biology, oscillating systems seem to be the rule rather
than the exception [1].

The basic question we address in this paper is the follow-
ing: when does an autonomous system of the form

ẋ = f(x) (1)

have the property that all solutions starting from a particular
set K converge asymptotically to a unique limit cycle? It
is well known that periodic solutions of an autonomous
differential equation can never be asymptotically stable.
This is clear from the fact that solutions which have initial
conditions on the periodic orbit but offset in time will never
converge.

There is a long and distinguished history of research into
limit cycles for nonlinear systems. For example, the famous
result of Poincaré-Bendixson gives a very simple condition
for planar systems. An important generalization to monotone
cyclic feedback systems was published in [2], however this
depends on quite a special system structure and there are
many application areas where it does not apply.

There are also interesting properties of the “global” struc-
ture of regions of attraction to periodic orbits. It is known
that the region of attraction is a continuous deformation of a
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torus: the cartesian product of an open unit disc of dimension
n − 1, with a scalar circle coordinate [3]. These are often
referred to as “transversal” and “phase” coordinates, respec-
tively. In all cases except possibly with n = 5 it is guaranteed
that the deformation is differentiable [4], due to the recent
resolution of the Poincaré Hypothesis by Perelman. Birkhoff
gave necessary conditions for periodic solutions in terms of
the existence of particular “phase variables”, or associated
differential one-forms [5], [4].

However, all of these conditions imply the existence
of at least one limit cycle, but give no insight into the
number of limit cycles, or their stability. In recent years
many efficient computational methods for proving stability
of equilibria of nonlinear systems have been proposed, using
optimization methods to search for “stability certificates”
such as Lyapunov functions and barrier certificates [6], [7],
[8], [9]. In previous papers, the first author and others
have extended this computational approach to limit cycles
analysis using “transverse dynamics” and sum-of-squares
programming [10], [11], [12], [13], however this method is
not applicable when the system dynamics are uncertain, since
uncertainty will generally change the location of the limit
cycle in state space.

An alternative to Lyapunov methods is to search for a
contraction metric [14], [15]. For the purposes of robust
stability analysis of equilibria, an important difference is
that a Lyapunov function must generally be constructed
about a known equilibrium, whereas a contraction metric
implies the existence of a stable equilibrium indirectly. This
is particularly useful if the equilibrium point may change
location depending on the unknown dynamics.

Historically, basic convergence results on contracting sys-
tems can be traced back to the 1949 results of Lewis in
terms of Finsler metrics [16], and results of Hartman [17]
and Demidovich [18]. To our knowledge, contraction to limit
cycles was first investigated using an identity metric by Borg
[19], and later by Hartman and Olech [20].

In this paper, we introduce transverse contraction, extend-
ing the results of [19], [20] by exploiting generalized metrics
and system combination properties as in [14]. We also
give a nonlinear change of variables that converts tranverse
contraction to a linear matrix inequality (LMI) without con-
servatism. In Section IV we show that transverse contraction

ar
X

iv
:1

20
9.

44
33

v2
  [

m
at

h.
O

C
] 

 1
8 

M
ar

 2
01

3



is preserved under several forms of interconnection with
contracting systems. In Section V we introduce differen-
tial dissipativity and transverse differential dissipativity, as
well as LMI conditions for each, giving a framework for
optimization-based analysis of complex interconnections of
nonlinear systems. Finally, in Section VI, we illustrate the
applicability of the results on the Moore Greitzer jet engine
model and for the identification of live neuron dynamics.

II. PROBLEM SETUP AND PRELIMINARIES

We assume that f : K → Rn in (1) is smooth and x ∈ Rn,
and that a unique solution of (1) exists. We refer to the
Jacobian of f as A(x) := ∂f

∂x . A set K is called strictly
forward invariant under f if any solution of (1) starting
with x(0) in K is in the interior of K for all t > 0. A
periodic solution x? is one for which there exists some T > 0
such that x?(t) = x?(t+T ) for all t. Equilibria are trivially
periodic for every T , but for oscillatory solutions – which
are our main concern – there is some minimal time T such
that the above holds and this is referred to as the period.
The orbit of a periodic solution is the set X ? := {x :
x = x?(t) for some t}. Note that while non-trivial periodic
solutions cannot be asymptotically stable, their orbits can
be, and in this case we say that the solution is orbitally
stable (see, e.g., [21]). Define a time reparametrization τ(t)
as a smooth function τ : [0,∞) → [0,∞) such that τ(t) is
monotonically increasing and τ(t)→∞ as t→∞.

III. CONTRACTION CONDITIONS FOR LIMIT CYCLES

In this section we introduce a transverse contraction con-
dition for an autonomous dynamical system ẋ = f(x), x ∈
M , where M is a smooth, compact n-dimensional manifold.
The condition is given in terms of a function V (x, δx), where
x ∈ M and δx ∈ Rn, which induces a distance function
similar to a Riemannian or Finsler metric [22].

For most of this paper, we will assume a Riemannian-like
contraction metric V (x, δx) :=

√
δ′xM(x)δx where M(x) is

positive-definite for all x, however the main results hold for
more general structures such as Finsler metrics [22], [16],
[23]. The following two theorems provide a generalization
of the results of [19], [20], which considered the case
V (x, δx) = |δx|2.

Theorem 1: Let K ⊂ Rn be compact, smoothly path-
connected, and strictly forward invariant. If there exists a
Finsler function V (x, δ) satisfying

∂V

∂x
f(x) +

∂V

∂δx
A(x)δx ≤ −λV (x, δx), (2)

for all δx 6= 0 such that ∂V
∂δx

f(x) = 0, then for every two
solutions x1 and x2 with initial conditions in K there exists
time reparametrizations τ(t) such that x1(t) → x2(τ(t)) as
t→∞.

Proof: The basic idea of the proof is illustrated in Figure 1.
Since the set K is smooth and path-connected by definition,
there exists a smooth path between any two points x1 ∈ K
and x2 ∈ K that remains in K. Such a path can be
considered as a smooth mapping γ : [0, 1] → Rn with

γ(0) = x1 and γ(1) = x2. We assume that paths are
parametrized so that ∂γ(s)

∂s 6= 0 for all s.
Denote by Γ(x1, x2) the set of all such smooth paths

between x1 and x2 remaining in K and associate with each
a length

L(γ) =

∫ 1

0

V

(
γ(s),

∂

∂s
γ(s)

)
ds

and introduce the following Riemannian/Finsler-like distance
between x1 and x2:

d(x1, x2) = inf
γ∈Γ(x1,x2)

L(γ) (3)

The proof follows by showing that the distance d(x1, x2)
can by made to decrease by choice of time reparametrization,
i.e. by speeding up or slowing down individual solutions
along their phase portraits.

To this end, let us consider a path parametrized both in
s and time t: γ(s, t), with the property that γ(s, t0) is the
infimum in (3) for two points x1(t0) and x2(t0). Now, let
us introduce at every point s ∈ [0, 1] and t ≥ t0 a “speed
scale” α(s, t) > 0, which is assumed to be smooth in each
argument. That is, at each point γ(s, t) we have

d

dt
γ(s, t) = α(s, t)f(γ(s, t))

with τ̇(t) = α(1, t) and α(0, t) = 1
Now, by definition of the distance,

d

dt
d(x1(t), x2(τ(t)) ≤

∫ 1

0

[
d

dt
V

(
γ(s, t),

∂

∂s
γ(s, t)

)]
ds.

Let us now consider, pointwise, the integrand in the right
hand side of the above inequality.

d

dt
V

(
γ(s, t),

∂

∂s
γ(s, t)

)
=
∂V (x, δ)

∂x
ẋ+

∂V (x, δx)

∂δx
δ̇x

evaluated at x = γ(s, t) and δx = ∂
∂sγ(s, t), i.e. with

ẋ = α(s, t)f(γ(s, t)),

δ̇x =
d

dt

∂

∂s
γ(s, t) =

∂

∂s
(α(s, t)f(γ(s, t)))

=
∂α

∂s
f(γ(s, t))) + α(s, t)A(x)

∂γ

∂s
.

Contraction under possible time-reparametrization follows
from d

dtV
(
γ(s, t), ∂∂sγ(s, t)

)
< 0 for all s. For this to hold

for paths between all pairs of points, it is necessary that

d

dt
V (x, δx) =

∂V

∂x
f(x) +

∂V

∂δx
(zf(x) +A(x)δx) < 0 (4)

where the above has been normalized by α(s, t) > 0 (which
doesn’t affect the sign) and where z = 1

α(s,t)
∂α
∂s is a scalar.

Since the time reparametrization is not specified, one
interpretation is that z is a “control input” which can be used
to make the above inequality hold. Since it is affine in z, there
are obviously ample choices of z to satisfy this inequality as
long as ∂V

∂δx
f(x) 6= 0. The transverse contraction condition

is simply that whenever ∂V
∂δx

f(x) = 0, (4) is satisfied. �
Remark 1: Stability under time reparametrization is some-

times referred to as Zhukovsky stability and has been used in



δx
δx

x1

x2

x1

x2

Fig. 1. On the left, an “infinitesimal” line segment joining x1 and x2 can
be made to shrink be “speeding up” x2 along its solution. On the right, the
line segment is orthogonal to the derivative, so the system must be strongly
contracting for the line segment to contract.

several recent papers on limit cycle stability, see e.g. [24],
[25], [12] and apparently goes back to Poincaré in its essen-
tial argument [21]. It is known that systems satisfying such
a property have limit cycles [24], but with the framework of
contraction the proofs are simpler, so we give a proof here.

Theorem 2: If the conditions of Theorem 1 are satisfied,
then all solutions starting with x(0) ∈ K converge to a
unique limit cycle.

Proof: since K is invariant and compact, it follows that
Ω(x) exists and is a compact subset of K. Furthermore, a
clear implication of Theorem 1 is that all points in K have
the same ω-limit set, which we denote Ω(K).

Pick a point x? in Ω(K). By strict invariance, this is an
interior point of K. Assume f(x?) 6= 0, otherwise results
of [14] prove convergence to an equilibrium. Then one can
construct the hyperplane orthogonal to f(x?), which we
denote S. We will prove convergence to a limit cycle by
constructing a Poincaré map on S.

Since f(·) is smooth, for x in some neighborhood B of x?

we have that f(x)′f(x?) > 0, so in BS := B ∩ S solution
curves are transversal to S and pass through it in the same
direction as at x?.

Since x? is in the ω-limit set for all points in K, and BS is
transversal, the evolution of the system from any point x(t) ∈
BS eventually passes through BS again, i.e. x(t+ s) ∈ BS
where s > 0 depends on x. This evolution can be represented
by a Poincaré map T : BS → BS .

Take the distance between two points d(x1, x2) on BS to
be Riemannian metric distance from Theorem 1. Note that
although the two points lie on the n−1 dimensional set BS ,
the curves joining them in the definition of d may pass out
of the plane and through n-dimensional space. By Thoerem
1, we have that d(T (x1), T (x2)) < d(x1, x2). Hence T is
a contractive map from BS onto itself, and by the Banach
fixed point theorem has a unique stable fixed point, which
is its only limit point so must be x?. By standard results on
Poincaré maps this implies that x? is a point on a limit cycle,
to which by all solutions converge, by Theorem 1. �

Remark 2: It can in fact be shown that convergence of
x1(t) to the orbit of x2 is exponential with rate λ, and that
τ can be chosen to satisfy τ̇(t) → 1 as t → ∞, i.e. the
system has asymptotic phase. We omit the details due to
space restrictions.

Remark 3: Note that transverse contraction is a strictly
weaker condition than contraction, so every contracting

system is also transverse contracting. Hence the periodic
solution to which a transverse contracting system converges
may be trivially periodic, i.e. an equilibrium.

Remark 4: In [26], [27] and [28], contraction transverse
to a particular linear subspace was analyzed in the con-
text synchronization. In this paper, contraction transverse to
the system’s vector field ensures asymptotically a form of
“synchronization”: in a periodic solution there is a single
scalar variable (phase) that predicts all other states of the
system. This concept may also be generalized to study
higher-dimensional limit sets and non-autonomous systems.

A. Convex Formulation via Linear Matrix Inequalities

For the remainder of the paper we consider transverse
contraction with a metric of the form V (x, δx) = δ′xM(x)δx.
It will be shown in the next subsection that this class of
metrics is sufficiently rich for testing orbital stability.

Theorem 3: A system ẋ = f(x) is transverse contracting
with rate λ on a set K if and only if there exists a function
ρ(x) ≥ 0 and a symmetric positive-definite matrix function
W (x) such that

W (x)A(x)′+A(x)W (x)−Ẇ (x)+λW (x)−ρ(x)Q(x) ≤ 0
(5)

for all x ∈ K, where Q(x) := f(x)f(x)′.
Note that this condition is linear in the unknown functions

W (x) and ρ(x), i.e. it consists of a linear matrix inequality
at each point x.

Proof: The following condition guarantees transverse con-
traction:

δ′x

(
A(x)′M(x) +M(x)A(x) + Ṁ(x) + λM(x))

)
δx

for all δ satisfying δ′xM(x)f(x) = 0. If we reformulate this
in terms of the gradient of the metric with respect to δ:
η = M(x)δx, i.e. δx = M−1(x)η =: W (x)η then

δ′x

(
A(x)′M(x) +M(x)A(x) + Ṁ(x) + λM(x)

)
δx

= η′
(
W (x)A(x)′ +A(x)W (x)− Ẇ (x) + λW (x))

)
η

since Ẇ (x) = d
dt (M

−1(x)) = −M−1(x)Ṁ(x)M−1(x).
Furthermore, the transversality condition δ′xMf = 0 is
replaced by η′f(x) = 0.

Now define matrix function Q(x) := f(x)f(x)′ which is
rank-one and positive-semidefinite. This implies that the sets
{η : η′f(x) = 0}, {η : η′Q(x)η = 0}, and {η : η′Q(x)η ≤
0} are the same.

Transverse contraction with rate λ can then be defined as
the existence of a positive-definite matrix function W (x) > 0
such that the following implication holds:

η′Q(x)η ≤ 0⇒

η′
(
W (x)A(x)′ +A(x)W (x)− Ẇ (x) + λW (x)

)
η ≤ 0

By the S-Procedure losslessness theorem [29], the above
implication is true if and only if there exists an ρ(x) ≥ 0
such that

W (x)A(x)′+A(x)W (x)−Ẇ (x)+λW (x)−ρ(x)Q(x) ≤ 0



which is the statement of the theorem. �
The above condition is convex and exact for each par-

ticular x. Such conditions can be verified over regions
of the state space using sum-of-squares programming and
positivstellensatz arguments [6], see [15] for an exposition
of this approach for the case of strong contraction.

B. Generalized Jacobian and Transverse Linearization

The concept of a generalized Jacobian was introduced
in [14] for analysing contracting systems. Consider a non-
singular change of differential coordinates δz = Θ(x)δx,
then the dynamics in the new coordinates are given by
δ̇z = F (x)δz where the generalized Jacobian F (x) :=
Θ(x)A(x)Θ(x)−1 +Θ̇(x)Θ(x)−1. If such a change of coor-
dinates exists such that F (x)+F (x)′ ≤ −λI then the system
is contracting with rate λ. Furthermore, M(x) = Θ(x)′Θ(x)
is a valid contraction metric. Note that it is often easier to
construct Θ(x) than a “global” change of coordinates x→ z.

A system is transverse contracting if there exists a differ-
ential change of coordinates such that δz(F +F ′)δz < 0 for
all δz satisfying δ′zΘ(x)f(x) = 0, where the latter condition
follows from ż = Θ(x)ẋ = Θ(x)f(x).

Theorem 4: If a system ẋ = f(x) has a unique limit
cycle to which all solutions starting in K converge orbitally,
then there exists a transverse contraction metric of the form
V (x, δx) =

√
δxM(x)δx satisfying

∂V

∂x
f(x) +

∂V

∂δx
A(x)δx ≤ 0

for all δx with strict inequality for δx satisfying ∂V
∂δx

f(x) = 0.
The generalized Jacobian is of the form

F =

[
0 ?
0 F⊥

]
where F⊥+F ′⊥ < 0 and F+F ′ has eigenvalues 0 = λmax >
λ2 ≥ λ3... ≥ λn.

Proof: Here we include only a sketch of the proof due to
space restrictions, the details are similar to the constructions
in [30], [25], [12]. In some toroidal neighbourhood B of
the limit cycle, there exists a smooth change of coordinates
x → (τ, x⊥) where τ is a scalar phase variable along the
cycle, and x⊥ is an (n− 1)-dimensional moving coordinate
system orthogonal to f(x). The differential system in these
coordinates has the form

d

dt

[
δτ
δ⊥

]
=

[
0 ?
0 A⊥(x)

] [
δτ
δ⊥

]
Moreover, if the limit cycle is orbitally stable, there exists a
Lyapunov function for the transversal part

A⊥(x)′M⊥(x) +M⊥(x)A⊥(x) + Ṁ⊥(x) < 0.

A full metric is given by |δτ |2 +δ⊥M⊥(x)δ⊥, which clearly
satisfies the transverse contraction condition in B. Since a
solution from any point x ∈ K converges to the limit cycle,
there is a finite time after which it enters B. About this
trajectory, a change of coordinates and Lyapunov function
can be constructed via the method in [25] satisfying the
transverse contraction condition everywhere.

The construction of the generalized Jacobian comes from
taking

Θ(x) =

[
1 0
0 Θ⊥(x)

]
Θ̄(x)

where Θ̄(x) is the Jacobian of the transformation x →
(τ, x⊥) and Θ⊥(x) satisfies M⊥(x) = Θ⊥(x)′Θ⊥(x). �

In the above, A⊥(x) is the transverse linearization that
was used to construct Lyapunov functions for limit cycles in
[30] and [12]. Note that in those works, it was necessary for
the limit cycle to be known and fixed to prove convergence,
whereas transverse contraction decouples the question of
convergence from knowledge of a particular solution.

IV. PROPERTIES OF TRANSVERSE CONTRACTING
SYSTEMS

In many applications in which exact models are un-
available or very complex, it is desirable to characterize
parameter ranges or interconnection structures over which
the qualitative behaviour of the system remains the same.
Engineering motivations are well known, but robustness
analysis has also become of interest recently in biology,
including as a measure of model validity [31]. E.g., in
[31] robustness of limit cycles is assessed by gridding over
parameter ranges and simulating the nonlinear system until
convergence can be ascertained. Gridding and simulation
becomes very expensive computationally for systems with
large state dimension or many parameters, so alternative
methods are desirable.

Feedback interconnections of oscillating systems with
contracting systems may be of interest in many applications,
for example control of robot arms [32] or locomotion.

A. Hierarchical Compositions of Systems

A relatively simple application of the above theorem is
to consider the composition of a contracting system and a
transverse-contracting system.

ẋ1 = f1(x1), ẋ2 = f2(x1, x2)

Theorem 5: Suppose for each fixed x1, f2 is transverse
contracting with metric M2(x2, x1), i.e.

δ′2(F ′2M22 +M2F22 +
∂

∂x2
M2f(x2) + λ2M2)δ2 ≤ 0

for all δ2 satisfying δ′2M2f2 = 0 and f1 is strongly con-
tracting in the sense of [14], i.e. there exists M1(x1) such
that

F ′1M1 +M1F1 +
∂

∂x1
M1f(x1) + λ1M1 ≤ 0

then the composed system is transverse contracting, and
hence has a unique stable limit cycle.
Proof we prove this theorem by constructing a metric which
decomposes as

δ′Mcδ := δ′1M1δ1 + αδ′2M2δ2 = 0

which will be shown to verify the existence of a unique
stable limit cycle. Let x = [x′1 x′2]′ and f(x) =



[f1(x1)′ f2(x1, x2)′]′. Since the contraction conditions are
homogeneous with respect to δ, and δ = 0 is trivial, it is
sufficient to consider the case where |δ| = 1.

First, we note that since f2(x) 6= 0 is K and K is compact,
there exists an ε > 0 such that |f2(x)| ≥ ε for all x ∈ K.

Second, since system 1 is contracting and K is compact,
f1 → 0 uniformly [14]. The transversality condition for the
metric Mc is

δ′1M1f1 + δ′2M2f2 = 0. (6)

However, since f2 is bounded below and f1 converges
uniformly to zero, the normal vector to the surface defined
by (6) converges to that defined by δ′2M2f2 = 0 and hence
the compact sets of δ of norm one satisfying these conditions
converge uniformly.

Now, d/dt[δ′Mcδ] = δ′Hδ where H decomposes into
blocks corresponding to δ1 and δ2 like so:

H =

[
α(F ′1M1 +M1F1 + Ṁ1) F ′21M2 +M1F21

F ′21M1 +M1F21 F ′22M2 +M2F22 + Ṁ2

]
.

Consider the fixed x?1 to which the contracting system ẋ1 =
f1(x1) converges, so that f1(x? = 0). Now, since system 1
is contracting, the upper-left block is negative definite and
then by the Schur complement it follows that the maximum
value of δ′Hδ on the subspace satisfying δ′Mf = 0 can be
made strictly negative by choosing α sufficiently large.

Due to continuity of H and the convergence of the sets
of δ, this implies that from any initial conditions there exists
a finite time after which δ′Hδ < 0 for all δ satisfying (6),
which implies the existence of a unique stable periodic orbit
by Theorems 1 and 2. �

The opposite composition, a transverse-contracting system
driving a contracting system clearly converges to a periodic
solution due to natural input-to-state stability properties of
contracting systems. In a sense, the second system can be
considered as being driven by a periodic input [14].

B. Robustness to Parametric Variation

Suppose the system dynamics depend on some parameter
vector θ, i.e.

ẋ = f(x, θ).

When studying robustness of equilibria of such systems, a
widely-used method is to search for a parameter-dependent
Lyapunov function (see, e.g., [7]).

In the context of the present paper, we assume that a
particular set K is robustly forward invariant – which can be
verified using the methods of [7] – then robust existence of a
single globally stable (within K) limit cycle is ensured if one
can find a parameter-dependent contraction metric M(x, θ)
which satisfies

δ′(Ṁ(x, θ) + 2F (x, θ)′M(x, θ) + λM(x, θ))δ ≤ 0

for all δ such that δ′M(x, θ)f(x, θ) = 0, and for all x ∈ K
and θ in some set Θ, where K is a forward invariant set.

Note that this condition can be expressed as a parameter-
dependent LMI as in (5), and verified via either sum-of-
squares [6] or sample-based methods [33].

C. Skew-Symmetric Feedback Interconnection

In this section and the next one we consider feedback
interconnections of two systems of the form:

ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2). (7)

Theorem 6: Suppose System 1 is partially contracting
with respect to x1, i.e. there exists a differential change of
coordinates Θ1(x1) such that F1 := Θ1

∂f1
∂x1

Θ−1
1 + Θ̇1Θ−1

1

satisfies F1 + F ′1 < 0.
Suppose also that System 2 is partially transverse con-

tracting with respect to x2, i.e. by Theorem 4 there ex-
ists a differential change of coordinates Θ2(x2) such that
F2 := Θ2

∂f2
∂x2

Θ−1
2 + Θ̇2Θ−1

2 satisfies F2 + F ′2 ≤ 0 and
δ2(F2 + F ′2)δ2 < 0 when δ 6= 0 satisfies δ2Θ2f2 = 0.

Define G12 := Θ1
∂f1
∂x2

Θ−1
2 and G21 := Θ2

∂f2
∂x1

Θ−1
1

and suppose G12 = −kG′21 for some k > 0, then the
interconnection (7) is transverse contracting.

Proof: Let f = [f ′1 f
′
2] and x = [x′1 x

′
2]. We will make

use of the differential change of coordinates

Θ =

[
Θ1 0

0
√
kΘ2

]
and define F := Θ∂f

∂xΘ−1 + Θ̇Θ−1. The interconnection is
transverse contracting if δ′(F +F ′)δ < 0 for all δ such that
δ′Θf = 0.

First, we decompose δ = [δ′1 δ
′
2]′ matching the decompo-

sition of x, after some simple algebra we see that the off-
diagonal terms cancel, so the transverse contraction condition
is

δ′1(F1 + F ′1)δ1 + δ′2(F2 + F ′2)δ2 < 0, (8)

for all δ1, δ2 not both zero satisfying δ′1Θ1f1 +
√
kδ′2Θ2f2 =

0. Let us consider two cases:
Case 1: δ2 = 0. In this case the transversality condition

δ′Θf = 0 reduces to δ′1Θ1f1 = 0 and contraction is
δ′1(F1+F ′1)δ1 < 0. So this reduces to the assumed transverse
contraction of System 1.

Case 2: δ2 6= 0 Condition (8) is satisfied because
δ2(F2 + F ′2)δ2 < 0 for nonzero δ2 and F1 + F1 is negative
semidefinite, hence δ′(F + F ′)δ < 0. �

D. Bounded Feedback Interconnections

A more general theorem was presented in [26] for con-
tracting systems. Here we discuss how it extends to trans-
verse contraction. Suppose we have a general feedback
interconnection, and construct F as above. Define

Fs := F + F ′ =

[
F1s Gs
G′s F2s

] [
δ1
δ2

]
=: Fδ

where F1s := F1 + F ′1 and F2s := F2 + F ′2 and Gs :=

Θ1
∂f1
∂x2

Θ−1
2 +

(
Θ2

∂f2
∂x1

Θ−1
1

)′
.

Suppose system 1 is transverse contracting, so F1s ≤ 0
and z′F1sz < 0 for all z′Θ1f1 = 0. In [26] the Schur
complement was used to derive conditions for contraction:

F1s ≤ GsF−1
2s G

′
s ⇔ Fs ≤ 0.



Note that in the case of transverse contracting systems,
z′F1sf1(x)z when z′Θf = 0 and z′F2sz < 0 otherwise.
Since F2s is nonsingular, for the inequality on the left
hand side to hold, it must be the case that G′sΘf = 0. A
very simple condition for Gs = 0, which is equivalent to
the skew-symmetric condition in the previous section, i.e.

Θ1
∂f1
∂x2

Θ−1
2 = −

(
Θ2

∂f2
∂x1

Θ−1
1

)′
Another sufficient condition for Gf1(x) = 0 would be for

both of these terms to be zero. For the first term, this implies
that perturbations in System 2 only affect the transversal
states of System 1, not the phase. For the second term, this
means that perturbations in the phase of system 1 do not
affect system 2. This would correspond to a decomposition
of System 1 into a phase and transversal system, only the
latter of which interacts with System 2.

Suppose that G′Θf1 = 0 then a sufficient condition for
transverse contraction of the interconnection is

λ2(F1s)λmax(F2s) < σ2(G)

by a similar argument to [26]. Note that λ2(F1s) is the rate
of transverse contraction of System 1 and λmax(F2s) is the
exponential rate of contraction of System 2.

E. Robustness to Bounded Disturbance

Consider the global coordinates x⊥, τ – either implicitly
or explicitly defined. Since τ ∈ S1 the dynamics of x⊥
can be considered a periodic differential equation with a
transformation of time. This makes it clear that any internal
perturbation in f which keeps τ̇ > 0 and F⊥(x) contracting
still results in a limit cycle (c.f. above).

Bounded external perturbations will also have bounded
effect on behavior. Denote x? the periodic orbit of a
transverse contracting system ẋ = f(x). Letting R(x) =
minτ

∫ x
x?(τ)

V (γ(s), ∂γ∂s )ds we have

Ṙ+ λR ≤ 0

Consider a bounded external disturbance, i.e. ẋ = f(x) +
d(t), where |d| ≤ dmax, then we have

Ṙ+ λR ≤ |Θd(t)|

so after exponentially-forgotten transients, the perturbed sys-
tem is within a ball of radius R around the original limit
cycle. For further details on such analysis, see [14].

V. DIFFERENTIAL DISSIPATIVITY AND
TRANSVERSE DIFFERENTIAL DISSIPATIVITY

Methods related to dissipation inequalities are central
to quantitative results in systems analysis, including input-
output methods such as small-gain and passivity [34], robust
control design [35], and integral quadratic constraints [36],
[37]. In this section, we introduce concepts of differential
dissipativity, closely related to incremental small gain and
passivity [34].

Roughly speaking, a system is differentially dissipative if
the linearization along every solution is dissipative, however
the results are exact and global, not local. The concept has

been used several times before – though not under that name
– in constructing small gain theorems for contracting systems
[38] and in bounding the simulation error of identified
models [39], [40].

For this section we consider systems with external inputs
and outputs:

ẋ = f(x,w), y = g(x,w) (9)

which has the differential system:

δ̇x = A(x)δx +B(x)δw, δy = C(x)δx +D(x)δw, (10)

where A(x) := ∂f
∂x , B(x) := ∂f

∂w , C(x) := ∂g
∂x , D(x) := ∂g

∂w .
A statement about differential dissipativity relates the

system (9), (10) to a particular form σ(x,w, δx, δw) which
in applications is usually quadratic in δx, δw. In particular,
along all solutions of (9), the differential system (10) satisfies∫ T

0

σ(x,w, δx, δw)dt ≥ −κ(x(0), δx(0)) (11)

for all T > 0 and for some κ : TM → R. A shorthand
notation for this is σ(x,w, δx, δw) � 0, c.f. the notion of a
“complete IQC” in [37].

For example, one can define differential versions of the
classical small-gain condition with σγ = γ|δw|2 − |δy|2 and
passivity with σp = δ′wδy , where the latter assumes the input
and output have matching dimensions.

Inspired by IQC analysis [37], if a number of system
properties are encoded in dissipativity relations of the form
σi � 0, i = 1, 2, ...p, then a desired property (e.g. stability or
bounded gain) encoded as σ? � 0, and then one searches for
constants τi ≥ 0, i = 1, 2, ...p satisfying σ?−

∑p
i=1 τiσi � 0.

For system evolution on an invariant compact set, taking
σ? := −|δx|2 � 0 implies contraction, since it implies that
δx converges to zero via Barbalat’s lemma [41]. Differen-
tial contraction versions of the small-gain theorem and the
passivity theorem are special cases of this formulation.

For a system of the form (9), a sufficient condition for (11)
is the existence of a metric function V (x, δx) = δ′M(x)δ >
0 such that

d

dt
V (x, δx) ≤ σ(x,w, δx, δw) (12)

where the path integral of V plays the role of an incremental
storage function between solutions.

We define a system as transverse differentially dissipative
(TDD) with a supply rate σ(x,w, δx, δw) if (12) holds for
all δx such that ∂V

∂δx
f(x,w) = 0.

We give the following theorem, which can easily be
extended to more than two system.

Theorem 7: Given two systems ẋ1 = f1(x1, w1) and
ẋ2 = f2(x2, w2), and consider the interconnection
w1 = g2(x2, w2), w2 = g1(x1, w1). Suppose System
1 is transverse differentially dissipative with respect to
supply rate σ1(x1, w1, δx1, δw1) and System 2 satisfies
σ1(x1(t), w1(t), δx1(t), δw1(t)) ≥ 0 for all t. Then if
there exists nonnegative constants τ1, τ2 such that 0 <



τ1σ1(x1, w1, δx1, δw1)+τ2σ1(x1, w1, δx1, δw1) on a forward-
invariant set of the interconnected system, then the inter-
connection is transverse contracting and has a unique stable
periodic solution.
The proof of this theorem follows standard S-Procedure
arguments in robust control theory [35], [37].

For example, for a dynamic system in feedback with a
time-varying but non-dynamic mapping w = ∆(y, t) where
∆ is slope-restricted with respect to y, one can choose
σ1(x,w, δx, δw)σc(δy, δw) := (δy − αδw)(βδw − δy) and
σ2 = −σc(δw, δy). In doing so, we recover a differential
form of the circle criterion that proves existence of a limit
cycle in feedback with sector-bounded and slope-restricted
nonlinearities.

A. Linear Matrix Inequalities for DD and TDD

The convex formulation from Section III-A can be ex-
tended to differential dissipativity conditions where the sup-
ply rate has the form

σ = δ′xH(x, u)δx + 2δ′xN(x, u)δu + δ′uR(x, u)δu

as long as H(x, u) is negative semidefinite, which is the
case for common supply rates such as passivity and small
gain. Note that it is necessary that R(x, u) to be positive
semidefinite for a lower bound to exist in (11).

Using the S-Procedure, the following condition is equiva-
lent to transverse differential dissipativity:

η′(−WA′ −AW + Ẇ + ρQ+WHW )η

+2η′(−B +WN)δu + δuRδu ≤ 0 (13)

where we have dropped dependence of matrices on x and
u for the sake of space and clarity. Note that although this
inequality is quadratic in W it is still convex (when H ≤ 0)
and it can be linearized via a Schur complement to give the
following condition:−WA′ −AW + Ẇ + ρQ −B +WN W

−B′ +WN ′ R 0
W 0 −H

 ≥ 0.

Here the matrices A,B,H,N,R,Q are specified by the sys-
tem description, and the decision variables are the certificate
functions W,ρ. The above matrix inequality is clearly linear
in the decision variables, and is therefore amenable to search
via convex optimization.

VI. APPLICATION EXAMPLES

A. Moore Greitzer model of combustion oscillation

The Moore-Greitzer model, a simplified model of surge-
stall dynamics of a jet engine [42], has motivated substantial
development in nonlinear control design (see, e.g., [43] and
references therein). In [15], sum-of-squares programming
was applied for automated construction of verification of
contraction metrics. The following form of the Moore Gre-
itzer model was examined, with δ considered an uncertain
parameter: [

φ̇

ψ̇

]
=

[
−ψ − 3

2φ
2 − 1

2φ
3 + δ

3φ− ψ

]
.
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Fig. 2. Moore-Greitzer jet engine model response with δ = −0.8 (left)
and δ = −1.2 (right).

Contraction, and hence existence of a stable equilibrium, was
established that values of δ with |δ| < 1.023 using a con-
traction metric with each element a degree-six polynomial.
In fact the system is also contracting for values of δ > 1.023,
but at δ ≈ −1.023 a Hopf bifurcation occurs.

Using the S-procedure formulation for transverse con-
traction from Section III-A of the present paper, we have
established that for values of δ < −1.023 the Moore Greitzer
model exhibits stable oscillations.

Let H(x) = A(x)W (x) +W (x)A(x)′− Ẇ (x) +λW (x),
and let Σ[x] denote the set of sum-of-squares polynomials
in x, and Σn[x] denote the set of n × n matrices verified
positive semidefinite via sum-of-squares i.e. matrices R(x)
satisfying y′R(x)y ∈ Σ[x, y].

Using a positivstellensatz construction [6] we derive the
following conditions for transverse contraction, restricted to
a set K which is a disc of radius ρ with a small region
around the unstable equilibrium deleted.

W (x)− (f(x)′f(x)− 0.1)L1(x)

−(ρ− x′x)L2(x) ∈ Σn[x],

−H(x)− α(x)f(x)f(x)′

−(f(x)′f(x)− ε)L3(x)− (ρ2 − x′x)L4(x) ∈ Σn[x],

L1(x), L2(x), L3(x), L4(x), ∈ Σn[x],

α(x) ∈ Σ[x].

We found that these conditions could be verified with ρ =
10, ε = 0.1, and W (x) a matrix of degree-four polynomials,
and Li(x), α(x) degree-two. The MATLAB code used to
verify these conditions has been made available online [44].

B. Identification of Oscillating Systems: Live Neurons

Identifying nonlinear models with stable oscillations is
a highly challenging problem. A new framework for non-
linear state-space system identification was introduced in
[39] which can be used to guarantee stability of identified
models, and in [40] this method was extended to allow



stable limit cycles, although that paper did not contain strong
theoretical claims. The problem is: given a measured set of
data points x̃, ˙̃x find a stable nonlinear differential equation
that reproduces the data. The proposed method searches
over a very flexible class of models: E(x)ẋ = f(x) where
E(x) and f(x) are matrices of polynomials, and E(x) is
nonsingular. A special form of a metric was proposed:

M(x) = Π(x)′E(x)′QE(x)Π(x)

where Q is a positive definite matrix and Π(x) is a projection
on to the subspace orthogonal to ẋ. The main result of
[40] is a reformulation of the problem of joint search for
dynamics and metric – i.e. E(x), f(x) and Q – as a convex
optimization problem (a sum-of-squares program).

In [40] this method was used to accurately identify dy-
namic models of live rat hippocampal neurons in culture,
including both contracting sub-threshold dynamics and or-
bitally stable periodic “spiking”.

The results on transverse contraction in the present paper
lend theoretical justification to this procedure, showing that
such a metric does in fact enforce the existence of stable
limit cycles for the model, with some caveats due to approx-
imations used in [40]. A more complete discussion of this
will follow in another publication.
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