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A Mixed Deterministic and Stochastic Small Gain Theorem and Its
Application to Networked Stabilization

Shuang Wan and Li Qiu

Abstract— Classical small gain theorems can handle closed-
loop systems with either deterministic or stochastic uncertainty,
but not the ones with both of them. However this is exactly
the case in the stabilization problem of a networked control
system (NCS) with both logarithmic quantization and fading
phenomenon in the transmission channel. To solve the NCS
problem, in this paper we develop a new small gain theo-
rem which can handle closed-loop systems with such mixed
uncertainty, and then use it to solve the NCS stabilization
problem. Both unstructured and structured cases are worked
out, leading to the solutions to the single-input and multi-input
NCS stabilization problems, respectively.

Index Terms— Small gain theorem, networked control sys-
tem, channel resource allocation, stochastic control.

I. INTRODUCTION

SMALL gain theorem is one of the most fundamental

building blocks in the robust control theory. It suggests

an important method to deal with closed-loop systems with

uncertainty. By using the technique of “pulling out the

uncertainty” (see e.g. [40]), we can always reformulate such

a closed-loop system into the one depicted in Fig. 1 with

G the knowns and Δ the constrained unknowns. Then the

robust stability, i.e. whether the closed-loop system is stable

for all possible Δ satisfying the constraint, is considered, and

small gain theorem asserts that the stability holds if and only

if the small gain condition is fulfilled. Such a methodology

enables the designer to stay with relatively simple model

of G and relatively little knowledge of Δ while still being

able to guarantee the stability. Besides, the set of possible Δ
may cover uncertainty that is unmodeled or neglected, then

the robust controller can still stabilize the system in this case

while other controllers may fail.

G

���w2�u2
Δ

�
��

w1

�
u1

Fig. 1. A general closed-loop system with uncertainty

The theorem is first introduced by Zames in [37] as a gen-

eral sufficient stability condition for deterministic systems in
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the sense of maximal L2-gain or the H∞ norm. Along this

line of research, it is shown in [8] that when G is linear

time-invariant (LTI) and the set of Δ contains all admissible

unstructured LTI uncertainty, then the small gain condition

is also necessary. Further study on structured LTI Δ leads to

μ-analysis and μ-synthesis (see e.g. [23], [40]). Several other

papers [27], [28] work on structured uncertainty being pos-

sibly linear time-varying (LTV) or nonlinear time-invariant.

A diagonally scaled small gain condition is proved to be the

necessary and sufficient condition for stability in this case.

Almost at the same time, some other researchers investigated

the stability under stochastic setup and also establish the

small gain theorem in this sense. The paper [35] is an

early effort on this and a relatively complete solution can be

found in [20]. The stability is pursued in the mean-square

(MS) sense, the uncertainty is assumed to be a stochastic

memoryless gain, and the H∞ norm in deterministic small

gain theorems is replaced by the H2 norm or the so-called

MS norm (see e.g. [11], [31] for definition). There also exist

some other small gain theorems, e.g. the one for deterministic

systems in the sense of �∞-gains is also well developed and

details can be found in e.g. [5], [6], etc.

We have seen so many small gain theorems in the above.

However they have not covered all important cases. Take

a look at these theorems again and we would notice that

the mixed case is not yet handled, i.e. when there exist si-

multaneously deterministic and stochastic uncertainties in the

closed-loop system. On the other hand, recent development

on the research of networked control system (NCS) calls for a

small gain theorem in such a case. In an NCS we assume that

some of the signals in the closed-loop are transmitted through

communication channels which introduce various types of

uncertainties. For instance, in [32], the channel is assumed

to introduce both sector-bounded nonlinearity and fading.

The nonlinearity Δ is deterministic and satisfies an ∞-norm

bound, while the fading factor Ψ is a stochastic memoryless

gain with known first and second order moments. When

analyzing the robust stability of this closed-loop system,

small gain theorem is expected to play the same role as

before. It turns out that existing small gain theorems are

applicable when either Δ [25] or Ψ [31] exists in the NCS,

but cannot handle the case when both exist simultaneously.

This motivates us to establish a new small gain theorem

which is compatible with both deterministic and stochastic

uncertainties, and gives the necessary and sufficient condition

of the robust stability. In particular, we are interested in

extending the deterministic �2 input-output theory to the

stochastic case. Besides, the theorem does not have to be

This is the Pre-Published Version 
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limited to solving the NCS problem considered in this paper

and could be further applicable to other general ones.

Although the desired small gain theorem has not yet

appeared in the literature, some researchers have considered

similar problems and reported important results which help

us build the theorem. Almost at the same time as the devel-

opment of small gain theorems, some researchers worked

on extending the definition of deterministic �2 signals to

stochastic ones, and by making use of this, reported some

nice results. The paper [14] discusses the stabilization of a

linear stochastic system with multiplicative noise which is

achieved by optimizing a linear matrix inequality (LMI). A

small gain theorem is proved as a sufficient condition for

closed-loops consisting of only linear stochastic systems in

[9]. A bounded real lemma is constructed in [1] for discrete-

time linear systems in the sense of the extended norms and

the continuous-time case is worked out in [18]. The same

authors also discuss the stability radius which is more or

less related to the small gain theorem for a special class

of linear systems in [2]. The book [7] works on the same

stability radius problem in continuous-time case. We find

all these results inspiring. Moreover, some of them are very

useful when deriving our result. This will be made clear in

the context.

The notation in this paper is mostly standard. The symbol

“:=” stands for “defined as”. The expectation of random

variables is denoted to be E{·}. Given a matrix, its transpose

is denote by ′. When the matrix is square, denote its ith
eigenvalue by λi(·), its spectral radius by ρ(·) and its deter-

minant by det(·). Given a vector z, denote zi to be its ith
component. N stands for non-negative integers. Throughout

this paper the log base is set to 2.

The rest part of the paper is organized as follows. In

Section II we state the definitions of extended signal norm

which is compatible with both deterministic and stochastic

signals, and also define the induced system norm as well

as the corresponding stability. With these new concepts,

in Section III we work out a new small gain theorem as

desired. In Section IV we apply the new theorem to solve

the particular NCS stabilization problem for both single-input

(SI) and multi-input (MI) cases. The paper ends with the

conclusions in Section VI.

II. NORMS AND STABILITY

Some tools need to be developed before the new small

gain theorem can be discussed. In this section we extend the

�2 norm and the corresponding induced norm to stochastic

signals and systems. The definitions are mainly conventional

and used by many existing papers, e.g. [1], [9], [14], [38],

etc. But in this paper we further discuss more details of

them, e.g. the stability condition, the computation of induced

norms, and the value of induced norms when restricting to

different filtration-induced subspaces, etc.

Consider the class of linear stochastic systems G with the

following type of state space representation

x(k + 1) =

(
A+

m∑
i=1

AiΨi(k)

)
x(k)

+

(
B +

m∑
i=1

BiΨi(k)

)
u(k)

y(k) = Cx(k) +Du(k).

(1)

Here

[
A B
C D

]
∈ R

n×n × R
n×m × R

m×n × R
m×m are

constant matrices, and so are [Ai|Bi] ∈ R
n×n × R

n×m for

i = 1, . . . ,m. The initial condition x(0) = x0 ∈ R
n is

assumed to be an unknown deterministic constant. Besides,

{Ψi} are real-valued i.i.d. random processes for i = 1, . . . ,m
on a given complete probability space (Ω,F , P ). The sample

space Ω consists of all possible sequences of {Ψi(k)},

and the σ-algebra F is the smallest σ-algebra containing

∪∞
i=−1F(k) where

F(k) = σ({Ψi(t), 0 ≤ t ≤ k, 1 ≤ i ≤ m})
is the smallest σ-algebra such that {Ψi(t)} is measurable for

all t and i when k ∈ N and F(−1) = {∅,Ω}. The probability

measure is P . Assume for any k ∈ N, 1 ≤ i, j ≤ m and

j �= i,

E{Ψi(k)} = 0,E{Ψi(k)
2} = ν2i ,E{Ψi(k)Ψj(k)} = 0.

Then clearly the sequence of σ-algebras {F(k)} is non-

decreasing and {Ψi(k)} is independent of F(k) for all

k ∈ N, i.e. E{Ψi(k)|F(k − 1)} = E{Ψi(k)} for all i.
We denote the sequence by FΨ.

Then an R
m-valued square integrable random variable X

defined on the above (Ω,F , P ) is an F-measurable function

X : Ω → R
m with E{‖X‖2} well-defined and finite where

‖ · ‖ is the normal Euclidean norm in R
m. The set of all

such random variables is an inner product space, denoted by

L2(Ω,R
m) with semi-norm defined as

‖X‖2L2
:= E{‖X‖2}

and inner product

〈X,Y 〉L2 := E{X ′Y }.
for X,Y ∈ L2(Ω,R

m).
We can then define an R

m-valued random process on

(Ω,F , P ) as a function z : N → L2(Ω,R
m) which can

be also considered as a sequence of random variables in

L2(Ω,R
m) indexed by N. It will be also called a stochastic

signal. In this paper we consider only the signals that are

strictly adapted to FΨ, i.e. such a signal z satisfies that z(k)
is F(k − 1)-measurable for all k ∈ N. A stochastic signal z
is said to be an �2 stochastic signal, or simply to be �2 if

z(k) ∈ L2(Ω,R
m) for all k and further

∞∑
k=0

‖z(k)‖2L2
=

∞∑
k=0

E{‖z(k)‖2} < ∞.

The set of all such �2 signals being strictly adapted to FΨ

is denoted as �2(N, L2(Ω,R
m),FΨ) and is abbreviated as

This is the Pre-Published Version 
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�m2 (FΨ). We will also write z ∈ �2(FΨ) when the dimension

is not of importance. For an signal z ∈ �2(FΨ), its stochastic
�2 norm is defined by

‖z‖2 :=

√√√√ ∞∑
k=0

E{‖z(k)‖2}, (2)

which can also be induced from the following inner product

〈x, y〉 :=
∞∑
k=0

〈x(k), y(k)〉L2 , x, y ∈ �m2 (FΨ).

Equipped with this inner product, �m2 (FΨ) is an inner product

space. Note that (2) is a semi-norm. By the following

standard procedure we can convert it into a genuine norm.

Define two �2 signals z, z̃ to be mean square (MS) equivalent
if they satisfy

‖z − z̃‖22 =
∞∑
k=0

‖z(k)− z̃(k)‖2L2
= 0.

A signal z and all its MS equivalent signals form a equivalent

class [z] and have the same �2 norm. Hence we consider the

set of these equivalent classes instead but still denote it as

�m2 (FΨ). We also abuse the notation a bit by writing [z]
simply as z. Then the �2 norm (2) is a proper norm in this

sense. It is also straight forward to verify that �m2 (FΨ) is in

fact also complete [9] and hence is a Hilbert space.

Note that (2) is compatible with the traditional �2 norm for

deterministic signals in the sense that the stochastic �2 norm

of a deterministic �2 signal coincides with its traditional �2
norm. Hence we will simply call the definition (2) to be the

�2 norm in the following.

We can then induce the system norm in the �2 signal space.

A system G is said to be non-anticipative (w.r.t. FΨ) if Gu
is strictly adapted to FΨ whenever the stochastic signal u is.

A non-anticipative system G is said to be �2-BIBO stable if

for any u ∈ �2(FΨ), Gu is also in �2(FΨ) and the following

holds

sup
u∈�2(FΨ),‖u‖2>0

‖Gu‖2
‖u‖2 < ∞.

The induced norm of an �2-BIBO stable system G is then

given by the above �2 gain

‖G‖∞ := sup
u∈�2(FΨ),‖u‖2>0

‖Gu‖2
‖u‖2 . (3)

Note that like the �2 norm, this definition is also compatible

with the ∞-norm for deterministic systems, i.e. they lead to

the same value when G is deterministic. The set of all non-

anticipative �2-BIBO stable systems from �m2 (FΨ) to �m2 (FΨ)
is a normed space w.r.t. the induced norm (3), and is denoted

by Bm. Since the target space is a Hilbert space, Bm is a

Banach space. Denote the identity system as I , i.e. Iu = u
for any stochastic signal u ∈ �m2 (FΨ). Then obviously I ∈
Bm and ‖I‖∞ = 1.

It is then natural to ask how the system stability can

be asserted and how the induced norms can be calculated,

as neither of their definitions provides a direct method. In

general the stability does not have an efficient method to

check; and if G does not have more properties other than

being �2-BIBO stable and non-anticipative, the induced norm

is not easy to compute and an analytic expression as desired

may not exist.

But when the system G is specified as in (1), we can have

better characterization of stability and norms. Obviously G
is causal and non-anticipative. We start with the following

bounded real lemma presented in [1].

Lemma 1 Let G be given as in (1). Then G is �2-BIBO
stable and ‖G‖∞ < γ for some γ > 0 if and only if there
exists P > 0 such that[

P −A′PA−∑m
i=1 ν

2
i A

′
iPAi − C ′C K ′

K L

]
> 0, (4)

where

L = γ2I −B′PB −
m∑
i=1

ν2i B
′
iPBi −D′D,

K = B′PA+
m∑
i=1

ν2i B
′
iPAi +D′C.

The following sufficient condition of �2-BIBO stability can

be easily induced from the above lemma by relaxing γ to

positive infinity.

Corollary 1 Let G be given as in (1). Then G is �2-BIBO
stable if there exists P > 0 such that

P > A′PA+
m∑
i=1

ν2i A
′
iPAi. (5)

Proof: Easy to see that by relaxing γ to positive infinity

in (4), the �2-BIBO stability of G is equivalent to require

the existence of some P > 0 such that

P > A′PA+
m∑
i=0

ν2i A
′
iPAi + C ′C. (6)

Now assume that some P̃ > 0 satisfies (5). Then there exists

some small enough ε > 0 such that

P̃ > A′P̃A+
∑
i

ν2i A
′
iP̃Ai + εC ′C.

Denote P = P̃ /ε and we can see that (6) holds for this P .

According to [1], (5) is the necessary and sufficient

condition to the MS stability of the autonomous part of (1),

i.e.

x(k + 1) = Ax(k) +
m∑
i=1

AiΨi(k)x(k).

Hence the �2-BIBO stability of (1) can be implied from the

MS stability of its autonomous part. The converse is also

true by adding some mild assumptions on G, but we will

not further discuss it here. The analysis on the relationship

between �2-BIBO stability and MS stability also deserves

extension to nonlinear systems in the future research.

Lemma 1 is important because it not only helps to derive

the above stability condition, but also enables us to calculate

This is the Pre-Published Version 
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the system norm indirectly. Moreover, its proof in [1] also

provides some useful tool as stated below.

Lemma 2 Let G be given as in (1) and be �2-BIBO stable
in �m2 (FΨ). Suppose that P > 0 solves (4) and K,L are
defined as in (4). Then

γ2‖u‖22 − ‖Gu‖22 =

−x′
0Px0+

∞∑
k=0

E{−u(k)′Kx0−x′
0K

′u(k)+u(k)′Lu(k)}.

By this we can obtain the following important corollary.

Corollary 2 Let G be given as in (1) and is �2-BIBO stable.
Then ‖G‖∞ < γ if and only if ‖Gu‖2 < γ‖u‖2 for all
deterministic input signals u ∈ �2(FΨ).

Proof: The necessity is obvious since the space of

deterministic �2 signals is a subspace of �2(FΨ). Conversely

assume that γ2‖û‖22 − ‖Gû‖22 > 0 whenever û is a deter-

ministic �2 signal. In particular, this is true when x0 = 0.

Then by Lemma 2,

∞∑
k=0

û(k)′Lû(k) = γ2‖û‖22 − ‖Gû‖22 > 0

for all deterministic û, which implies that L > 0. Now for

each u ∈ �2(FΨ), construct û such that û(k) = E{u(k)} for

all k, then

∞∑
k=0

E{−u(k)′Kx0 − x′
0K

′u(k) + u(k)′Lu(k)}

≥
∞∑
k=0

[−û(k)′Kx0 − x′
0K

′û(k) + û(k)′Lû(k)],

since E{u(k)′Lu(k)} ≥ û(k)′Lû(k). Hence γ2‖u‖22 −
‖Gu‖22 ≥ γ2‖û‖22 − ‖Gû‖22 > 0 for any u ∈ �2(FΨ), and

thus ‖G‖∞ < γ.

Remark 1 The above corollary allows us to derive the

induced norm of a system described in (1) by only testing

deterministic inputs.

III. SMALL GAIN THEOREMS

With the preparations in the previous section, we are now

ready to pursue the new small gain theorems. Consider again

the closed-loop system depicted in Fig. 1 and denote it to be

(G,Δ). In the H∞ small gain theorem in the deterministic

setup, Δ is a norm-bounded uncertainty while G is an LTI

system. To extend this to stochastic setup, we assume that

G is now given by (1), i.e. the stochastic uncertainty {Ψi}
is integrated within the linear plant, while Δ is still norm-

bounded, and is non-anticipative with respect to FΨ. Then

the small gain theorems are stated in terms of the induced

norms of G and Δ, and are proved for both unstructured

and structured cases.

A. Unstructured Case

In this section we will discuss the mixed deterministic and

stochastic small gain theorem for the unstructured case. We

first present a general sufficient condition. The necessary and

sufficient condition is then shown when more information of

the closed-loop system is given.

Theorem 1 Consider the closed-loop (G,Δ) depicted in
Fig. 1. Assume that G : �m2 (FΨ) → �m2 (FΨ) is a causal
non-anticipative �2-BIBO stable system and so is Δ. Then
(G,Δ) is �2-BIBO stable if ‖Δ‖∞‖G‖∞ < 1.

Proof: The closed-loop (G,Δ) is �2-BIBO stable if and

only if the input-output relation from [w1 w2]
′ to [u1 u2]

′

is an �2-BIBO stable system. Since

u1 = w1 +Δu2,

u2 = w2 +Gu1,

it is easy to see for w1, w2 ∈ �m2 (FΨ),

‖u1‖2 ≤ ‖w1‖2 + ‖Δ‖∞‖u2‖2,
‖u2‖2 ≤ ‖w2‖2 + ‖G‖∞‖u1‖2.

Hence

‖u1‖2 ≤ ‖w1‖2 + ‖Δ‖∞(‖w2‖2 + ‖G‖∞‖u1‖2)
= ‖w1‖2 + ‖Δ‖∞‖w2‖2 + ‖Δ‖∞‖G‖∞‖u1‖2.

If ‖Δ‖∞‖G‖∞ < 1, it follows that

‖u1‖2 ≤ (1− ‖Δ‖∞‖G‖∞)−1(‖w1‖2 + ‖Δ‖∞‖w2‖2).
Hence the system from [w1 w2]

′ to u1 is �2-BIBO stable.

Similar argument also holds for u2, and hence the closed-

loop is �2-BIBO stable if ‖Δ‖∞‖G‖∞ < 1.

It is easy to show that for given (G,Δ), Theorem 1 may

not be necessary. Consider the SISO case with the closed-

loop consisting of static systems G = 2 and Δ = 4. Easy

to see [
u1

u2

]
=

1

7

[
1 4
2 1

] [
w1

w2

]
.

Obviously u1 and u2 are �2 whenever w1 and w2 are �2.

Then (G,Δ) is �2-BIBO stable but ‖G‖∞‖Δ‖∞ = 8 > 1.

Small gain theorems were known as only sufficient condi-

tions of closed-loop stability for a long period of time since

the first appearance fifty years ago [37]. They were used to

check the stability for given G and Δ. On the other hand,

the necessity which was discovered a couple of decades later

[8], [27], in fact focuses on a slightly different problem.

The simultaneous stability of a set of closed-loop systems

is considered rather than the stability of a fixed closed-loop

system, and the small gain condition is necessary only in this

robust sense. This is also the case in our small gain theorem.

In the following, we will consider the robust stability of

(G,Δ) parameterized by a set of Δ. Define D to be the

set of all causal non-anticipative, possibly nonlinear, time-

varying (TV) and dynamic uncertainties Δ : �m2 (FΨ) →
�m2 (FΨ). Further define a subset of D as

Br := {Δ ∈ D : ‖Δ‖∞ ≤ r}.

This is the Pre-Published Version 
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The unstructured small gain theorem is stated as below.

Theorem 2 Assume that G is a causal non-anticipative �2-
BIBO stable linear stochastic system represented in (1). Then
the closed-loop system (G,Δ) depicted in Fig. 1 is �2-BIBO
stable for all Δ ∈ Br if and only if ‖G‖∞ < 1/r.

Proof: The sufficiency immediately follows from The-

orem 1.

The necessity will be proved by constructing an �2 signal

w1 and a non-�2 signal u1 with w2 = 0, such that w1 =
(I −ΔG)u1 for some ‖Δ‖∞ ≤ r when ‖G‖∞ ≥ 1/r. If

so then (I−ΔG)−1 maps w1 to u1 and is thus not �2-BIBO

stable. This is inspired by the proof in [5], [6], [27].

Some notations are clarified first. Assume all the random

processes to be R
m-valued in the following. Consider ran-

dom processes a1 = {a1(0), . . . , a1(l1−1)} of length l1 and

a2 = {a2(0), . . . , a2(l2− 1)} of length l2. Then by {a1, a2}
we mean their concatenation

{a1, a2} := {a1(0), . . . , a1(l1 − 1), a2(0), . . . , a2(l2 − 1)}
which is of length l1+l2. Also denote 0l as the zero sequence

of length l and write the infinite zero sequence as 0∞.

Besides, denote ‖z‖2[a,b] :=
∑b

k=a E{‖z(k)‖2} to be the

truncated �2 norm of an �2 signal z.

When ‖G‖∞ > 1/r, by Corollary 2, there exist some de-

terministic signal f̂ of length l and an �2 signal f = {f̂ , 0∞}
in the sense of MS equivalence such that ‖Gf‖[0,l−1] >
(1/r + α)‖f‖[0,l−1] = (1/r + α)‖f‖2 for some l ∈ N

and α > 0. Moreover there exists a sequence of numbers

{Ni} for i ∈ N such that N0 = 0 and for i > 0, Ni

is the smallest numbers such that ‖Gf‖[Ni,∞) < εi‖f‖2
for some 0 < ε < 1. Denote Mi :=

∑i
j=0 Nj and the

time intervals Ii = [Mi,Mi + l − 1]. Construct u1 =
{f̂ , 0N1−l, f̂ , 0N2−l, . . .}. Then for all Ni,

‖Gu1‖Ii ≥ ‖Gf‖[0,l−1] −
i∑

j=1

‖Gf‖Ij

>

(
1

r
+ α

)
‖f‖2 −

i∑
j=1

εj‖f‖2

>

(
1

r
+ α− ε

1− ε

)
‖f‖2,

By taking ε sufficiently small, we have ‖Gu1‖Ii > ‖f‖2/r.

We need to construct Δ such that

ΔGu1 = {0l, 0N1−l, f̂ , 0N2−l, f̂ , 0N3−l, . . .}
in the sense of MS equivalence. Then

(I −ΔG)u1 = {f̂ , 0N1−l, f̂ , 0N2−l, f̂ , 0N3−l, . . .}
− {0l, 0N1−l, f̂ , 0N2−l, f̂ , 0N3−l, . . .} = f =: w1.

Hence (I − ΔG)−1 maps an �2 signal w1 into a non-�2
signal u1, which proves the necessity.

The desired Δ can be a nonlinear TV system leading to

the result. Let f̂ and u1 be constructed as above. Then the

output could be

Δz(k) :=

⎧⎨
⎩

f̂(k)‖z‖Ij−1

‖Gu1‖Ij−1

, if k ≥ M1, k ∈ Ij ;

0, otherwise.

(7)

Note that since Mj−1+l−1 < k always holds, the evaluation

is always possible at time k. On the other hand ‖Gu1‖Ij−1

is the �2 norm. It can be calculated in advance when G and

u1 are given, and is hence a presumed constant. Therefore

the constructed Δ is causal and non-anticipative. Morever

for k ≥ M1 and k −Mj < l,

E{‖u1(k)−ΔGu1(k)‖2} = 0

Then (I −ΔG)u1 = w1 and ‖Δ‖∞ ≤ r.

It remains to show the case when ‖G‖∞ = 1/r. Note that

when this is true, consider a sequence of real numbers {βn}
such that βn > 1 and limn→∞ βn = 1. Then for each n,

(I − βnΔnG)−1 could be unstable for some ‖Δn‖∞ ≤ r
by the proof above. But then

(I − βnΔnG)−1

= (I −ΔnG)−1[I − (βn − 1)ΔnG(I −ΔnG)−1]−1.

If (I − ΔnG)−1 is stable, then the right-hand-side of the

above equality should be stable for sufficiently large n, which

establishes a contradiction. Hence for (G,Δ) to be stable for

all admissible Δ, it is necessary that ‖G‖∞ < 1/r.

In the construction of Theorem 2, the set of uncertainty

Br is given in the sense of the new induced norm. It contains

uncertainty Δ which could be a stochastic system. However

since the only stochastic information in the closed-loop is

provided by {Ψi(k)}, this means that Δ is also dependent

on these random noises, which is not very desirable. Besides,

the NCS which motivates our research on the mixed small

gain theorem, as depicted in Fig. 3, contains quantization

which is also a deterministic nonlinearity. Hence we wish to

further investigate when the necessity holds for deterministic

Δ. Fortunately, by adding some assumption to G, we have

the following result as desired.

Theorem 3 Under the same hypotheses as in Theorem 2,
there exists P > 0 and γ > 0 such that (4) holds. Further
assume that K = 0 in (4) for this P . Then (G,Δ) is �2-
BIBO stable for all deterministic Δ ∈ Br if and only if
‖G‖∞ < 1/r.

Proof: The sufficiency is again immediate by Theorem

1. Now we prove the necessity. Assume that (G,Δ) is �2-

BIBO stable for all Δ ∈ Br and ‖G‖∞ ≥ 1/r. Then set

w1 = w2 = 0, by Lemma 2, for y = Gu,

‖y‖22 = x′
0Px0

+
∞∑
k=0

E{x′
0K

′u(k) + u(k)′Kx0 + u(k)′Hu(k)}.

where K is defined as in (4) where

H = B′PB +
m∑
i=1

ν2i B
′
iPBi +D′D. (8)
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Since H > 0, its spectral radius is also its eigenvalue.

Then there exists p which is a corresponding eigenvector of

ρ(H) with ‖p‖2 = ρ(H)−1. It’s obvious that ρ(H) ≥ 1/r2,

otherwise ‖G‖∞ ≥ 1/r would not hold. Now if K = 0 then

the destabilizing Δ could be the one satisfying

Δz(k) := ‖z(k)‖p. (9)

Clearly Δ ∈ Br since ‖Δ‖∞ ≤ r. Hence u(k) = Δy(k) =
‖y(k)‖p for k ∈ N and we have

‖y‖22 = x′
0Px0 +

∞∑
k=0

E{‖y(k)‖2p′Hp}

= x′
0Px0 +

∞∑
k=0

E{‖y(k)‖2}

= x′
0Px0 + ‖y‖22.

This implies that P = 0, which is a contradiction. The proof

is done.

Remark 2 It is worth pointing out that when K = 0, the

norm ‖G‖∞ is also analytically computable. By the nice

property in this special case, some analytic results can be

obtained. The formulation in [2] makes K = 0 always true

by assuming that in (1) there holds B = 0, D = 0 and either

Ai = 0 or Bi = 0 for all i. It is a pleasant surprise that

the NCS problem we wish to solve in later part of the paper

happens to satisfy K = 0 when the optimal control is used.

Hence the stabilizability condition of the NCS is necessary

and sufficient for deterministic uncertainty.

B. Structured Case

In this section we continue to work on the structured

case. Instead of considering all uncertainties in Br, here we

consider only the ones in a subset of Br, namely B̂r, such

that each Δ ∈ B̂r is in the diagonal form

Δ =

⎡
⎢⎣

Δ1

. . .

Δm

⎤
⎥⎦ ,

where for each i = 1, . . . ,m, Δi : �
1
2(FΨ) → �12(FΨ) is a

causal non-anticipative uncertainty.

We need the following lemma first. Denote D to be the

set of all m×m positive definite diagonal matrices.

Lemma 3 For the linear stochastic system G represented
in (1), the following two statements are equivalent:

1) infS∈D ‖S−1GS‖∞ ≥ 1/r.
2) There exists u ∈ �m2 (FΨ) such that for each integer

1 ≤ i ≤ m, ‖(Gu)i‖2 ≥ r−1‖ui‖2.

Proof: 2 ⇒ 1: If Statement 2 holds then for arbitrary

S = diag{s1, . . . , sm} ∈ D, so does the following inequality

for the same u:
m∑
i=1

s2i ‖(Gu)i‖22 ≥ r−1
m∑
i=1

s2i ‖ui‖22,

since di > 0. Hence the above inequality can be rewritten as

‖SGu‖22 ≥ r−1‖Su‖22, ∀S ∈ D,

which implies Statement 1.

1 ⇒ 2: Assume that Statement 2 is violated, i.e. for any

u ∈ �m2 (FΨ), ‖(Gu)j‖2 < r−1‖uj‖2 for some j. Then take

S̄ = diag{s1, . . . , sm} where sj = 1 and si = ε for i �= j
with ε an arbitrary small positive number. For this S̄, easy

to see that by taking ε small enough,

‖S̄Gu‖22 < r−1‖S̄u‖22.
Hence Statement 1 is also violated, which finishes the proof.

Now we show that Statement 2 in the above lemma is

related to the existence of a destabilizing uncertainty Δ.

Lemma 4 If Statement 2 in Lemma 3 holds then there exists
an uncertainty Δ ∈ B̂r such that (G,Δ) is not �2-BIBO
stable.

Proof: If Statement 2 in Lemma 3 holds, in light of

Corollary 2, it also holds for some f = {f̂ , 0∞} ∈ �2(F⊥).
Then we can repeat the necessity proof of Theorem 2 except

that the destabilizing uncertainty Δ = diag{Δ1, . . . ,Δm}
and each Δi is

Δiz(k) :=

⎧⎨
⎩

f̂i(k)‖z‖Ij−1

‖(Gu1)i‖Ij−1

, if k ≥ M1, k ∈ Ij ;

0, otherwise.

(10)

with u1, Ij−1,M1 all defined in the same way as in (7).

Easy to see that ‖Δi‖∞ ≤ r and hence Δ ∈ B̂r destabilizes

(G,Δ) as well.

Theorem 4 Assume that G is a causal non-anticipative �2-
BIBO stable linear stochastic system represented in (1). The
closed-loop system (G,Δ) is �2-BIBO stable for all Δ ∈ B̂r

if and only if infS∈D ‖S−1GS‖∞ < 1/r.

Proof: First assume that infS∈D ‖S−1GS‖∞ < 1/r.

Notice that for any Δ ∈ B̂r, ‖S−1ΔS‖∞ = ‖Δ‖∞ ≤ r
for all S ∈ D. Hence by Theorem 2, for some S ∈ D,

the closed-loop system (S−1GS, S−1ΔS) is stable for all

Δ ∈ B̂r. But (S−1GS, S−1ΔS) is in fact equivalent to

(G,Δ). Hence (G,Δ) is also �2-BIBO stable.

Then we consider the necessity. By Lemma 3 and Lemma

4, if

inf
S∈D

‖S−1GS‖∞ ≥ 1/r (11)

holds then there exists some Δ ∈ B̂r such that (G,Δ) is

not stable.

Then we wish to prove the following statement similar to

Theorem 3.

Theorem 5 Under the same hypotheses as Theorem 4, then
we have P > 0 solving (4). Further assume that K = 0
for K defined in (4) and that H defined in (8) is diagonal.
Then (G,Δ) for all deterministic Δ ∈ B̂r if and only if
infS∈D ‖S−1GS‖ < 1/r.
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Proof: The sufficiency is immediate by Theo-

rem 1. Then we consider the necessity. Assume that

infS∈D ‖S−1GS‖∞ ≥ 1/r. For G we have the LMI (4)

and H defined in (8). Then similarly we can also have the

corresponding LMI for S−1GS with solution PS and define

the corresponding HS . Since H > 0 is diagonal, by similar

argument to Proposition 2.2 in [17], HS is also diagonal, and

there exists some S ∈ D such that HS = hI for some h > 0.

Moreover h ≥ 1/r2 since infS∈D ‖S−1GS‖∞ ≥ 1/r. Then

similar to the proof of Theorem 2, for y = S−1GSu there

holds

‖y‖22 = x′
0PSx0 +

∞∑
k=0

E{u(k)′HSu(k)}.

Then there exists the following destabilizing uncertainty Δi :
�12(FΨ) → �12(FΨ) satisfying

Δiz(k) = h−1/2z(k).

Then Δ ∈ B̂r and u(k) = Δy(k) = h−1/2y(k). Hence

‖y‖22 = x′
0PSx0 +

∞∑
k=0

E{y(k)′y(k)}

= x′
0PSx0 +

∞∑
k=0

E{‖y(k)‖2}

= x′
0PSx0 + ‖y‖22.

This again implies PS = 0, i.e. (S−1GS, S−1ΔS), or

equivalently (G,Δ) is unstable.

In the rest part of the paper, Theorem 2 and Theorem 4

will be referred to as the mixed small gain theorems.

Remark 3 As discussed in the introduction, there have been

some papers in the literature working towards the mixed

small gain theorem. A small gain theorem exists in [9] in the

sense of stochastic �2 norm and �2-induced norms, however

it considers only closed-loops consisting of two given linear

stochastic systems, and hence only the sufficiency part of

the theorem is proved. In paper [1] the same formulation

as ours is considered but only a bounded real lemma is

derived. A similar lemma is also shown in [38] which is

then used to solve a stochastic H2/H∞ control problem,

which is different from the NCS problem in this paper. The

paper [2] derives the stability radius which is closely related

to the small gain condition, but as discussed in Remark 2,

it considers a different type of G which admits an analytic

expression of stability radius but does not cover the model in

this paper, hence the result cannot be applied to our problem.

The mixed small gain theorems are proved in this paper for

the first time, both for unstructured and structured cases, and

are the main contribution of this paper.

IV. APPLICATION IN NCS STABILIZATION

In this section we will solve a state feedback NCS stabi-

lization problem with mixed channel uncertainties, which is

also the motivating problem of the research in this paper. In

[25], the solutions to the state feedback NCS stabilization

problem are presented when the channel model is given

by either the SER, the R-SER or the SNR channel model.

The problem with mixed channel uncertainty is first studied

in [30] for SI case, where the channel introduces both

logarithmic quantization and packet drop. Later in [12], [32],

the channel is assumed to introduce logarithmic quantization

with a different scheme and fading. Both present the same

equivalent condition for state feedback stabilizability for SI

case, and the former further works on SI output feedback

problem while the later provides a sufficient condition for

MI case. The paper [36] also investigates the channel with

data rate constraint and logarithmic quantization.
In this paper we continue the step of [32] and seek to

solve the NCS stabilization problem when both logarithmic

quantization (represented by R-SER model) and fading exist.

Both SI and MI cases are solved.
We present the system setup first. Consider the discrete-

time LTI system [A|B] or

x(k + 1) = Ax(k) +Bu(k),

where x(k) ∈ R
n is the system state and u(k) ∈ R

m is

the system input. Assume [A|B] to be stabilizable. Under

static state feedback, v(k) = Fx(k) and is sent through a

communication channel. The channel sends v(k) by sending

each of its m components vi(k) through one of its m inde-

pendent parallel subchannels. The subchannels are assumed

to introduce both fading and logarithmic quantization errors

during the transmission. That is, the channel output u(k) =
(ΞQv)(k). Here the quantization Q = diag{Q1, . . . ,Qm},

while the fading Ξ = diag{Ξ1, . . . ,Ξm}. The channel

output u(k) enters the plant as control input. This is shown

in Fig. 2.
The mathematical models of Q and Ξ are as follows. Each

Qi in Q in Fig. 2 is given by the alternative logarithmic

quantizer in [25], i.e. for wi = Qivi, on each time step k,

wi(k) =

⎧⎨
⎩

ρli, if 1− δi < vi(k)/ρ
l
i ≤ 1 + δi;

0, if vi(k) = 0;
−[Qi(−vi)](k), if vi(k) < 0,

where 0 < ρi < 1, δi = (1− ρi)/(1 + ρi) and l ∈ Z. Notice

that this is different from the one used in [10], [13], etc.

Such a quantizer is known to satisfy the R-SER model [25],

i.e.

wi(k) = vi(k)−Δi(wi(k)).

Here Δi(·) is a deterministic causal uncertainty such that

Δi(wi(k)) = (Δiwi)(k) for each k where Δi is scalar and

satisfies ‖Δi‖∞ ≤ δi. Denote Δ = diag(Δ1, · · · ,Δm).
Clearly

(Δw)(k) = Δ(w(k)) :=

⎡
⎢⎣

Δ1(w1(k))
...

Δm(wm(k))

⎤
⎥⎦ .

[A|B]

� x(k)

F �v(k)
Q � Ξ �u(k)

Fig. 2. NCS over channel with mixed uncertainty
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[A|BU ]

x(k)
�

FU
�

v(k)
� �

w(k)

�Δ(·)
�

e(k)

−
�Ψ(k)

�� �
u(k)

Fig. 3. NCS with the R-SER model

Meanwhile Ξi is given by the fading channel model with

nonzero mean μi and variance σ2
i , i.e. for ui = Ξiwi,

ui(k) =
1

μi
Φi(k)wi(k),

and Φi is an i.i.d. random process satisfying

E{Φi(k)} = μi,E{|Φi(k)|2} = σ2
i ,E{Φi(k)Φj(k)} = 0

for j �= i and k ∈ N. Ξi can be replaced by I +Ψi and the

i.i.d. random process Ψi corresponding to Ψi has zero mean

and finite variance ν2i = σ2
i /μ

2
i on each time step k. Denote

Ψ = diag(Ψ1, . . . ,Ψm).
Finally, we need to introduce a unitary coding-decoding

procedure at the ends of the transmission channel. Assume

that the channel sends U ′v(k) instead of the input v(k) itself

in the transmission, and the received signal u(k) is multiplied

by U before sent to the system [A|B] as input. Here U is a

unitary matrix in R
m×m. We denote BU = BU and FU =

U ′F , and also abuse the notation a bit by regarding v(k) as

the output of FU instead of F . The closed-loop dynamics is

thus

x(k+1) = Ax(k)+BU [I+Ψ(k)][FUx(k)−Δ(w(k))], (12)

as shown in Fig. 3. Note that (12) can be rewritten as

x(k + 1) = (A+BUFU )x(k) +BUΨ(k)FUx(k)

−BU [I +Ψ(k)]e(k) (13)

w(k) = FUx(k)− e(k) (14)

e(k) = Δ(w(k)). (15)

Obviously (13)-(14) gives the input-output relation from e to

w and (15) gives the relation from w to e. Denote S to be

the system such that w = Se. Then the closed-loop can be

equivalently considered to consist of S in the forward path

and Δ in the feedback path, as shown in Fig. 4. Denote the

closed-loop as (S,Δ). It turns out that S is a special case of

(1) and hence the mixed small gain theorems can be applied

to analyze the stability of (S,Δ). But before doing this, we

first present the following key lemma on the optimal control

in the sense of ‖S‖∞. Denote Σ2 := diag{ν21 , . . . , ν2m}.

S

�

w(k)

Δ

�

e(k)

Fig. 4. The equivalent closed-loop system

Lemma 5 There holds

inf
FU

‖S‖2∞ = ρ(I +B′
UXBU +Σ2 �B′

UXBU ),

and the infimum can be achieved by taking

FU = −[I +B′
UXBU +Σ2 �B′

UXBU ]
−1B′

UXA (16)

where X ≥ 0 is the stabilizing solution to

X = A′XA−A′XBU [I+B′
UXBU+Σ2�B′

UXBU ]
−1B′

UXA,
(17)

Proof: For X being the stabilizing solution to (17).

denote J̃ := I + Σ2 � B′
UXBU , H̃ := J̃ + B′

UXBU and

K̃ := B′
UX(A+BUFU ) + J̃FU . By Lemma 1, ‖S‖∞ < γ

if and only if there exists X > 0 such that L̃ = γ2I−H̃ > 0
and

X > (A+BUFU )
′X(A+BUFU ) + F ′

U J̃FU + K̃ ′L̃−1K̃.
(18)

The latter inequality can be manipulated into the following

after tedious arithmetic

X > A′XA−A′XBU H̃
−1B′

UXA

+ (A′XBU + F ′
U H̃)(H̃−1 + L̃−1)(B′

UXA+ H̃FU ).

Obviously the infimum of ‖S‖∞ over F can be reached by

taking

FU = −H̃−1B′
UXA. (19)

In this case the inequality becomes

X > A′XA−A′XBU H̃
−1B′

UXA, (20)

and is always satisfied when ‖S‖∞ is finite. Thus ‖S‖∞ < γ
if and only if L̃ > 0 or H̃ < γ2I for X > 0 solving (20).

Hence to obtain ‖S‖∞ we need to minimize γ, which is

equivalent to finding the infimum of all solutions to (20).

However it is well known that this is given by the stabilizing

solution to the corresponding ARE, which is exactly (17).

See e.g. [19]. Hence it follows that

inf
FU

‖S‖2∞ = inf
L̃>0

γ2 = ρ(H̃),

where X is the stabilizing solution to (17).

Note that in the proof above, the selected controller FU

in (19) always makes K̃ = 0 true for any X solving (18).

Hence the assumption in Theorem 3 is always satisfied. This

implies that the new small gain theorem is applicable to the

NCS problem in which Δ is assumed to be deterministic.

Now we work on to solve the stabilization problem of

the NCS (S,Δ) and consider the SI case first. Denote the

Mahler measure of a system [A|B] as

M(A) :=
n∏

i=1

max{1, |λi(A)|},

and its topological entropy as

h(A) :=
n∑

i=1

max{0, log |λi(A)|}.
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Clearly h(A) = logM(A). Then we can quote the following

lemma presented in [32] which is useful here.

Lemma 6 Assume that [A|B] is SI and stabilizable. Then
the stabilizing solution Xλ ≥ 0 to the parameterized ARE

Xλ = A′XλA− λA′XλB(1 +B′XλB)−1B′XλA. (21)

exists if and only if λ > 1−M(A)−2. If λ > 1−M(A)−2,
then its stabilizing solution is given by

Xλ = cX1, c = 1/[1 + (λ− 1)M(A)2] (22)

with X1 the stabilizing solution to the same ARE (21) at
λ = 1, and the corresponding stabilizing state feedback gain
satisfies

Fλ = −λ(1 +B′XλB)−1B′XλA ≡ F1,

i.e. Fλ is the same for all such λ.

Now we present the result for SI case. Since in this

case the coding-decoding procedure is trivial, we will write

BU and FU simply as B and F . The result has appeared

in authors’ previous work [33], as well as in [32] with a

different approach. However since it is useful to the result

for MI case, we still present it here to make the paper self-

contained. Define the channel capacity as

C :=
1

2
log

1 + ν2

δ2 + ν2
.

Theorem 6 Consider the closed-loop system given in (12)
when [A|B] is SI and stabilizable and the channel has
capacity C. In such a closed-loop, there exists a static state
feedback F such that (12) is �2-BIBO stable if and only if

C > h(A). (23)

Proof: By Theorem 3, (S,Δ) can be stabilized if and

only if

inf
F

‖S‖∞ < 1/δ. (24)

In light of Lemma 5, this is in turn equivalent to

1 + (1 + ν2)B′XB < δ−2, (25)

where X ≥ 0 solves the ARE

X = A′XA−A′XB[1 + (1 + ν2)B′XB]−1B′XA. (26)

Denote X̃ := (1 + ν2)X , then (26) can be rewritten as

X̃ = A′X̃A− (1 + ν2)−1A′X̃B(1 +B′X̃B)−1B′X̃A.

By Lemma 6 we can calculate that

B′X̃B =
M(A)2 − 1(

1

1 + ν2
− 1

)
M(A)2 + 1

.

Hence

δ−2 > 1 + (1 + ν2)B′XB

= 1 +B′X̃B

=

1

1 + ν2
M(A)2(

1

1 + ν2
− 1

)
M(A)2 + 1

.

Rearranging terms gives

1 + ν2

δ2 + ν2
> M(A)2.

Taking log on both sides yields (23).

Now we are ready to solve the MI case problem and

present the main result of this section. Denote the capacity

of the ith subchannel to be

Ci :=
1

2
log

1 + ν2i
δ2i + ν2i

,

and the overall capacity C :=
∑m

i=1 Ci.

Theorem 7 Consider the closed-loop system given in (12)
when [A|B] is MI and stabilizable and the channel has
capacity C. In such a closed-loop, there exists a static state
feedback F and a coding matrix U such that (12) is �2-BIBO
stable if and only if

C > h(A). (27)

Proof: We show the necessity first. By Theorem 5,

(S,Δ) can be stabilized if and only if

inf
S∈D

inf
F

‖S−1SSDδ‖∞ < 1. (28)

with U chosen such that I + B′
UXBU + Σ2 � B′

UXBU is

diagonal. In light of Lemma 5, if (S,Δ) is stable, then there

exists S such that

Dδ(I +B′
SXBS +Σ2 �B′

SXBS)Dδ < I, (29)

by taking the optimal controller FS = S−1FU = −(JS +
B′

SXBS)
−1B′

SXA. Here BS = BUS = [B1 · · · Bm]
and X ≥ 0 is the stabilizing solution to the following ARE

X = A′XA−A′XBS(JS +B′
SXBS)

−1B′
SXA, (30)

with JS := I +Σ2 �B′
SXBS . Taking determinant on both

sides of (30) gives

det(X) = det(A′) det(X)

∗ det[I −BS(JS +B′
SXBS)

−1B′
SX] det(A).

Here we may assume that A has only eigenvalues outside

the unit circle without loss of generality. The assumption

is only technical in order to simplify the proof and can be

removed as argued in many papers, e.g [10], [13], [25], [32],

etc. Hence det(A) = M(A) and

M(A)2 = det[I − (JS +B′
SXBS)

−1B′
SXBS ]

−1

= det(JS +B′
SXBS) det(J

−1
S )

= det(I + J
−1/2
S B′

SXBSJ
−1/2
S )

≤
m∏
i=1

(
1 +

B′
iXBi

1 + ν2i B
′
iXBi

)
.

The last inequality is due to Hadamard’s inequality with the

equality holds if and only if B′
SXBS is diagonal.
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Consider (29). Since Dδ(I+B′
SXBS+Σ2�B′

SXBS)Dδ

is positive semi-definite, its spectral radius is also its 2-norm.

Hence

δ2i [1 + (1 + ν2i )B
′
iXBi]

≤ ρ(Dδ(I +B′
SXBS +Σ2 �B′

SXBS)Dδ) < 1.

Hence B′
iXBi < (δ−2

i −1)/(1+ν2i ) for all i. Also note that
B′

iXBi

1+ν2
i B

′
iXBi

is an increasing function of B′
iXBi ≥ 0. Hence

we may conclude that

M(A)2 <
∏
i

(
1 +

(δ−2
i − 1)/(1 + ν2i )

1 + ν2i (δ
−2
i − 1)/(1 + ν2i )

)

=
∏
i

1 + ν2i
δ2i + ν2i

.

Taking log on both sides yields (27).

Now we turn to the sufficiency proof. We will construc-

tively solve the synthesis problem with the technique of

channel resource allocation first introduced in [15]. Given

C satisfying (23) and select U = I , we need to design

S ∈ D and the stabilizing state feedback gain FU such that

(28) holds. Without loss of generality, the system [A|BU ] is

assumed to have the so-called Wonham decomposition [34]:⎡
⎢⎢⎢⎢⎣

A1 ∗ · · · ∗
0 A2

. . .
...

...
. . .

. . . ∗
0 · · · 0 Am

∣∣∣∣∣∣∣∣∣∣

b1 ∗ · · · ∗
0 b2

. . .
...

...
. . .

. . . ∗
0 · · · 0 bm

⎤
⎥⎥⎥⎥⎦ (31)

where Ai has dimension ni×ni and bi ni×1 with
∑m

i=1 ni =
n. Select S = diag(1, ε, · · · , εm−1) with ε > 0 close to

0. Also define W = diag(In1 , εIn2 , · · · , εm−1Inm). Then

S−1SS has the following state space realization

xε(k + 1) = (Aε +BεFε)xε(k) +BεΨ(k)Fεxε(k)

−Bε[I +Ψ(k)]eε(k)

wε(k) = Fεxε(k)− eε(k)

where

Aε = W−1AW =

⎡
⎢⎢⎢⎢⎣

A1 o(ε) · · · o(ε)

0 A2
. . .

...
...

. . .
. . . o(ε)

0 · · · 0 Am

⎤
⎥⎥⎥⎥⎦ ,

Bε = W−1BUS =

⎡
⎢⎢⎢⎢⎣

b1 o(ε) · · · o(ε)

0 b2
. . .

...
...

. . .
. . . o(ε)

0 · · · 0 bm

⎤
⎥⎥⎥⎥⎦ ,

furthermore Fε = S−1FW and
o(ε)
ε approaches to a finite

constant as ε → 0. Taking Fε = diag{f1, · · · , fm} yields

S → diag{S1, · · · ,Sm}

as ε → 0 where Si is represented by

xi(k + 1) = (Ai + bifi)xi(k) + biΨi(k)fixi(k)

+ bi[1 + Ψi(k)]ei(k)

wi(k) = fixi(k) + ei(k)

Hence we have m equivalent single channel problems

and Theorem 6 can be applied. Set fi = −[1 + (1 +
ν2i )b

′
iXibi]

−1b′iXiAi where Xi ≥ 0 solves

Xi = A′
iXiAi−A′

iXibi[1+(1+ν2i )b
′
iXibi]

−1b′iXiAi, (32)

and satisfies 1 + (1 + ν2i )b
′
iXibi < δ−2

i . When (23) holds,

there always exists an allocation {C1, · · · ,Cm} such that

Ci > h(Ai) for each i = 1, · · · ,m, i.e.

1 + ν2i
δ2i + ν2i

> M(Ai)
2.

Since δi > 0, this implies 1 + ν2i < [1 − M(Ai)
−2]−1.

Therefore the solution Xi ≥ 0 to (32) always exists and

fi can thus be constructed. By Theorem 6, such fi implies

‖Si‖∞ < δ−1
i for all i. It follows that ‖S−1SSDδ‖∞ < 1

for sufficiently small ε.

Remark 4 A recent paper [16] also considers the above

NCS problem and derives the necessary and sufficient con-

dition for MI case. The conclusion is the same as Theorem

7, however the formulation is a bit different. Instead of using

the extended �2 norm and related input-output theory as in

this paper, [16] uses the power norm for signals and the

stability is induced accordingly. Also, the fading Ψ is not

integrated into the plant but rather considered as a separated

uncertainty. Hence the closed-loop consists of the LTI part

and the uncertain part. Due to the special nice property of

the closed-loop system as discussed in Remark 2, the optimal

control can be easily seen and is applied immediately. Then

the stability can be analyzed based on the H∞ small gain

theorem. However the solution relies on the special property

of the problem and may not be easy to extend to other

problems with different structures, while the method in this

paper based on mixed small gain theorems may be more

general and applicable to other important problems.

V. NUMERICAL EXAMPLE

In this section we give a numerical example to illustrate

how an NCS is stabilized by channel/controller co-design.

Consider the unstable system [A|B] with

A =

⎡
⎣ 8 0 0

0 2 0
0 0 4

⎤
⎦ , B =

⎡
⎣ 1 0

1 1
0 1

⎤
⎦ .

Obviously [A|B] is stabilizable and is in the Wonham

decomposition form with

A1 = diag(8, 2), A2 = 4, b1 = [1 1]′, b2 = 1,

and h(A) = h(A1)+h(A2) = 4+2 = 6. Let the total given

capacity be C = 6+ 2× 10−2. Allocate C1 = 4+ 10−2 and

C2 = 2 + 10−2. It is worth mentioning that for the NCS

problems dealing solely with quantization [15] or fading

This is the Pre-Published Version 



11

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

ν

δ

C1=4+10
−2

C2=2+10
−2

Fig. 5. All possible realizations of the allocated capacity
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Fig. 6. (δ1, ν1) = (0.05, 0.0368), (δ2, ν2) = (0.05, 0.251)
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Fig. 7. (δ1, ν1) = (0.0369, 0.05), (δ2, ν2) = (0.2435, 0.05)

errors [31], {δi} or {νi} is determined once the channel

capacity is allocated. However in this paper, there still exists

trade-off between {δi} and {νi} for a fixed capacity, i.e.

the realizations of the allocated capacity are not unique, nor

is there any preferred choice among them. Fig. 5 shows

all possible combinations of {δi} and {νi} realizing the

allocated capacity.

Take δ1 = δ2 = 0.05 for instance, then ν1 = 0.0368 and

ν2 = 0.251. Solve the optimization problem described in the

proof of Lemma 5 for [A1|b1] and [A2|b2] respectively to

obtain f1 and f2. By Lemma 6 they are exactly given by the

standard expensive controllers, i.e. f1 = [−6.5625 1.3125]
and f2 = −1.5. Set

F = diag(f1, f2) =

[ −6.5625 1.3125 0
0 0 −1.5

]
.

With the above channel/controller co-design, the closed-loop

evolution of the plant states starting from the initial condition

x(0) = [1 1 1]′ is shown in Fig. 6. Clearly the system

state converges to zero asymptotically.

A different pair of parameters could be ν1 = ν2 = 0.05
and hence δ1 = 0.0369, δ2 = 0.2435, while the allocated

capacity to each subchannel remains the same. By Fig. 7

we can see that the system can be stabilized by the same

controller as the previous example.

VI. CONCLUSION

In this paper we extend the classical deterministic H∞
small gain theorem to the mixed case with both deterministic

and stochastic uncertainties. The mixed small gain theorem

is proved for both unstructured and structured uncertainties.

Finally the theorem is applied to an NCS stabilization

problem and the solution is provided for both SI and MI

cases.
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