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Abstract— In this paper, a novel feedback control-based par-
ticle filter algorithm for the continuous-time stochastic hybrid
system estimation problem is presented. This particle filter is
referred to as the interacting multiple model-feedback particle
filter (IMM-FPF), and is based on the recently developed feed-
back particle filter [19], [20], [21]. The IMM-FPF is comprised
of a series of parallel FPFs, one for each discrete mode, and an
exact filter recursion for the mode association probability. The
proposed IMM-FPF represents a generalization of the Kalman-
filter based IMM algorithm to the general nonlinear filtering
problem.

The remarkable conclusion of this paper is that the
IMM-FPF algorithm retains the innovation error-based feed-
back structure even for the nonlinear problem. The inter-
action/merging process is also handled via a control-based
approach. The theoretical results are illustrated with the aid of a
numerical example problem for a maneuvering target tracking
application.

I. INTRODUCTION

State estimation for stochastic hybrid systems (SHS) is
important to a number of applications, including air and mis-
sile defense systems, air traffic control, satellite surveillance,
statistical pattern recognition, remote sensing, autonomous
navigation and robotics [1]. A typical problem formulation
involves estimation of a partially observed stochastic process
with both continuous-valued and discrete-valued states.

An example of the SHS estimation is the problem of
tracking a maneuvering target (hidden signal) with noisy
radar measurements. In this case, the continuous-valued
states are target positions and velocities, while the discrete-
valued states represent the distinct dynamic model types
(e.g., constant velocity or white noise acceleration model)
of the target. The discrete signal model types are referred
to as modes. Since the time of target maneuvers is random,
there is model association uncertainty in the sense that one
can not assume, in an apriori fashion, a fixed dynamic model
of the target.

Motivated in part by target tracking applications, we
consider models of SHS where the continuous-valued state
process is modeled using a stochastic differential equation
(SDE), and the discrete-valued state process is modeled as a
Markov chain. The estimation objective is to estimate (filter)
the hidden states given noisy observations.
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Given the number of applications, algorithms for SHS
filtering problems have been extensively studied in the past;
cf., [1], [13] and references therein. A typical SHS filtering
algorithm is comprised of three parts:
(i) A filtering algorithm to estimate the continuous-valued

state given the mode,
(ii) An association algorithm to associate modes to signal

dynamics,
(iii) A merging process to combine the results of i) and ii).

Prior to mid-1990s, the primary tool for filtering was a
Kalman filter or one of its extensions, e.g., extended Kalman
filter. The limitations of these tools in applications arise on
account of nonlinearities, not only in dynamic motion of
targets (e.g., drag forces in ballistic targets) but also in the
measurement models (e.g., range or bearing). The nonlin-
earities can lead to a non-Gaussian multimodal conditional
distribution. For such cases, Kalman and extended Kalman
filters are known to perform poorly; cf., [16]. Since the
advent and wide-spread use of particle filters [9], [7], such
filters are becoming increasing relevant to SHS estimation for
target tracking applications; cf., [16] and references therein.

The other part is the mode association algorithm. The
purpose of the mode association algorithm is to determine
the conditional probability for the discrete modes.

In a discrete-time setting, the exact solution to problems
(i)-(iii) is given by a Multiple Model (MM) filter which has
an (exponentially with time) increasing number of filters,
one for each possible mode history. Practically, however, the
number of filters has to be limited, which leads to the clas-
sical Generalised Pseudo-Bayes estimators of the first and
second order (GPB1 and GPB2) and the Interacting Multiple
Model (IMM) filter [1]. For some SHS examples, however,
it was already shown in [4] that these low-dimensional filters
do not always perform well. This has led to the development
of two types of particle filters for SHS:
(i) The first approach is to apply the standard particle

filtering approach to the joint continuous-valued state and
discrete-valued mode process [14],[15].

(ii) The second approach is to exploit Rao-
Blackwellization, in the sense of applying particle
filtering for the continuous-valued state, and exact filter
recursions for the discrete-valued modes [8],[5],[6].

In this paper, we consider a continuous-time filtering
problem for SHS and develop a novel feedback control-
based particle filter algorithm, where the particles represent
continuous-valued state components (case (ii)). The proposed
algorithm is based on the feedback particle filter (FPF)
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concept introduced by us in earlier papers [21],[20],[19]. A
feedback particle filter is a controlled system to approximate
the solution of the nonlinear filtering task. The filter has
a feedback structure similar to the Kalman filter: At each
time t, the control is obtained by using a proportional gain
feedback with respect to a certain modified form of the
innovation error. The filter design amounts to design of the
proportional gain – the solution is given by the Kalman gain
in the linear Gaussian case.

In the present paper, we extend the feedback particle
filter to SHS estimation problems. We refer to the resulting
algorithm as the Interacting Multiple Model-Feedback Parti-
cle Filter (IMM-FPF). As the name suggests, the proposed
algorithm represents a generalization of the Kalman filter-
based IMM algorithm now to the general nonlinear filtering
problem.

One remarkable conclusion of our paper is that the IMM-
FPF retains the innovation error-based feedback structure
even for the nonlinear problem. The interaction/merging
process is also handled via a control-based approach. The
innovation error-based feedback structure is expected to be
useful because of the coupled nature of the filtering and
the mode association problem. The theoretical results are
illustrated with a numerical example.

The outline of the remainder of this paper is as follows:
The exact filtering equations appear in Sec. II. The IMM-
FPF is introduced in Sec. III and the numerical example is
described in Sec. IV.

II. PROBLEM FORMULATION AND EXACT FILTERING
EQUATIONS

In this section, we formulate the continuous-time SHS
filtering problem, introduce the notation, and summarize
the exact filtering equations (see [2], [12], [3] for standard
references). For pedagogical reason, we limit the considera-
tions to scalar-valued signal and observation processes. The
generalization to multivariable case is straightforward.

A. Problem statement, Assumptions and Notation

The following notation is adopted:
(i) At time t, the signal state is denoted by Xt ∈ R.
(ii) At time t, the mode random variable is denoted as θt ,

defined on a state-space comprising of the standard basis
in RM: {e1,e2, . . . ,eM}=: S. It associates a specific mode
to the signal: θt = em signifies that the dynamics at time
t is described by the mth model.

(iii) At time t, there is only one observation Zt ∈ R. The
observation history (filtration) is denoted as Zt := σ(Zs :
s≤ t).
The following models are assumed for the three stochastic

processes:
(i) The evolution of the continuous-valued state Xt is de-

scribed by a stochastic differential equation with discrete-
valued coefficients:

dXt = a(Xt ,θt)dt +σ(θt)dBt , (1)

where Bt is a standard Wiener process. We denote am(x) :=
a(x,em) and σm := σ(em).

(ii) The discrete-valued state (mode) θt evolves as a Markov
chain in continuous-time:

P(θt+δ = el |θt = em) = qmlδ +o(δ ), m 6= l. (2)

The generator for this jump process is denoted by a
stochastic matrix Q whose mlth entry is qml for m 6= l.
The initial distribution is assumed to be given.

(iii) At time t, the observation model is given by,

dZt = h(Xt ,θt)dt + dWt , (3)

where Wt is a standard Wiener process assumed to be
independent of {Bt}. We denote hm(x) := h(x,em).
The filtering problem is to obtain the posterior distribution

of Xt given Zt .

B. Exact Filtering Equations

The following distributions are of interest:
(i) q∗m(x, t) defines the joint conditional distribution of
(Xt ,θt)

T given Zt , i.e.,∫
x∈A

q∗m(x, t)dx = P{[Xt ∈ A,θt = em]|Zt},

for A ∈B(R) and m ∈ {1, . . . ,M}. We denote q∗(x, t) :=
(q∗1(x, t),q

∗
2(x, t), . . . ,q

∗
M(x, t))T , interpreted as a column

vector.
(ii) p∗(x, t) defines the conditional dist. of Xt given Zt :∫

x∈A
p∗(x, t)dx = P{Xt ∈ A|Zt}, A ∈B(R).

By definition, we have p∗(x, t) = ∑
M
m=1 q∗m(x, t).

(iii) µt := (µ1
t , . . . ,µ

M
t )T defines the probability mass func-

tion of θt given Zt where:

µ
m
t = P{θt = em|Zt}, m = 1, . . . ,M. (4)

By definition µm
t =

∫
R q∗m(x, t)dx.

(iv) ρ∗m(x, t) defines the conditional dist. of Xt given θt = em
and Zt . For µm

t 6= 0:

ρ
∗
m(x, t) :=

q∗m(x, t)
µm

t
, m = 1, . . . ,M, (5)

Denote ρ∗(x, t) = (ρ∗1 (x, t), . . . ,ρ
∗
M(x, t))T .

We introduce two more notations before presenting the
exact filtering equations for these density functions:
(i) ĥt := E[h(Xt ,θt)|Zt ] = ∑

M
m=1

∫
R hm(x)q∗m(x, t)dx;

(ii) ĥm
t := E[h(Xt ,θt)|θt = em,Zt ] =

∫
R hm(x)ρ∗m(x, t)dx.

Note that ĥt = ∑
M
m=1 µm

t ĥm
t .

The following theorem describes the evolution of above-
mentioned density functions. A short proof is included in
Appendix A.

Theorem 1 (See also Theorem 1 in [3]): Consider the
hybrid system (1) - (3):
(i) The joint conditional distribution of (Xt ,θt)

T satisfies:

dq∗ = L †(q∗)dt +QT q∗ dt +(Ht − ĥt I)(dZt − ĥt dt)q∗,
(6)



where L † = diag{L †
m}, Ht = diag{hm}, I is an M×M

identity matrix and

L †
mq∗m :=− ∂

∂x
(amq∗m)+

1
2
(σm)2 ∂ 2

∂x2 q∗m.

(ii) The conditional distribution of θt satisfies:

dµt = QT
µt dt +(Ĥt − ĥt I)(dZt − ĥt dt)µt , (7)

where Ĥt = diag{ĥm
t }.

(iii) The conditional distribution of Xt satisfies:

dp∗ =
M

∑
m=1

L †
m(q

∗
m)dt +

M

∑
m=1

(hm− ĥt)(dZt − ĥt dt)q∗m. (8)

(iv) The conditional distribution of Xt given θt = em satis-
fies:

dρ
∗
m =L †

mρ
∗
m dt +

1
µm

t

M

∑
l=1

qlmµ
l
t (ρ
∗
l −ρ

∗
m)dt

+(hm− ĥm
t )(dZt − ĥm

t dt)ρ∗m, m = 1, . . . ,M (9)

III. IMM-FEEDBACK PARTICLE FILTER

The IMM-FPF is comprised of M parallel feedback par-
ticle filters: The model for the mth particle filter is given
by,

dX i;m
t = am(X i;m

t )dt +σ
m dBi;m

t + dU i;m
t , (10)

where X i;m
t ∈R is the state for the ith particle at time t, U i;m

t is
its control input, {Bi;m

t }N
i=1 are mutually independent standard

Wiener processes and N denotes the number of particles.
We assume that the initial conditions {X i;m

0 }N
i=1 are i.i.d.,

independent of {Bi;m
t }, and drawn from the initial distribution

ρ∗m(x,0) of X0. Both {Bi;m
t } and {X i;m

0 } are assumed to be
independent of Xt ,Zt . Certain additional assumptions are
made regarding admissible forms of control input (see [19]).

Remark 1: The motivation for choosing the parallel struc-
ture comes from the conventional IMM filter, which is com-
prised of M parallel Kalman filters, one for each maneuvering
mode m ∈ {1, . . . ,M}.

There are two types of conditional distributions of interest
in our analysis:
(i) ρ∗m(x, t): Defines the conditional dist. of Xt given θt = em

and Zt , see (5).
(ii) ρm(x, t): Defines the conditional dist. of X i;m

t given Zt :∫
x∈A

ρm(x, t)dx = P{X i;m
t ∈ A|Zt}, ∀A ∈B(R).

The control problem is to choose the control inputs
{U i;m

t }M
m=1 so that, ρm approximates ρ∗m for each m =

1, . . . ,M. Consequently the empirical distribution of the par-
ticles approximates ρ∗m for large number of particles [18].

The main result of this section is to describe an explicit
formula for the optimal control input, and demonstrate that
under general conditions we obtain an exact match: ρm = ρ∗m,
under optimal control. The optimally controlled dynamics of

the ith particle in the mth FPF have the following Stratonovich
form,

dX i;m
t = am(X i;m

t )dt +σ
m dBi;m

t +Km(X i;m
t , t)◦ dIi;m

t

+um(X i;m
t ,X i;−m

t )dt, (11)

where X i;−m
t = {X i;l

t }l 6=m and Ii;m
t is the modified form of

innovation process,

dIi;m
t := dZt −

1
2

[
hm(X i;m

t )+ ĥm
t

]
dt, (12)

where ĥm
t :=

∫
R hm(x)ρm(x, t)dx. The gain function Km is

obtained as a solution of an Euler-Lagrange boundary value
problem (E-L BVP):

∂ (ρmK
m)

∂x
=−(hm− ĥm

t )ρm, (13)

with boundary condition limx→±∞ ρm(x, t)Km(x, t) = 0.
The interaction between filters arises as a result of the

control term um. It is obtained by solving the following BVP:

∂ (ρmum)

∂x
=

M

∑
l=1

clm(ρm−ρl), (14)

again with boundary condition limx→±∞ ρm(x, t)um(x, t) = 0
and clm := qlmµ l

t
µm

t
.

Recall that the evolution of ρ∗m(x, t) is described by the
modified Kushner-Stratonovich (K-S) equation (9). The evo-
lution of ρm is given by a forward Kolmogorov operator
(derived in Appendix B).

The following theorem shows that the evolution equa-
tions for ρm and ρ∗m are identical. The proof appears in
Appendix B.

Theorem 2: Consider the two distributions ρm and ρ∗m.
Suppose that, for m= 1, . . . ,M, the gain function Km(x, t) and
the control term um is obtained according to (13) and (14),
respectively. Then provided ρm(x,0) = ρ∗m(x,0), we have for
all t > 0, ρm(x, t) = ρ∗m(x, t).

In a numerical implementation, one also needs to estimate
µm

t , which is done by using the same finite-dimensional filter,
as in (7):

dµ
m
t =

M

∑
l=1

qlmµ
l
t dt +(ĥm

t − ĥt)(dZt − ĥt dt)µm
t , (15)

where ĥt = ∑
M
m=1 µm

t ĥm
t and ĥm

t ≈ 1
N ∑

N
i=1 hm(X i;m

t ) are ap-
proximated with particles.

Remark 2: The mode association probability filter (15)
can also be derived by considering a continuous-time limit
starting from the continuous-discrete time filter that appears
in the classic IMM filter literature [1]. This proof appears in
Appendix C. The alternate proof is included because it shows
that the filter (15) is in fact the continuous-time nonlinear
counterpart of the algorithm that is used to obtain association
probability in the classical IMM literature. The proof also
suggests alternate discrete-time algorithms for evaluating as-
sociation probabilities in simulations and experiments, where
observations are made at discrete sampling times.
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Fig. 1. Simulation results for a single trial (from top to bottom): (a) Sample
position path xt ; (b) Sample velocity path vt .

Define p(x, t) := ∑
M
m=1 µm

t ρm(x, t) where µm
t is defined

in (4). The following corollary shows that p(x, t) and p∗(x, t)
are identical. Its proof is straightforward, by using the
definitions, and is thus omitted.

Corollary 1: Consider the two distribution p(x, t) and
p∗(x, t). Suppose conditions in Thm. 2 apply, and µm

t is
obtained using (15), then provided p(x,0)= p∗(x,0), we have
for all t > 0, p(x, t) = p∗(x, t).

A. Algorithm

The main difficulty is to obtain a solution of the BVP (13)
and (14) at each time step. A Galerkin algorithm for the
same appears in our earlier papers [19],[17]. One particular
approximation of the solution, referred to as the constant
gain approximation is given by:

Km ≈ 1
N

N

∑
i=1

(hm(X i;m
t )− ĥm

t )X
i;m
t , (16)

um ≈
M

∑
l=1

clm
1
N

(
N

∑
i=1

X i;l
t −

N

∑
i=1

X i;m
t

)
. (17)

The derivation of the constant approximation (16)-(17) ap-
pears in Appendix D.

Apart from the gain function, the algorithm requires ap-
proximation of ĥt and ĥm

t . These are obtained in terms of
particles as:

ĥm
t ≈

1
N

N

∑
i=1

hm(X i;m
t ), ĥt =

M

∑
m=1

µ
m
t ĥm

t .

For simulating the IMM-FPF, we use an Euler-discretization
method. The resulting discrete-time algorithm appears
in Algo.1. At each time step, the algorithm requires compu-
tation of the gain function, that is obtained using (16)-(17).

IV. NUMERICS

A. Maneuvering target tracking with bearing measurements

We consider a target tracking problem where the target
dynamics evolve according to a white noise acceleration

Algorithm 1 IMM-FPF for SHS
1: INITIALIZATION
2: for m = 1 to M do
3: µm

0 = 1
M .

4: for i = 1 to N do
5: Sample X i;m

0 from p∗(·,0).
6: end for
7: end for
8: pN(x,0) = 1

N ∑
N
i=1 ∑

M
m=1 µm

0 δX i;m
0
(x)

1: ITERATION [t to t +∆t]
2: for m = 1 to M do
3: Calculate ĥm

t ≈ 1
N ∑

N
i=1 hm(X i;m

t ).
4: end for
5: Calculate ĥt = ∑

M
m=1 µm

t ĥm
t .

6: for m = 1 to M do
7: for i = 1 to N do
8: Generate a sample, ∆V , from N(0,1)
9: Calculate ∆Ii;m

t = ∆Zt − 1
2

[
hm(X i;m

t )+ ĥm
t

]
∆t

10: Calculate the gain function Km (e.g., by using (16))

11: Calculate the control term um (e.g., by using (17)).

12: ∆X i;m
t = am(X i;m

t )∆t +σm
√

∆t∆V +Km∆Ii;m
t +um∆t

13: X i;m
t+∆t = X i;m

t +∆X i;m
t

14: end for
15: µm

t+∆t = µm
t +∑

M
l=1 qlmµ l

t ∆t+(ĥm
t − ĥt)(∆Zt− ĥt∆t)µm

t .
16: end for
17: t = t +∆t
18: pN(x, t) = 1

N ∑
N
i=1 ∑

M
m=1 µm

t δX i;m
t
(x)

19: X̂t := E[Xt |Zt ]≈ 1
N ∑

M
m=1 ∑

N
i=1 µm

t X i;m
t .

model:

dXt =

[
0 1
0 0

]
Xt dt +σB dBt , (18)

dZt = h(Xt)dt +σW dWt , (19)

where Xt = (xt ,vt) denotes the state vector comprising of po-
sition and velocity coordinates at time t, Zt is the observation
process, and {Bt},{Wt} are mutually independent standard
Wiener processes. We consider a bearing-only measurement
with:

h(x,v) = arctan
( x

L

)
, (20)

where L is a constant.
In the target trajectory simulation, the following parameter

values are used: σB = [0,0.05], σW = 0.015, L= 10 and initial
condition X0 = (x0,v0) = (2.5,3). The total simulation time
is T = 9 and the time step for numerical discretization is ∆t =
0.02. At T1 = 3 and T2 = 6, the target instantaneously changes
its velocity to v = −2 and v = 1 respectively. The resulting
trajectory is depicted in Figure 1. At each discrete time step,
a bearing measurement is obtained according to (20). The
target is maneuvering in the sense that its velocity switches
between three different values {3,−2,1}.



0 2 4 6 8
2

4

6

8

10

12
P
o
si
tio
n

(a)
0 2 4 6 8
2

4

6

8

10

12

P
o
si
tio
n

(b)
0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

P
ro
b
a
b
ili
ty

(c)

Fig. 2. Maneuvering target tracking using IMM-FPF: (a) Comparison of IMM-FPF estimated mean X̄t with target trajectory Xt . (b) Plot of mean trajectories
of individual modes. (c) Plot of mode association probability.

B. Tracking using IMM-FPF

We assume an interacting multiple model architecture as
follows:
(i) There are three possible target dynamic modes:

θt = 1 : dXt = 3 dt +σB dBt ,

θt = 2 : dXt =−2 dt +σB dBt ,

θt = 3 : dXt = 1 dt +σB dBt .

(ii) θt evolves as a continuous-time Markov chain with
transition rate matrix Q.

(iii) Observation process is modeled the same as in (19)-
(20).
In the simulation results described next, we use the fol-

lowing parameter values: σB = 0.05, σW = 0.015 and initial
condition X0 = 2.5. The total simulation time is T = 9 and
time step ∆t = 0.02. The transition rate matrix is,

Q =

−0.1 0.1 0
0.05 −0.1 0.05

0 0.1 −0.1


The prior mode association probability µt = (µ1

t ,µ
2
t ,µ

3
t ) at

time t = 0 is assumed to be µ0 = (1/3,1/3,1/3).
Figure 2(a) depicts the result of a single simulation: The

estimated mean trajectories, depicted as dashed lines, are
obtained using the IMM-FPF algorithm described in Sec. III.
Figure 2(b) depicts the mean trajectories of individual modes.
Figure 2(c) depicts the evolution of association probability
(µ1

t ,µ
2
t ,µ

3
t ) during the simulation run. We see that trajectory

probability converges to the correct mode during the three
maneuvering periods. For the filter simulation, N = 500
particles are used for each mode.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a feedback particle filter-based
algorithm for the continuous-time SHS estimation problem.
The proposed algorithm is shown to be the nonlinear gen-
eralization of the conventional Kalman filter-based IMM
algorithm. A numerical example for a maneuvering target

tracking problem is presented to illustrate the use of IMM-
FPF.

The ongoing research concerns the following two topics:
(i) Comparison of the IMM-FPF against the basic particle

filter (PF) and IMM-PF, with respect to estimation perfor-
mance and computational burden.

(ii) Investigation of alternate FPF-based algorithms for SHS
estimation. Of particular interest is the filter architecture
where particles evolve on the joint state space (analogous
to case (i) in Sec. I).

APPENDIX

A. Derivation of the exact filtering equations (6)-(9)

Derivation of (6): For each fixed mode θt = em ∈
{e1,e2, . . . ,eM}, the state process Xt is a Markov process
with Kolmogorov forward operator L †

m . Therefore, the joint
process (Xt ,θt)

T is a Markov process with generator L †+Q
where L † := diag{L †

m}. Defining
∫

A π∗m(x, t)dx := P{Xt ∈
A,θt = em} and π∗(x, t) := (π∗1 (x, t), · · · ,π∗M(x, t))T we have
that

∂π∗

∂ t
(x, t) = L †

π
∗(x, t)+QT

π
∗(x, t).

Recall that the posterior distribution was defined by∫
A q∗m(x, t)dx := P{[Xt ∈ A,θt = em]|Zt}. By applying the

fundamental filtering theorem for Gaussian observations
(see [11]) to (3) we have:

dq∗m =L †
m(q

∗
m)dt +

M

∑
l=1

qlmq∗l dt +(hm− ĥt)(dZt − ĥt dt)q∗m,

where ĥt := ∑
M
m=1

∫
R hm(x)q∗m(x, t)dx.

Derivation of (7) and (8): By definition, we have,

p∗(x, t) =
M

∑
m=1

q∗m(x, t), (21)

µ
m
t =

∫
R

q∗m(x, t)dx. (22)

Taking derivatives on both sides of (21) and (22) gives the
desired result.



Derivation of (9): By definition q∗m = ρ∗mµm
t . Applying Itô’s

differentiation rule we have:

dρ
∗
m =

dq∗m
µm

t
+q∗m d

(
1

µm
t

)
+ dq∗m d

(
1

µm
t

)
, (23)

where d
(

1
µm

t

)
= − dµm

t
(µm

t )2 +
(dµm

t )2

(µm
t )3 . Substituting (6) and (7)

into (23) we obtain the desired result.

B. Proof of consistency for IMM-FPF

We express the feedback particle filter (11) as:

dX i;m
t = am(X i;m

t )dt +σ
m dBi;m

t +Km(X i;m
t , t)dZt + ũ(X i;m

t , t)dt

+um(X i;m
t ,X i;−m

t )dt,

where

ũ(x, t) =−1
2
Km(x, t)(hm(x)+ ĥm

t )+Ω(x, t), (24)

and Ω := 1
2K

m(Km)′ is the Wong-Zakai correction term
for (11). The evolution equation for ρm is given by:

dρm =L †
mρm dt− ∂

∂x
(ρmK

m)dZt −
∂

∂x
(ρmũ)dt

− ∂

∂x
(ρmum)dt +

1
2

∂ 2

∂x2

(
ρm(K

m)2) dt.
(25)

The derivation of this equation is similar to the basic FPF
case (see Proposition 2 in [20]) and thus omitted here.

It is only necessary to show that with the choice of
{Km,um} according to (13)-(14), we have dρm(x, t) =
dρ∗m(x, t), for all x and t, in the sense that they are defined
by identical stochastic differential equations. Recall dρ∗m is
defined according to the modified K-S equation (9), and dρm
according to the forward equation (25).

If Km solves the E-L BVP (13) then we have:

∂

∂x
(ρmK

m) =−(hm− ĥm
t )ρm. (26)

On multiplying both sides of (24) by −ρm, we have:

−ρmũ =
1
2
(hm− ĥm

t )ρmK
m− 1

2
(ρmK

m)
∂Km

∂x
+ ĥm

t ρmK
m

=−1
2

∂ (ρmK
m)

∂x
Km− 1

2
(ρmK

m)
∂Km

∂x
+ ĥm

t ρmK
m

=−1
2

∂

∂x

(
ρm(K

m)2)+ ĥm
t ρmK

m

where we used (26) to obtain the second equality. Differen-
tiating once with respect to x and using (26) once again,

− ∂

∂x
(ρmũ)+

1
2

∂ 2

∂x2

(
ρm(K

m)2)=−ĥm
t (h

m− ĥm
t )ρm. (27)

Substituting (13), (14) and (27) to (25) and after some
simplifications, we obtain:

dρm = L †
mρm dt +(hm− ĥm

t )(dZt − ĥm
t dt)ρm

+
1

µm
t

M

∑
l=1

qlmµ
l
t (ρl−ρm)dt.

This is precisely the SDE (9), as desired.

C. Alternate Derivation of (15)

The aim of this section is to derive, formally, the update
part of the continuous time filter (15) by taking a continuous
time limit of the discrete-time algorithm for evaluation of
association probability. The procedure for taking the limit is
similar to Sec 6.8 in [10] for derivation of the K-S equation.

At time t, we have M possible modes for the SHS.
The discrete-time filter for mode association probability is
obtained by using Bayes’ rule (see [1]):

P{θt = em|Zt ,∆Zt}=
P{∆Zt |θt = em}P{θt = em|Zt}

∑
M
l=1P{∆Zt |θt = el}P{θt = el |Zt}

.

(28)
Rewrite:

P{∆Zt |θt = em}=
∫

P{∆Zt |θt = em,Xt = x}ρm(x, t)dx

= Lm(∆Zt). (29)

where Lm(∆Zt) := 1√
2π∆t

∫
R exp

[
− (∆Zt−hm(x)∆t)2

2∆t

]
ρm(x, t)dx.

Now, recall µm
t = P{θt = em|Zt}, the increment in the

measurement update step (see Sec 6.8 in [10]) is given by

∆µ
m
t := P{θt = em|Zt ,∆Zt}−P{θt = em|Zt}. (30)

Using (28) and (30), we have:

∆µ
m
t = Em(∆t,∆Zt)µ

m
t −µ

m
t , (31)

where

Em(∆t,∆Zt) =
P{θt = em|Zt ,∆Zt}
P{θt = em|Zt}

. (32)

We expand Em(∆t,∆Zt) as a multivariate series about (0,0):

Em(∆t,∆Zt) = Em(0,0)+Em
∆t(0,0)∆t +Em

∆Zt
(0,0)∆Zt

+
1
2

Em
∆Zt ,∆Zt

(0,0)dZ2
t +o(∆t). (33)

By direct evaluation, we obtain:

Em(0,0) = 1,

Em
∆t(0,0) =

1
2

(
ĥ2

t − (̂hm
t )

2
)
,

Em
∆Zt

(0,0) = ĥm
t − ĥt

Em
∆Zt ,∆Zt

(0,0) = (̂hm
t )

2−2ĥm
t ĥt +2ĥ2

t − ĥ2
t

where (̂hm
t )

2 :=
∫
R(h

m(x))2ρm(x, t)dx and ĥ2
t :=

∑
M
m=1 µm

t (̂hm
t )

2.

By using Itô’s rules,

E[∆Zt∆Zt ] = ∆t.

This gives

Em(∆t,∆Zt) = 1+(ĥm
t − ĥt)(∆Zt − ĥt∆t) (34)

Substituting (34) to (31) we obtain the expression for ∆µm
t ,

which equals the measurement update part of the continuous-
time filter.



(Const. Gain Approx.)

(particles)

Fig. 3. Approximating nonlinear Km by its expected value E[Km].

Remark 3: During a discrete-time implementation, one
can use (28)-(29) to obtain association probability. In (28),
Lm(dZt) is approximated by using particles:

Lm(∆Zt)≈
1
N

1√
2π∆t

N

∑
i=1

exp

[
− (∆Zt −hm(X i;m

t )∆t)2

2∆t

]
.

D. Derivation of constant approximation (16)-(17)
In this section, we provide a justification for (16)-(17).

Recall that at each fixed time step t, Km(x, t) is obtained by
solving the BVP (13):

∂ (ρmK
m)

∂x
=−(hm− ĥm

t )ρm.

A function Km is said to be a weak solution of the BVP (13)
if

E

[
Km ∂ψ

∂x

]
= E[(hm− ĥm

t )ψ] (35)

holds for all ψ ∈H1(R;ρm) where E[·] :=
∫
R ·ρm(x, t)dx and

H1 is a certain Sobolev space (see [19]). The existence-
uniqueness results for the weak solution of (35) also appear
in [19].

In general, the weak solution Km(·, t) of the BVP (35)
is some nonlinear scalar-valued function of the state
(see Fig. 3). The idea behind the constant gain approximation
is to find a single constant c∗ ∈ R to approximate this
function (see Fig. 3). Precisely,

c∗ = argmin
c∈R

E[(Km− c)2].

By using a standard sum of square argument, we have

c∗ = E[Km].

Even though Km is unknown, the constant c∗ can be obtained
using (35). Specifically, by substituting ψ(x) = x in (35):

E[Km] = E[(hm− ĥm
t )ψ] =

∫
R
(hm(x)− ĥm

t ) x ρm(x, t)dx.

In simulations, we approximate the last term using particles:

E[Km]≈ 1
N

N

∑
i=1

(
hm(X i;m

t )− ĥm
t

)
X i;m

t ,

which gives (16). The derivation for (17) follows similarly.
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