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Abstract— We characterize the maximum controlled invari-
ant (MCI) set for discrete-time systems as the solution of
an infinite-dimensional linear programming problem. In the
case of systems with polynomial dynamics and semialgebraic
state and control constraints, we describe a hierarchy of finite-
dimensional linear matrix inequality relaxations of this problem
that provides outer approximations with guaranteed set-wise
convergence to the MCI set. The approach is compact and
readily applicable in the sense that the approximations are the
outcome of a single semidefinite program with no additional
input apart from the problem description.

I. INTRODUCTION

Given a discrete-time controlled dynamical system de-
scribed, its maximum controlled invariant (MCI) set is the set
of all initial states that can be kept within a given constraint
set ad infinitum using admissible control inputs. This set goes
by many other names in the literature, e.g., viability kernel
in viability theory [4], or (A, B)-invariant set in the linear
case [13].

Set invariance is an ubiquitous and essential concept in
dynamical systems theory, as far as both analysis and control
synthesis is concerned. In particular, by its very definition,
the MCI set determines fundamental limitations of a given
control system with respect to constraint satisfaction. In
addition, there is a very tight link between invariant sets
and (control) Lyapunov functions. Indeed, sub-level sets of
a Lyapunov function give rise to invariant sets. Conversely,
at least in the linear case, any controlled invariant set gives
rise to a control Lyapunov function, and therefore these sets
can be readily used to design stabilizing control laws; see,
e.g., [8] for a general treatment and, e.g., [17], [25] for
applications in model predictive control design.

The problem of (maximum) controlled invariant set com-
putation for discrete-time systems has been a topic of active
research for more than four decades. The central tool in
this effort has been the contractive algorithm of [6] and
its expansive counterpart [18]. For an exhaustive survey and
historical remarks see the survey [8] and the book [12].

Both algorithms, although conceptually applicable to any
nonlinear system, have been predominantly applied in a
linear setting where they boil down to a sequence of linear
programs and polyhedral projections. Finite termination of
this sequence is a subtle problem and sharp results are
available only in the uncontrolled setting where no projec-
tions are required [16]; for discussion of finite-termination in
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the controlled case see [39]. The contractive and expansive
algorithms were combined in [17] to design an algorithm
terminating in a finite number of iterations and outputting
an e-accurate inner approximation of the MCI set (with the
accuracy measured by the Hausdorff distance). Another line
of research, culminating in [37], exploits the linearity of the
system dynamics in a more systematic way and approximates
the maximum (or minimum) robust controlled invariant set
by the Minkowski sum of a parametrized family of sets.
Very recently, in continuous time, [29] developed a parallel
algorithm for ellipsoidal approximations of the robust MCI
set scalable to very high dimensions. Computation of low-
complexity polyhedral controlled invariant sets was investi-
gated in [10] and [11].

In the nonlinear case, a common practice is to exploit the
tight connection between invariance and Lyapunov functions
and seek invariant sets as sub-level sets of a (control) Lya-
punov function; see [14] and references therein discussing
the related problem of region of attraction computation
in continuous time. This, however, typically leads to non-
convex bilinear optimization problems which are notoriously
hard to solve. Therefore one often has to resort to ad-hoc
analysis of the specific system at hand, which is typically
tractable only in small dimensions; see [40], [41] for concrete
examples in continuous time. Related in spirit is the localiza-
tion technique of [24] for discrete-time autonomous systems,
also requiring considerable effort in analysing the system.
Recently, a general approach using finite-dimensional linear
programming (LP) was used in [5] to design a controller
ensuring invariance of a given candidate polyhedral set.

Building upon our previous work [19] on the computation
of the region of attraction (ROA) for polynomial control sys-
tems, in this paper we characterize the maximum controlled
invariant (MCI) set for discrete-time polynomial systems as
the solution to an infinite-dimensional LP problem in the
cone of nonnegative measures. The dual of this problem is an
infinite-dimensional LP in the space of continuous functions.
Finite-dimensional relaxations of the primal LP and finite-
dimensional approximations of the dual LP turn out to be
semidefinite programs (SDPs) also related by duality. The
primal relaxations lead to a truncated moment problem while
the dual approximations to a sum-of-squares (SOS) problem.
Super-level sets of one of the polynomials appearing in the
dual SOS problem then provide outer approximations to the
MCI set with guaranteed convergence as the degree of the
polynomial tends to infinity.

The main mathematical tool we use are the so-called occu-
pation measures which allow us to study the time evolution
of the whole ensemble of initial conditions (described by a
measure) rather than studying trajectories associated to each
initial condition separately. The use of measures to study
dynamical systems has a very long tradition: see [38] for



probably the first systematic treatment! in continuous time;
for purely discrete-time treatment see [22, Chapter 6]. To
the best of the authors’ knowledge our paper is the first
one to use occupation measures for MCI set (approximate)
computation. The MCI set was previously characterized
using occupation measures in [15], but there the characteriza-
tion is rather indirect and not straightforwardly amenable to
computation. Apart from the authors” work [19], the related
problem of region of attraction computation was tackled
using measures in [45]. There, however, a very different
approach was taken, not using occupation measures but
rather analyzing convergence via discretization of the state-
space and propagating the initial distribution by means of
a discretized transfer operator. Here, instead, we employ
the (discounted) occupation measure which captures the
behaviour of the trajectories emanating from the initial
distribution over the infinite time horizon. As a result, our
approach requires no discretization and, contrary to [45],
provides true guarantees (not in an “almost-everywhere” or
“coarse” sense) and, more importantly, is applicable in a
controlled setting.

Similar in spirit to our approach, from the dual view-
point of optimization over functions, are the Hamilton-
Jacobi approaches (e.g., [33], [34]) although, importantly,
our approach does not require state-space discretization and
comes with convergence guarantees.

What can be considered a drawback of our approach is
the fact that the approximations to the MCI set we obtain
are from the outside and therefore not invariant. However,
accurate outer approximations provide important information
as to the performance limitations of the control system
and are of practical interest, e.g., in collision avoidance.
Therefore we believe that our work bears both theoretical and
practical value, and naturally complements existing inner-
approximation techniques.

The paper is organised as follows. The problem to be
solved is described in Section II. Occupation measures are
introduced in Section III. The infinite-dimensional primal
and dual LPs are described in Sections IV and V, respec-
tively. The finite-dimensional relaxations with convergence
results are presented in Section VI. Numerical examples are
in Section VII. A reader interested only in the semialgebraic
outer approximations of the MCI set can consult directly the
infinite-dimensional dual LP (5) and its finite-dimensional
approximation (7).

II. PROBLEM STATEMENT

Consider the discrete-time control system

te{0,1,...}

ey
with a given polynomial vector field f with entries f; €
R[z,u],7=1,...,n, and given compact basic semialgebraic
state and input constraints

i1 = f(ze,ue), 2 €X, wu €U,

€ X ={zeR" : gx,(x) >20,i=1,2,...,nx},
u €U :={ueR™: gy;(u) >0,i=1,2,...,ny}

with gx; € Rlz], gu,; € Rlul.

'In [38], J. E. Rubio used Young measures [44] rather than occupation
measures, but the basic idea of “linearizing” a nonlinear problem by going
into an infinite-dimensional space of measures is the same.

The maximum controlled invariant (MCI) set is defined as
X = {xoeX = ({xt}fil, {ut}fﬁl) st xer1 = fag, ),
u €U, 7 € X, Vt € {0,1,...}}.

A control sequence {u; }$2, is called admissible if u, € U
forall t € {0,1,...}.

In words, the MCI set is the set of all initial states which
can be kept inside the constraint set X ad infinitum using
admissible control inputs.

III. OCCUPATION MEASURES

In this section we introduce the concept of occupation
measures which is the centrepiece of our approach.

For the reader’s ease, let us briefly survey the measure-
theoretic notation used in this paper. We work with signed
Borel measures on a Euclidean space, understood as count-
ably additive maps from the Borel sets (the smallest sigma-
algebra containing open sets) to the real numbers. The
vector space of all signed Borel measures with its support
contained in a Borel set K is denoted by M(K). The
support (i.e., the smallest closed set whose complement has
a zero measure) of a measure v is denoted by sptv. The
space of continuous functions on K is denoted by C(K).
The indicator function of a set K (i.e., a function equal
to one on K and zero otherwise) is denoted by I ().
The symbol X denotes the n-dimensional Lebesgue measure
(i.e., the standard n-dimensional volume). The integral of
a function v w.r.t a measure v over a set K is denoted
by [ v(x)dv(x). Sometimes for conciseness we use the
shorter notation [ v du omitting the integration variable and
also the set over which we integrate if they are obvious from
the context. Finally, the ring of polynomials in a variable x
is denoted by R[z].

Given a discount factor o € (0,1), an initial condition
ro and an admissible control sequence {uy|4, }7<( such that
the associated state sequence {z|,,}§2, remains in X for
all times, we define the discounted occupation measure (- |
2o) € M(X xU) as

o0
WA X B | ) = ZatIAXB(xﬂmoaut\xo) )
t=0
for all sets A C X and B C U.

In words, the discounted occupation measure measures
the (discounted) number of visits of the state-control pair
trajectory (x(- | o), v(- | o)) to subsets of X x U. The
discounting in the definition of the occupation measure
ensures that u(A x B | o) is always finite; in fact we have
(X xU | zg)=(1—a)" L

Now suppose that the initial condition is not a single
point but an initial measure* 1o € M(X) and an admissible
control sequence is associated to each initial condition from
the support of po in such a way that the corresponding
state sequence remains in X. Then we define the average
discounted occupation measure € M (X x U) as

p(A X B) = /X (A X Blxzo) dpo(zo).

2The initial measure po can be thought of as the probability distribution of
the initial state, although we do not require the mass of po to be normalized
to one.



The average discounted occupation measure measures the
discounted average number of visits in subsets of X x U of
trajectories starting from the initial distribution py.

Now we derive an equation linking the measures po and .
This equation will play a key role in subsequent development
and in a sense replaces the dynamics equation (1). To derive
this equation fix an initial condition o € X and a control
sequence {5, }i2 such that the associated state sequence
{@4)2 220 stays in X. Then for any v € C(X) we have

| v duta,ulao)
XxU
Z ‘rt|xo = ’U(mo\wo + O‘Za v $t+1\10)

t=0 t=0

= v(To|a,) + Z a'v(f(
t=0
v(f (@, u)) du(e, ulzo).

—vmmu+a/
XxU

Integrating w.r.t. pg we arrive at the sought equation

[ o) dutew) = [ o6a) duo(o) | o070 0)dte )

Yo e C(X).
3)
Note that this is an infinite-dimensional linear equation in
variables (L0, 1t).
The following crucial Lemma establishes the connection
between the support of any initial measure o solving (3)
and the MCI set X;.

Tt|zg o ut\a:o))

Lemma 1. For any pair of measures (ug,u) satisfying
equation (3) with spt pg C X and sptu C U x X we have
spt o C X7.

Proof. A detailed proof is in the Appendix A of the extended
version of the paper available from arXiv:1303.6469.
O

IV. PRIMAL LP

In this section we show how the MCI set computation
problem can be cast as an infinite-dimensional LP problem
in the cone of nonnegative measures. As in [19], the basic
idea is to maximize the mass of the initial measure g
subject to the constraint that it be dominated by the Lebesgue
measure, that is, pg < A. System dynamics is captured
by the equations (3), and state and input constraints are
expressed through constraints on the supports of the initial
and occupation measure. The constraint that ;g < A can be
equivalently rewritten as po + fip = A for some nonnegative
slack measure ,uo eM (X ). This constraint is in turn equiva—
lent to [ w(x) dpuo(x)+ [y w(x) dfig(z) = [y w(
forallw € C(X ( ). These cons1derat10ns lead to the followmg
primal LPs.

The primal LP reads

Pt = sup  po(X)
st [vdu= [vdpo+a [vo fdu Vv e C(X)
Jwdpo + [wdiip = [wdA Vwe C(X)

,UZOv,UOZO’ﬂOZO
spt u C X X U, spt ug C X, spt o C X,
“)

where the infimum is over the vector of measures
(1, 120, o) € M(X x U) x M(X) x M(X).

This is an infinite-dimensional LP in the cone of nonneg-
ative Borel measures. The following Lemma, which is our
main theoretical result, relates an optimal solution of this LP
to the MCI set X7;.

Theorem 1. The optimal value of LP problem (4) is equal
to the volume of the MCI set Xj, that is, p* = M X[).
Moreover, the supremum is attained by the restriction of the
Lebesgue measure to the MCI set X7.

Proof. The proof follows from Lemma 1 by the same ar-
guments as Theorem 1 in [19]. By definition of the MCI
set X7, for any initial condition xy € X there exists an
admissible control sequence such that the associated state
sequence remains in X. Therefore for any initial measure
o < A with spt g C X7 there exist a discounted occupation
measure p with sptu C X x U and a slack measure [ig
with spt fip C X such that the constraints of problem (4)
are satisfied. One such measure p is the restriction of the
Lebesgue measure to Xy, and therefore p* > A(X;). The
fact p* < A\(X7) follows from Lemma 1. O

V. DUAL LP

In this section we derive an LP dual to LP (4). Since
the primal LP is on the space of measures, the dual LP
will be on the space of continuous functions. Super-level
sets of feasible solutions to this dual LP then provide outer
approximations to the MCI set. The dual can be derived by
standard infinite-dimensional LP duality theory; see [19] for
a derivation in a similar setting or [3] for a general theory
of infinite-dimensional linear programming.

The dual LP reads

d* = inf / w(z) dA(z)
st D) Sofe). Vi e X xU
(a:) > v(z) + VeeX
w(z) > 0, Ve X,
&)
where the infimum is over the pair of functions (v,w) €
C(X) x O(X).

The following key observation shows that the unit super-
level set of any function w feasible in (5) provides an outer-
approximation to X7.

Lemma 2. Any feasible solution to problem (5) satisfies w >
1 on Xj.

Proof. Given any x( € X there exists a sequence {u;}2,
u; € U, such that x; € X for all ¢. The first constraint
of problem (5) is equivalent to av(ziy1) < v(xt), t €
{0,1,...}. By iterating this inequality we get

v(wg) > a'v(w)) -0 as t— o0

since z; € X and X is bounded. Therefore v(xzg) > 0 and
w(xg) > 1 for all 29 € X;. O

The following theorem is instrumental in proving the
convergence results of Section VI.

Theorem 2. There is no duality gap between primal LP
problems (4) on measures and dual LP problem (5) on
functions in the sense that p* = d*.



Proof. Follows by the same arguments as Theorem 2 in [19].
O

VI. LMI RELAXATIONS

In this section we present finite-dimensional relaxations of
the infinite-dimensional LPs. The relaxations of the primal
LP lead to a truncated moment problem which translates
to a semidefinite program (SDP) that can be solved by
freely available software, e.g., SeDuMi [35] or SDPA [42].
Dual to the primal SDP relaxation is a sum-of-squares
(SOS) problem that again translates to an SDP problem. The
following discussion closely follows the one in [26].

We only highlight the main ideas behind the derivation
of the finite-dimensional relaxations. The reader is referred
to [19, Section 5] or to the comprehensive reference [30] for
details. First, since the supports of all measures feasible in (4)
are compact, these measures are uniquely determined by their
moments, i.e., by integrals of all monomials (which is a se-
quence of real numbers when indexed in, e.g., the canonical
monomial basis). Therefore, it suffices to restrict the test
functions w(z) and v(x) in (4) to all monomials, reducing the
linear equality constraints on measures L, i and fig of (4)
to linear equality constraints on their moments. Next, by the
Putinar Positivstellensatz (see [30], [36]), the constraint that
the support of a measure is included in a given compact
basic semialgebraic set is equivalent to the feasibility of an
infinite sequence of LMIs involving the so-called moment
and localizing matrices, which are linear in the coefficients
of the moment sequence. By truncating the moment sequence
and taking only the moments corresponding to monomials of
total degree less than or equal to 2k we obtain a necessary
condition for this truncated moment sequence to be the first
part of a moment sequence corresponding to a measure with
the desired support.

In what follows, R[-] denotes the vector space of real
multivariate polynomials of total degree less than or equal
to k. Furthermore, throughout the rest of this section we
make the following standard standing assumption:

Assumption 1. One of the polynomials modellng the sets X
resp. U is equal to gx,;(x) = R% — ||z||3 resp. gu,;(u) =
R% — ||ul|3 with Rx, Ry suﬁ‘icwntly large constants.

This assumption is completely without loss of generality
since redundant ball constraints can be always added to the
description of the compact sets X and U.

The primal relaxation of order k reads

pr = max (yo)o
st. Ay, v0,90) = bk
Mk(y)toa Mk dxl(ngy)to 2—17...,7'LX
Mk qu(gU'my)tO 1= s oo U
Mi(yo) = 0, Mpy—ay,(9x;,%0) =0, i=1,...,nx
My (90) = 0, Mpy—ax,(9x,%) =0, i=1,. ~7n)((6,)

where the notation > 0 stands for positive semidefinite and
the minimum is over moment sequences (y, Yo, §o) truncated
to degree 2k corresponding to measures p, (o and fig in (4).
The linear equality constraint captures the two linear equality
constraints of (4) with v(¢, ) € Rag[t, ] and w(x) € Rog[z]
being monomials of total degree less than or equal to 2k.
The matrices My (-) are the moment and localizing matrices,
following the notation of [30] or [19]. In problem (6), a linear
objective is minimized subject to linear equality constraints

and LMI constraints; therefore problem (6) is a semidefinite
program (SDP).
The dual relaxation of order k reads
dy = inf w'l
st v—a-vo f=qo+ >0 qigx; + 2000 rigu;
w—v—1=po+ 3% pigx,
w = S0+ 312 Sigx ;s
(7
where [ is the vector of Lebesgue moments over X indexed in
the same basis in which the polynomial w(z) with coefficient
vector w is expressed. The minimum is over polynomials
v(z) € Rog[x] and w € Rog[z], and polynomial sum-of-
squares qi(z,u), pi(x), si(x), i = 1,...,nx and r;(z,u),
i =1,...,ny, of appropnate degrees In problem (7), a
linear ObJeCtIVC function is minimized subject to sum-of-
squares (SOS) constraints; therefore problem (7) is an SOS
problem which can be readily cast as an SDP (see, e.g., [30]).

A. Convergence results

In this section we state several convergence results of
the finite dimensional relaxations. The proofs of the results
follow exactly the same reasoning as analogous results on
region of attraction approximations in [19, Section 6] and
are omitted for space reasons.

Theorem 3. There is no duality gap between the primal LMI
problem (6) and the dual LMI problem (7), i.e., p;. = dj.

The next theorem shows functional convergence from
above to the indicator function of the MCT set.

Theorem 4. Let wy, € Ryi[x] denote the w-component of
a solution to the dual LMI problem (7) and let ﬁ)k(x) =
min; <y w;(x). Then wy, converges from above to Ix, in Lt
norm and Wy, converges from above to Ix, in L* norm and
almost uniformly.

The following immediate corollary shows the convergence
of the optimal values of the relaxations to the optimal values
of the infinite-dimensional LPs.

Corollary 1. The sequence of infima of LMI problems (7)
converges monotonically from above to the supremum of the
LP problem (5), i.e., d* < d,";ﬂ < df and limg_, o df, =
d*. Similarly, the sequence of maxima of LMI problems (6)
converges monotonically from above to the maximum of the
LP problem (4), i.e., p* < pj | < pj and limg_, pj, = p*.

Our last theorem shows a set-wise convergence of the
outer-approximations to the MCI set.

Theorem 5. Let wy, € Ry [x] denote the w-component of a
solution to the dual LMI problem (7) and let X1}, := {z €
R™ : wi(z) > 1} Then X C Xy,

khm )\(X[k \X[) =0 and )\(ﬁz"lejk \X[) = 0.
— o0

VII. NUMERICAL EXAMPLES

In this section we present numerical examples that illus-
trate our results. The primal LPs on measures were modeled
using Gloptipoly 3 [20] and the primal SDP relaxations were
solved using SeDuMi [35], which automatically returns also
the dual solutions providing the outer approximations.



1) Julia sets: Consider over z € C, or equivalently over
z € R2 with z := z; + izo, the quadratic recurrence

z+:,22+c

with ¢ € C a given complex number and 7 the imaginary
unit. The filled Julia set is the set of all initial conditions
of the above recurrence for which the trajectories remain
bounded. The shape of the Julia set depends strongly on the
parameter c. If ¢ lies inside the Mandelbrot set, then the
Julia set is connected; otherwise the set is disconnected. In
both cases the boundary of the set has a very complicated
(in fact fractal) structure. Here we shall compute outer
approximations of the filled Julia set intersected with the unit
ball. To this end we set X = {x € R? : ||z|| < 1}. Figure
1 shows outer approximations of degree 12 for parameter
values ¢ = —0.7 + 0.2 (inside the Mandelbrot set) and
¢ = —0.9 + 70.2 (outside the Mandelbrot set). The “true”
filled Julia set was (approximately) obtained by by randomly
sampling initial conditions within the unit ball and iterating
the recurrence for one hundred steps. Taking higher degree
of the approximating polynomials does not give significant
improvements due to our choice of the monomial basis to
represent polynomials. An alternative basis (e.g. Chebyshev
polynomials — see the related discussions in [21] and [19])
would allow us to improve further the outer estimates and
better capture the fine fractal structure of the filled Julia set’s
boundary.

2) Hénon map: Consider the modified controlled Hénon
map [31]

o =0.44 — 0.1z3 — 423 + 0.5u,

J:Sr =x1 — 4x129,

+
T3 = T2,

with=X = [~1,1]? and U = [~Umax, Umax]. We investigate
two cases: uncontrolled (i.e., umax = 0) and controlled with
Umax = 1. Figure 2 shows outer approximations to the MCI
set of degree eight for both settings and the “true” MCI set in
the uncontrolled setting (approximately) obtained by random
sampling of initial conditions inside the constraint set X . The
outer approximations suggest that, as expected, allowing for
control leads to a larger MCI set.

VIII. CONCLUSION

We derived an infinite-dimensional convex characteriza-
tion of the maximum controlled invariant (MCI) set, finite-
dimensional approximations of (the dual of) which provide a
converging sequence of semialgebraic outer-approximations
to this set. The outer-approximations are the outcome of
a single semidefinite program (SDP) with no additional
data required besides the problem description. Therefore
the approach is readily applicable using freely available
modeling tools such Gloptipoly 3 [20] or YALMIP [32] with
no hand-tuning involved.

The cost to pay for this comfort is the relatively un-
favourable scalability of the semidefinite programs solved
— the number of variables grows as O((n + m)?), where
n and m are the state and control dimensions and d is the
degree of the approximating polynomial. Therefore, in order
for this approach to scale to medium dimensions (say, more
than m+n = 6) one either has to tradeoff accuracy by taking
small d or go beyond the standard freely available solvers

Fig. 2. Hénon map — polynomial outer approximation of degree
eight in the uncontrolled setting (darker red, smaller) and in the
controlled setting (lighter red, larger). The (approximation of) the
“true” set (black) in the uncontrolled setting is represented as an
ensemble of initial conditions randomly sampled within the state-
constraint set.

such as SeDuMi or SDPA. One possibility is parallelization;
for instance, the free parallel solver SDPARA [43] allows
for the approach to scale to larger dimensions. Alternatively,
one can utilize one of the (few) commercial SDP solvers;
in particular, the recently released MOSEK SDP solver
seems to show far superior performance on our problem
class, and therefore this may allow the approach to scale
to larger dimensions. Finally, one can resort to customized
structure-exploiting solutions; this is a promising direction
of future research currently investigated by the authors. At
this point it should be emphasized that, to the best of the
authors’ knowledge, all of the existing approaches providing
approximations of similar quality experience similar or worse
scalability properties.

Other directions of future research include the extension
of the presented approach to inner approximations of MCI
sets, to stochastic systems and to uncertain systems. Partial
results on the inner approximations for the related problem
of region of attraction computation already exist [26], albeit
in uncontrolled setting only.
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