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On Optimal Input Design for Feed-forward Control

Per Hägg and Bo Wahlberg

Abstract— This paper considers optimal input design when
the intended use of the identified model is to construct a
feed-forward controller based on measurable disturbances. The
objective is to find a minimum power excitation signal to be used
in system identification experiment, such that the corresponding
model-based feed-forward controller guarantees, with a given
probability, that the variance of the output signal is within given
specifications. To start with, some low order model problemsare
analytically solved and fundamental properties of the optimal
input signal solution are presented. The optimal input signal
contains feed-forward control and depends of the noise model
and transfer function of the system in a specific way. Next, we
show how to apply the partial correlation approach to closed
loop optimal experiment design to the general feed-forward
problem. A framework for optimal input signal design for feed-
forward control is presented and numerically evaluated on a
temperature control problem.

I. I NTRODUCTION

SYSTEM identification is about the estimation and valida-
tion of mathematical models of dynamical systems from

experimental data. It is well recognized that the input signal
used to excite the system during the experiment significantly
affects the accuracy of the identified model. A correctly
chosen excitation signal can immensely improve the quality
of the resulting model while a poorly chosen signal can result
in a useless model. This motivates input or experiment design
in system identification.

The quality of a model depends on the intended use of the
model. A good experiment should highlight the important
properties for the intended application. This is the main idea
of identification for control[1], [2], least costly identification
[3] and applications oriented input design[4].

Much work has been focused on input design when the
model is to be used in a control application, see for example
[5] or [6] for application toMPC. However, many industrial
control systems do not only utilize feedback but also feed-
forward control. The idea is to measure a disturbance, predict
its impact on the plant and then compensate for it with the
input signal. Compensating for measurable disturbances by
feed-forward control can improve the performance consid-
erably compared to when only feedback control is used.
Measurable disturbances could for example be the outside
temperature when controlling the indoor temperature in a
house.
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The aim of this paper is to study optimal input design
when the intended use of the model is for feed-forward
control. We will use the application oriented input design
framework presented in [4]. To illustrate how system prop-
erties affect the optimal input signal we start by analyzinga
problem which can be solved analytically. We then present a
framework for input design for more general systems and
show how to formulate them as Semi Definite Programs
(SDP) that can be solved efficiently using numerical methods.

The outline of the paper is as follows. In Section II we
define the input design problem and give some preliminary
results from application oriented input design. Section III
analyzes first orderFIR subsystems and make some observa-
tions. A more general framework for input design for feed-
forward control is given in Section IV. The framework is
then applied to a simulation example in Section V while
Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider the system in Figure 1. The dynamics of the
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Fig. 1: The considered system. The identification setup
without feed-forward filter (Ff ) and application setup with
feed-forward filter.

system can be written as

yt = G0(q)ut +H0(q)vt + et,

whereq−1 is the delay operator,i.e., q−1ut = ut−1. Here
G0(q) andH0(q) are the plant transfer functions. The input
to the system isut while yt is the measured output disturbed
by a zero mean white noise signalet with varianceλe. The
processvt corresponds to a measurable disturbance to the
system. We assume thatvt is a stationary stochastic process
with known spectral properties,i.e., vt can be written as
vt = M(q)st wherest is a zero mean Gaussian process with
varianceλs and the stable and inversely stable filterM(q) is
known. The spectrum ofvt equalsΦv(ω) = |M(ejω)|2λs.

The objective is to design a feed-forward controllerFf in
Figure 1 to suppress the effect of the measurable disturbance
in yt. However, the dynamics of the subsystemsH andG
are assumed unknown and need to be identified. Hence we
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want to identify the system dynamics and use the identified
model to design a feed-forward controller to counteract the
influence of the measured disturbancevt on the outputyt.
In particular, we will study to design the inputut during the
experiment such that we with high probability can guarantee
that the designed feed-forward controller satisfy an accuracy
constraint.

We parameterize the submodels as

G(q, θ), H(q, θ),

whereθ ∈ Rn is the model parameter vector and we assume
that there is a vectorθ0 such that

G(q, θ0) = G0(q), H(q, θ0) = H0(q),

that is, the true system can be described by the model.
We denote the model parameter vector estimated using a

Prediction Error Method (PEM), [7], from N data points of
the inputs and outputs,{ut, vt, yt, t = 1, . . . , N} as θ̂N . Un-
der some mild assumptions the asymptotic (inN ) covariance
matrix of the estimated parameters

P = lim
N→∞

NE
{

(θ̂N − θ0)(θ̂N − θ0)
T
}

,

can be written as

P−1 =
1

2πλe

∫ π

−π

F0(e
jω)Φχ0

(ω)F∗
0 (e

jω)dω, (1)

where the joint spectrum

Φχ0
(ω) =

[
Φu(ω) Φus(ω)
Φ∗

us(ω) λs(ω)

]

,

is the spectrum ofχ0 =
[
ut st

]T
and

F0(q) =
[
∂G(q,θ)

∂θ
M(q)∗ ∂H(q,θ)

∂θ

]∣
∣
∣
θ=θ0

, (2)

see [7] for details.
Remark 1:Since we can measurevt, we can correlate the

inputut with st (since we knowM(q)) and henceΦus could
be non-zero.

Further we know that, asymptotically, the identified pa-
rameter vector̂θN lies within the set

ESI =

{

θ :
1

2
[θ − θ0]

T P−1 [θ − θ0] ≤
κ

N

}

with probabilityα. The constantκ can be determined from
theχ2(n) distribution as a function of the probabilityα and
n, the number of estimated parameters.

A. Application oriented input design

As mentioned earlier we would like to identify the param-
eters of the system and from this design a feed-forward con-
troller. The feed-forward controller will be denotedFf (q, θ).

Using the framework in [4], we letVapp(θ) denote an ap-
plication cost that measures the degradation in performance
due to model errors. Here the application cost will represent
the output variance from the measured disturbancevt when
designing the feed-forward controller with the identified

parameters instead of the true parameters,i.e., all acceptable
models satisfy

Vapp(θ) = E
{
(H0 +G0Ff (θ))vt)

2
}

=
1

2π

∫ π

−π

|H0 −G0Ff (θ)|
2
Φvdω ≤

1

γ
,

whereγ is some positive constant. The requirement is hence
that the output variance should be less than1/γ. The overall
objective of the input design is thus to design our input signal
to be used during the experiment such thatVapp(θ̂N ) ≤ 1/γ.

We can approximate the application cost by a Taylor series
expansion

Vapp(θ) ≈
1

2
[θ − θ0]

T
V ′′
app [θ − θ0] ,

and hence the set of all parameters,θ that satisfiesVapp(θ) ≤
1/γ can be approximated by the ellipsoidal set

Eapp =

{

θ :
1

2
[θ − θ0]

T
V ′′
app [θ − θ0] ≤

1

γ

}

. (3)

B. Minimum Variance Input Design

To satisfy the application constraint we need to insure that
the identified parameters lies within the application set (3)
with high probability,i.e., thatESI ⊆ Eapp. This is equivalent
to

N

κ
P−1 � γV ′′

app(θ0),

whereA � B means thatA − B is positive semidefinite.
If the above inequality holds then̂θ ∈ Eapp with at least
probabilityα.

The objective here is to find the minimum variance input
signal used during the system identification experiment such
that the identified model will satisfy the requirements from
the application. More formally this can be stated as the
following optimization problem

minimize
Φu,Φue

1

2π

∫ π

−π

Φu(ω)dω

subject to
N

κ
P−1 � γV ′′

app(θ0)

Φχ0
defines a spectrum.

(4)

Assume that we can express the constraint thatΦχ0
defines

a spectrum as anLMI -constraint. Then since in many cases,
as we will se in the following,P−1 is an affine function of
the spectral densityΦχ0

and since 1
2π

∫ π

−π
Φu(ω)dω is linear

in Φχ0
, the optimization problem (4) becomes aSDPand can

be solved efficiently. We will come back to how to write the
spectrum constraint as anLMI later.

III. F IRST ORDER FIR SUBSYSTEMS

To get some insight in the problem we start by looking at
a low order example where we can solve the optimization
problem analytically. We assume that the two subsystems are
first orderFIR-systems,i.e.,

G0(q) = 1 + b0q
−1, H0(q) = 1 + h0q

−1,

and the measurable disturbance is zero mean white noise
with varianceλv, i.e., thatM = 1 andλv = λs. We will use



system identification to identify the parametersθ =
[
b h

]T

and use this to design a feed-forward controller.
The feed-forward controller will be on the form

Ff (q, θ) =
c0 + c1q

−1

1 + a0q−1
, (5)

where the constantsc0, c1 and a0 are functions ofh and
b. Assuming that we know the true underlying system we
design the optimal feed-forward controller, on the form (5),
that minimizes the output variance due to the disturbancevt.
If G(q) is minimum phase then obvious we should invertG
in the feed-forward filter. In the non-minimum phase case it
is known from minimum variance control that one should
mirror the zero and then invert the system, see [8]. The
optimal parametrization is thus given by

[
c0 c1 a0

]
=

{ [
1 h b

]
if |b| < 1

[
hb2+b−h

b3
h
b2

1
b

]

if |b| > 1.

The objective of the system identification is to find an
estimateθ̂N of θ such that when they are used to design
a feed-forward controllerFf (θ̂N ) the output variance due
to the disturbance is less than1/γ. All parameters,θ, that
satisfies this is given by

Vapp(θ) = E
{
((H(θ0) +G(θ0)Ff (θ))vt)

2
}
≤

1

γ
. (6)

A. Minimum phase system

First we look at the case whenG0 is minimum phase,
i.e., |b| < 1. The application cost (6) can now be calculated,
using for example residue calculus, to

Vapp(θ) =
c2 + d2 − 2cdb

1− b
λv ≤

1

γ
,

wherec = h0 − h+ b − b0, d = h0b− b0h. The Hessian is
then given by

V ′′
app(θ0) = 2λv

[
p −1
−1 1

]

, p =
h2
0 − 2h0b0 + 1

1− b20
.

Using (1) the asymptotic covariance matrix for the iden-
tified parameters can be calculated as

P−1 =
1

2π

∫ π

−π

I

[
Φu Φuv

Φ∗
uv λv

]

Idω =

[
ru(0) ruv(0)
ruv(0) λv

]

,

whereru(k) = E[utut−k] and ruv(k) = E[utvt−k] are the
autocovariance ofut and the cross covariance betweenut

andvt, respectively.
Since the input power can be written as

1

2π

∫ π

−π

Φu(ω)dω = ru(0),

the optimization problem (4) can be reformulated as

minimize
ru,ruv

ru(0)

subject to
N

λeκ

[
ru(0) ruv(0)
ruv(0) λv

]

� γλv

[
p −1
−1 1

]

.

Note that condition thatru andruv corresponds to a realiz-
able experiment (or thatΦχ0

defines a spectrum) is that the

matrix P−1 is positive semidefinite. However, sinceV ′′
app

is positive semidefinite this is already taken care of in the
optimization problem.

The optimization problem above can be solved analyti-
cally, see [9] for details. The optimization problem above is
feasible if

N

λeκ
− γ > 0

and the optimal solution is given by

ru(0) =
γλeλvκp

N
,

ruv(0) = −
γλeλvκ

N
.

(7)

We are now ready to make the following observations:

• To guarantee that the identified parameters satisfy the
application requirement with high probabilityα, we
require N

λeκ
−γ > 0. Hence the highest possible achiev-

able accuracy for a given noise variance, experimental
length and probability is

γ <
N

λeκ
.

Or conversely, to achieve a certain accuracy the exper-
imental length need to satisfy

N > γλeκ.

• As expected the required input power during the iden-
tification increases with higher probability (largerκ),
higher noise variance (largerλe) and tighter application
requirements (largerγ), while increasing the experimen-
tal length,N , reduces the required power.

• Not as obvious is that the required input power is pro-
portional to the disturbance variance. One might think
that a higher variance ofvt could help us to identify
the parameter corresponding to the disturbance filter,
H , and hence require less accuracy in the identification
of G, consequently requiring less power inut. While
it is true that a higher power of the disturbance makes
the identification ofH more accurate, the application
cost is also proportional toλv. Hence higher accuracy
is needed to be able to satisfy the application require-
ments.

• The required input power is proportional top. The
constantp captures the effect of the underlying system,

p =
h2
0 − 2h0b0 + 1

1− b20
=

(h0 − b0)
2

1− b20
+ 1 ≥ 1.

Hence a lower bound on the required input power is
given by

ru(0) ≥
γλeλvκ

N
.

• If the two systems are equal,i.e., b0 = h0, thenp = 1.
Thus the least amount of power in the input is needed
if the two systems are equal. In system identification
of structured systems it is recognized that it could be
hard to identify subsystems which are equal, see [10],



[11]. Here we see that in this particular scenario this
is not the case. Ifh0 and b0 are very different from
each otherp will be large and the required power is
large. Furthermore we can se that ifb0 is close to±1
then high power is required. This is expected since we
invert G0 in out feed-forward filter and in this case we
are close to the stability margin and a high accuracy is
needed.

• If it is known beforehand that the two subsystems are
equal this should of course be taken into account. In
this case the feed-forward filter becomesFf = −1 and
is independent of the identified parameters. Hence it is
not necessary to perform any system identification.

• The optimal input signal should always be negatively
correlated with the disturbance and be

ruv(0) = −
γλeλvκ

N
,

independent of the underlying system.

B. Non-minimum phase system

Now we look at the case whenG0 is a non-minimum phase
system,i.e., |b| > 1. The optimal feed-forward controller on
the form (5) will now be

Ff (q, θ) =
(hb2 + b− h)q + hb

b2(bq + 1)
.

Even if we know the parameters of the true system the
variance will not be zero in this case. The smallest error
we can make is given by

Vmin =
(b20 − 1)(b0 − h0)

2

b40
.

The application cost is now given by

Vapp(θ) = E
{

((H +G1Ff )vt)
2
}

− Vmin ≤
1

γ
.

Note that 1/γ does no longer correspond to the highest
acceptable variance but is now a bound on how much higher
the variance can be using the identified parameters compared
to if we knew the true system. Redoing the same calculations
as in the minimum phase case, the optimal input signal is if

N

λeκ
− γ

b40 − b20 + 1

b40
≥ 0,

given by

ru(0) =
γλeλvκ

N
p2,

ruv(0) = −
γλeλvκ

N

h0(b
4
0 − 3b20 + 4) + 2b30 − 3b0

b50
,

where

p2 =
h2
0(b

6
0 + 16b20 − 6b40 − 10)

b60(b
2
0 − 1)

+
h0(4b

5
0 − 18b30 + 12b0) + 4b40 − 3b20

b60(b
2
0 − 1)

.

(8)

Many of the observations for the minimum phase setting
also hold in this case, the differences are

• To achieve a certain accuracy the experimental length
must now satisfy

N > γλeκ
b40 − b20 + 1

b40
.

• The required input power is proportional top2 defined
in (8). We see that, for a fixedh0, if |b0| → ∞ then

p2 → 0 ⇒ ru(0) → 0.

Thus a largerb0 requires less input power to achieve a
certain accuracy.

• If b0 = h0 then

ru(0) =
γλeλvκ

N

b40 − b20 + 1

b40
,

ruv(0) = −
γλeλvκ

N

b40 − b20 + 1

b40
.

• Again if |b1| → 1 then ru(0) → ∞. This is at the
stability margin of our feed-forward controller and it
is required that we identifyG correctly as minimum
phase or as non-minimum phase. Thus high accuracy
and consequently high input power is needed.

C. Signal generation

We will now show how we can realize a input signal from
the optimal correlations. Here we will only show how to do
this for the minimum-phase case as the calculations for the
non-minimum phase case is analogous. From the optimal
correlations (7) we can generate an input signal by using

ut = Kvt + rt,

wherert is a white zero mean Gaussian process independent
of vt with varianceλr . The constantK can in this case be
seen as a feed-forward filter that should be used during the
identification. Since

ru(0) = K2λv + λr,

ruv(0) = Kλv,

we obtain

K =
ruv(0)

λv

= −
γλeκ

N
,

λr = ru(0)−K2λv = λv

(
γλeκp

N
−

γ2λ2
eκ

2

N2

)

≥ 0,

where the last inequality is due to thatN > γλeκ to have a
feasible optimization problem.

D. White noise input

Let us compare the results with what we get if we use a
white input signal during the experiment, uncorrelated with
the measured disturbancevt, i.e., ruv(0) = 0. Now the
optimization problem becomes

minimize
ru,ruv

ru(0)

subject to
N

λeκ

[
ru(0) 0
0 λv

]

� γλv

[
p −1
−1 1

] (9)



with optimal input

ru(0) =
γλeλvκp

N
+

γ2λ2
eκ

2λvp

N(N − γλeκ)
.

Comparing to the case with correlated input the required
power is

γ2λ2
eκ

2λvp

N(N − γλeκ)

larger, see (7). The difference decays as1/N2 so for large
N one could instead use an input signal uncorrelated with
vt.

IV. T HE GENERAL CASE

We will now study more general cases, when the sub-
systems are not necessaryFIR-filters. Mainly we will focus
the discussion on how to guarantee that the spectrum we
optimize over,Φχ0

actually defines a spectrum, and how
to formulate this as anLMI . Two common ways to do this
are to use a finite dimensional parametrization or a partial
correlation parametrization of the spectrum.

In the finite dimensional parametrization the spectrum is
written as an infinite series and the optimization parameters
are given by the truncated vector of coefficients in the series.
Using the Kalman-Yakubovich-Popov lemma the condition
that the parameters represent a spectrum can be written as
an LMI , see [12] for details.

Often the optimization problem (4) can be written in terms
of only a finite number of parameters. The idea of the partial
correlation approach is to find conditions on these parameters
that guarantee the existence of an infinite extension such that
the complete sequence defines a spectrum. This can also be
expressed as anLMI see [12].

The two above approaches are however not directly ap-
plicable to our problem. The problem is that we do not
have control over the second inputvt. For example, the
partial correlation approach only guarantees that there exist
an extension, not that the extension exactly corresponds to
the given properties ofvt.

The two approaches have however been extended to closed
loop optimal input design, see for example [13] for the
finite dimensional parametrization and [14] for the partial
correlation approach. We will show that our problem is just a
special case of this. In closed loop input design the objective
is to find the controllerK and the spectrum of the reference
signalrt, with ut = −Kyt + rt, to achieve some properties
on the identified models. See Figure 2a. This is the same
as designing the spectrum ofu, Φu and the cross spectrum
betweenut andst, Φus. This is exactly what we want to do
in the feed-forward case, we want to find conditions such
that Φu andΦus corresponds to realizable experiment. We
see that the feed-forward case in Figure 2b corresponds to the
closed loop case whenG0 = 0 andH0 = −M . Hence we
can use the existing results from closed loop optimal input
design to guarantee that the spectra in the optimization can
be realized by a reference signalΦr and a controllerK with
ut = −Kyt + rt = Kvt + rt. Here we will show how the

+ G0 +

H0

K

r u

s

v
y

−

(a) Feedback

+ +

−M

K

r u

s

v
y

−

(b) Feed-forward

Fig. 2: The relation between the inputut in the closed loop
case and the feed-forward case.

partial correlation approach from closed loop optimal input
design [14] can be used in this setting.

First we define the generalized moments of the spectrum
Φχ0

as

mk =
1

2π

∫ π

−π

1

|d(ejω)|2
Φχ0

ejkωdω, (10)

whered(z) =
∑m

l=0 dlz
l is such that the coefficients are real

and obeydm 6= 0 and has all its roots outside the closed unit
disc. Note thatmk is real and thatm−k = mT

k

Many common cost functions in input design, for example
minimum input variance, can be written as linear functions
of the generalized moments, see [14]. If the model structures
of G(q, θ) andH(q, θ) are rational then by choosingd(z)
as the least common denominator of∂G(z,θ)∗

∂θ
, ∂H(z,θ)∗

∂θ
and

M∗(z) evaluated atθ = θ0 we see thatP−1 is affine in the
generalized momentsm0,m1, . . . ,mn c.f., (1), see [12] for
details.

The input design problem (4) can hence be written as a
SDP in a finite number of generalized moments (10). Now
we want to classify the set of all sequencesm0, . . . ,mn

that corresponds to a realizable experiment design,i.e., that
corresponds to aK and Φr that are realizable. In [14] a
semi-definite description of this set is given. We will shortly
summarize the result here.

The sequence(m0,m1, . . . ,mn) of 2×2 matrices satisfy-
ing m−k = mT

k for k = 0, . . . , n defines a valid experiment
if the following conditions hold1

1) mk,22 = 1
2π

∫ π

−π
λs

|d(ejω)|2 e
jkω for k = −n, . . . , n.

2)
∑m

l=0 dlmk−l,21 = 0 for k = 1, . . . , n.
3) The matrix

Tn =








m0 mT
1 · · · mT

n

m1 mT
0 mT

n−1
...

. . .
...

mn mn−1 · · · m0








is positive semi-definite.
A proof and more details can be found in [14].

Remark 2:The above formulation is not only useful for
feed-forward cases. It could as well be applied, with minor
modifications, to more generalMIMO system identification
problems where some of the inputs are known but not

1
mk,pq denotes the(p, q) element of the matrixmk .



controllable. This is a common case in many industrial
applications.

A. Generating the Input Signal

Solving the optimization problem gives the optimal
m0,m1, . . . ,mn. The problem is then to find the feed-
forward controllerK and the spectrumΦr from theses
matrices.

Define the matrixT r
n(a) = diag(a, 0, a, 0, . . . , a, 0) and

let amax be the largest possible value ofa such that
Tn − T r

n(a) is positive semi-definite. Furthermore letv be
a non-zero vector such that(Tn − T r

n(amax))v = 0 with
v = (pn, qn, pn−1, qn−1, . . . , p0, q0)

T . Then one possible
realization of the reference spectrum and the feed-forward
controller is

Φr(ω) = |d(ejω)|2amax,

K = −
q(z)

p(z)M(z)
,

where p(z) =
∑n

l=0 plz
−l and q(z) =

∑n
l=0 qlz

−l. The
spectrum of r can thus be realizable by filtering white
noise with varianceamax through the filterd∗(z). Other
realizations are possible, see [14] for details and a proof.

V. EXAMPLE - HOUSE HEATING

In this section we will show how the framework for input
design for feed-forward control can be applied in a simula-
tion example. We will consider the problem of controlling the
temperature in a room using electrical radiators. The control
signal ut, is the temperature of the radiator andyt is the
temperature in the room that we would like to control. The
temperature in the room is also influenced by the outside
temperature,vt, due to heat transfer in the walls. To simplify
the problem we considervt as white noise with varianceλv.
A thermometer is fitted outdoors so we assume that we can
measure the temperature outside perfectly. The model of the
system we will use here is a simplified version of the one
given in [15]. The model is given by

yt+1 = −byt + k1ut + k2vt

where b, k1 and k2 are some constants that depend on
the heat transfer coefficients between radiator and air, the
coefficient through the walls and the sampling time. This
can be rewritten as

yt =
k1

1 + bq−1

︸ ︷︷ ︸

G

ut +
k2

1 + bq−1

︸ ︷︷ ︸

H

vt + et

where we have addedet as zero mean white Gaussian
measurement noise with varianceλe.

The objective is to identify the parametersθ =
(
k1, k2, b

)T
and design a feed-forward filter such that we

keep the variance in the indoor temperature due to changing
outdoor temperature less than1/γ.

The feed-forward filter based on the identified parameters
will be

Ff (q, θ) = −
k2

1 + bq−1

(
k1

1 + bq−1

)−1

= −
k2
k1

.

Since bothG andH have the same dynamics we see that
the accuracy of the the parameterb is not important. The
application cost is hence

Vapp(θ) = E
{
((H0 +G0Ff (θ))vt)

2
}
≤

1

γ

which can be calculated analytically using for example
residue calculus. From this we can then deriveV ′′

app(θ0).
We will now use the framework outlined in Section IV to

formulate an optimal experiment for this case. First we look
at the gradientF0 defined in (2)

F0 =
[
∂G(q,θ)

∂θ

∂H(q,θ)
∂θ

]

=






1
1+bq−1 0

0 1
1+bq−1

− k1q
−1

(1+bq−1)2 − k2q
−1

(1+bq−1)2






and

P−1 =
1

2πλe

∫ π

−π

F0Φχ0
F∗

0dω.

By definingd(ejω) = (1+ bejω)2 andmk as in (10) we can
write P−1 as linear combinations ofmk, k = −2, . . . , 2.

The input signal energy can be written in terms ofmk as

1

2π

∫ π

−π

Φu(ω)dω =
1

2π

∫ π

−π

|d(ejω)|2

|d(ejω)|2
Φu(ω)dω

=

2∑

k=−2

δkmk,11,

(11)

whereδk are the coefficients of|d(ejω)|2, i.e., |d(ejω)|2 =
∑2

k=−2 δke
jωk. In the same way we can express the output

variance during the experiment as

1

2π

∫ π

−π

Φy(ω)dω =

1∑

k=−1

βk

[
k1 k2

]
mk

[
k1
k2

]

, (12)

whereβk are the coefficients of|1 + be−jω|2.
We can now formulate the optimal input design problem

where we want to find either a minimum variance input
signal or a input signal that gives the lowest output vari-
ance while satisfying the application constraints with high
probability. The optimization becomes

minimize
mk,k=−2,...,2

(11) or (12)

subject to
N

κ
P−1 � γV ′′

app(θ0)

mk,22 =
1

2π

∫ π

−π

λv

|d(ejω)|2
ejkω , ∀k

m∑

l=0

dlmk−l,21 = 0, k = 1, . . . , 2





m0 mT
1 mT

2

m1 m0 mT
1

m2 m1 m0



 � 0.

The above problems are difficult, if not impossible, to solve
analytically. As the problems areSDPs they can be solved
efficiently using numerical methods. The following system
parameters will be used;b = −0.5, λv = 3, λe = 1, k1 = 1
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Fig. 3: The magnitude of the optimal feed-forward filters to
be used during the identification for the minimum input vari-
ance case ( ) and the minimum variance output ( ).
For referenceH0 is also shown as ( ).

andk2 = 0.3. The experimental conditions areN = 1000,
γ = 100 and κ = 5.99 corresponding to at least95%
probability that the identified model satisfies the application
requirement.

The two problems are solved withCVX, a package for
specifying and solving convex programs [16], giving the
optimalmk, k = −2, . . . , 2. Using the algorithm outlined in
Section IV-A we generate a reference spectrumΦr and the
feed-forward controller to be used during the identification,
K. In both cases the optimalTn is singular and consequently
amax = 0 and Φr = 0. Therefore it is enough to use
ut = Kvt during the identification. The magnitude of the
optimal feed-forward controllersK for both problems are
shown in Figure 3 where alsoH0 is shown for reference. We
see that when we minimize the input variance the optimal
K is a lowpass filter, while for the output variance case the
optimal K is a constantK = −0.3. The case whenK =
−0.3 corresponds to the optimal feed-forward controller
Ff = −k2/k1 = −0.3 that gives zero output variance in
y due to the measurable disturbancevt. But using this feed-
forward filter during the identification gives thatyt = et, and
hence we cannot say anything about the parametersk1, k2
and b from this information. However, since we know that
the subsystems have the same dynamics, this information is
enough to identify the ratiok2/k1 which is all information
we need to design our feed-forward controller!

We verify the results in a Monte-Carlo simulation. In
each round system identification data is generated using the
optimal identification feed-forward filter,K, and the param-
etersk1, k2 and b are identified. The identified parameters
are then used to design the feed-forward controller. Finally
we calculate the output variance due to the measurable
disturbancevt when the feed-forward filterFf (θ̂N ) is used
in the application. In about98% of the simulations the output
variance was less than1/γ, thus the results seem to be valid.

VI. CONCLUSIONS

In this paper we have considered optimal input design
when the identified model will be used in a feed-forward
control application. First, the first orderFIR-filter case was
considered and some fundamental properties were observed.
Secondly a framework for optimal input design for feed-
forward systems was presented and the relation to closed

loop input design was discussed. The framework was then
successfully applied to a numerical example.

Interesting extensions of this work would be to see what
happens if, on top of the feed-forward, feedback is added
as this is the most common case in practice. It would also
be interesting to see if some of the results for the low order
FIR-case can be extended to more general structures.

We noted that the framework presented here can be ex-
tended to more generalMIMO system identification problems
were we only can control a few of the inputs. It would
be interesting to see if this can be used in identification of
complex interconnected systems, see [17]. For example if one
node locally want to identify the dynamics of the network,
how should it excite the system when it only can measure,
and not affect, the inputs from its neighbors?
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