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On Optimal Input Design for Feed-forward Control

Per Hagg and Bo Wahlberg

Abstract— This paper considers optimal input design when The aim of this paper is to study optimal input design
the intended use of the identified model is to construct a when the intended use of the model is for feed-forward
feed-forward controller based on measurable disturbancesThe control. We will use the application oriented input design

objective is to find a minimum power excitation signal to be ued f K ted in 141 To illustrate h ¢
in system identification experiment, such that the correspoding ~ ramework presented in [4]. To illustrate how system prop-

model-based feed-forward controller guarantees, with a gen  €rties affect the optimal input signal we start by analyzng

probability, that the variance of the output signal is within given  problem which can be solved analytically. We then present a
specifications. To start with, some low order model problemsre  framework for input design for more general systems and
analytically solved and fundamental properties of the optinal show how to formulate them as Semi Definite Programs

input signal solution are presented. The optimal input sigml . . .
contains feed-forward control and depends of the noise modie (sb) that can be solved efficiently using numerical methods.

and transfer function of the system in a specific way. Next, we  1he outline of the paper is as follows. In Sectioh Il we
show how to apply the partial correlation approach to closed define the input design problem and give some preliminary
loop optimal experiment design to the general feed-forward results from application oriented input design. Secfidh II
problem. A framework for optimal input signal design for feed- analyzes first orderir subsystems and make some observa-
forward control is presented and numerically evaluated on a fi A Lf K for i t desian for feed
temperature control problem. ions. A more general framework for input design for feed-
forward control is given in Sectiop_1V. The framework is
. INTRODUCTION then applied to a simulation example in Sectloh V while

YSTEM identification is about the estimation and valida-S€ction’\V] concludes the paper.

ion of mathematical models of dynamical systems from Il. PROBLEM FORMULATION
experimental data. It is well recognized that the input aign
used to excite the system during the experiment signifigantl
affects the accuracy of the identified model. A correctly
chosen excitation signal can immensely improve the quality i
of the resulting model while a poorly chosen signal can tesul i
in a useless model. This motivates input or experiment desig Ff
in system identification. ‘ lf’

The quality of a model depends on the intended use of the .,

model. A good experiment should highlight the important ﬁé_' i 4’@—'®_J'
properties for the intended application. This is the magaid _.

of identification for contro[1], [2], least costly identification F'_g' 1. The consider_ed system. The_ide_ntification s_,etup
[3] and applications oriented input desigi] without feed-forward filter £'y) and application setup with

Much work has been focused on input design when thfged-forward filter.

model is to be used in a control application, see for example _

[5] or [6] for application tompc. However, many industrial SYStem can be written as

control systems do not only utilize feedba_ck but also feeq- ye = Golq)ue + Ho(q)ve + e,

forward control. The idea is to measure a disturbance, predi ) _

its impact on the plant and then compensate for it with thwheregq™" is the delay operatoi,e., ¢~ u = w1 Here
input signal. Compensating for measurable disturbances 3(¢) @nd Ho(q) are the plant transfer functions. The input
feed-forward control can improve the performance consid® the system isi; while y, is the measured output disturbed
erably compared to when only feedback control is usedy & Z€ro mean white noise signalwith variance\.. The
Measurable disturbances could for example be the outsi@0C€Ssu: corresponds to a measurable disturbance to the

temperature when controlling the indoor temperature in 8YStem. We assume that is a stationary stochastic process
house. with known spectral properties.,e., vy can be written as

vy = M(q)s; wheres; is a zero mean Gaussian process with
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44 Stockholm %Wedeng Y o in y:. However, the dynamics of the subsysteffisand G

E-mail: {pehagg, bo}@kth.se are assumed unknown and need to be identified. Hence we

Consider the system in Figufé 1. The dynamics of the
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want to identify the system dynamics and use the identifiggarameters instead of the true parametezs,all acceptable
model to design a feed-forward controller to counteract thaodels satisfy

influence of the measured disturbangeon the outputy,. _ 2

In particular, we will study to design the input during the Vap(6) = E {(I{? + GoFy(0))0)"}

experiment such that we with high probability can guarantee = 1 |Hy — GOFf(9)|2 O, dw < l,

that the designed feed-forward controller satisfy an aamour 2r ) x v

constraint. where~y is some positive constant. The requirement is hence
We parameterize the submodels as that the output variance should be less th@n. The overall

9 9 objective of the input design is thus to design our inputalign
Glg,9), H(g,9), to be used during the experiment such thigs, (On) < 1/7.

whered € R™ is the model parameter vector and we assume We can approximate the application cost by a Taylor series
that there is a vectaf, such that expansion

G(q,00) = Golq), H(q,00) = Ho(q), Vapp(8) ~ % [0 —60]" Vw10 = 60],

that is, the true system can be described by the model. and hence the set of all parametérshat satisfied/,,, (6) <
We denote the model parameter vector estimated usingl#y can be approximated by the ellipsoidal set

Prediction Error MethodREM), [7], from N data points of 1 . 1
the inputs and outputgu,, v, i, t = 1,..., N} asfy. Un- Eapp = {9 b5 [0 —60]" V[0 —00] < —} )
der some mild assumptions the asymptoticXihcovariance o ) ) v
matrix of the estimated parameters B. Minimum Variance Input Design
) R R . To satisfy the application constraint we need to insure that
pP= lim NE {(91\1 —6o)(On — 0o) }7 the identified parameters lies within the application 5t (3
. with high probability,i.e.,that€s; C &,,,. This is equivalent
can be written as o anp ¥ 1= “app q
1 4 . , N __
p! Fo(e#)Dy, (w) Fi(e)dw, (1) — P = Vi, (00),

- 21he J_»

o where A = B means thatd — B is positive semidefinite.
where the joint spectrum

If the above inequality holds theé € &,,, with at least
Dy(w) Dus(w) probability .

Pxo (@) = [‘I’Zs(w) As(w) } ’ The objective here is to find the minimum variance input

signal used during the system identification experiment suc

is the spectrum ofo = [u st}T and that the identified model will satisfy the requirements from
the application. More formally this can be stated as the
Folg) = [% M(Q)*%] ‘9:00, (2)  following optimization problem
. L 1 /7
see [7] for detalils. minimize _/ P, (w)dw
Remark 1:Since we can measutg, we can correlate the Pu, Pue 21 Jx
i i | _ N 4
glputut with s, (since we knowd/(¢)) and henceb,,, could subjectto Y P~1 = AV (6) 4)
e non-zero. K _
Further we know that, asymptotically, the identified pa- ®,, defines a spectrum.
rameter vectofly lies within the set Assume that we can express the constraintdhatdefines
1 o K a spectrum as anmi-constraint. Then since in many cases,
Esr = {9 15 10— 00" P70 = 00] < N} as we will se in the followingP~! is an affine function of

_ - ) the spectral densitp,, and since [* &, (w)dw is linear
with probability . The constank can be determined from j, ®,,, the optimization probleni4) becomesapand can

the x*(n) distribution as a function of the probability and  pe solved efficiently. We will come back to how to write the
n, the number of estimated parameters. spectrum constraint as ami later.

A. Application oriented input design I1l. FIRST ORDER FIR SUBSYSTEMS

As mentioned earlier we would like to identify the param- To get some insight in the problem we start by looking at
eters of the system and from this design a feed-forward com-low order example where we can solve the optimization
troller. The feed-forward controller will be denotéd (¢,6).  problem analytically. We assume that the two subsystems are

Using the framework in [4], we leV,,,(0) denote an ap- first orderFir-systemsj.e.,

lication cost that measures the degradation in performanc 1 1
gue to model errors. Here the applic?ation cost W?” represen Go(g) =1+bog™", Ho(q) =1+ hog™,
the output variance from the measured disturbancehen and the measurable disturbance is zero mean white noise
designing the feed-forward controller with the identifiedwith variance),, i.e.,thatM = 1 and X, = A,. We will use



system identification to identify the parametérs: [b h}T
and use this to design a feed-forward controller.
The feed-forward controller will be on the form

matrix P~! is positive semidefinite. However, sindé/’

is positive semidefinite this is already taken care of in the
optimization problem.

-1 The optimization problem above can be solved analyti-

co + c1q
Fy(q,0) = Trar 1 (5)  cally, see [9] for details. The optimization problem abose i
ot _ feasible if
where the constants), ¢; and ag are functions ofh and
b. Assuming that we know the true underlying system we Ak
design the optimal feed-forward controller, on the fofh, (S)and the optimal solution is given by
that minimizes the output variance due to the disturbance
If G(qg) is minimum phase then obvious we should inv@rt ru(0) = YAeAukp
in the feed-forward filter. In the non-minimum phase case it N 7
is known from minimum variance control that one should Tao(0) = _'Y/\e)‘v“'
mirror the zero and then invert the system, see [8]. The N

optimal parametrization is thus given by

[ I 1 o] if [b] <1 .
Co €1 ao| = [% b H if 1o > 1.

The objective of the system identification is to find an
estimatedy of 6 such that when they are used to design
a feed-forward controIIeFf(éN) the output variance due
to the disturbance is less thdri~y. All parametersf, that
satisfies this is given by

Vapp(6) = E {((H(00) + G(00) Fy (0))ve)*} < (6)

1
o2
A. Minimum phase system

First we look at the case whefi, is minimum phase, e
i.e., |b| < 1. The application cost16) can now be calculated,
using for example residue calculus, to
c? + d? —2cdb/\v < l

1-b -

wherec = hg — h+b — by, d = hob — bgh. The Hessian is
then given by

Vapp(e) =

=2

" _ p -1 . h?) — 2hobg + 1
Vapp(B0) = 22 {—1 1 ] CPETR

Using [1) the asymptotic covariance matrix for the iden-
tified parameters can be calculated as

_ 1 [ [®, @ ru(0) 740 (0)

1_ = U uv . U uv

P =g LI%*W Mo } fdw = Lﬂm(O) Ao |7
wherer, (k) = Elusui—i] andry, (k) = Flusvi—i] are the .

autocovariance ofi;; and the cross covariance between
andv,, respectively.
Since the input power can be written as

1 T
Py . D, (w)dw = 1,(0),
the optimization probleni{4) can be reformulated as
minimize r,(0)
ra(0) 74y (0) p -1 *
o [rw(()) N || 1|

Note that condition that, andr,, corresponds to a realiz-
able experiment (or thab,, defines a spectrum) is that the

We are now ready to make the following observations:

To guarantee that the identified parameters satisfy the
application requirement with high probability, we
requwe— —~ > 0. Hence the highest possible achiev-
able accuracy for a given noise variance, experimental
length and probability is

< .
i ek

Or conversely, to achieve a certain accuracy the exper-
imental length need to satisfy

N > Ak,

As expected the required input power during the iden-
tification increases with higher probability (large,
higher noise variance (largat) and tighter application
requirements (largey), while increasing the experimen-
tal length, NV, reduces the required power.

Not as obvious is that the required input power is pro-
portional to the disturbance variance. One might think
that a higher variance of, could help us to identify
the parameter corresponding to the disturbance filter,
H, and hence require less accuracy in the identification
of G, consequently requiring less power i. While

it is true that a higher power of the disturbance makes
the identification of H more accurate, the application
cost is also proportional ta,,. Hence higher accuracy
is needed to be able to satisfy the application require-
ments.

The required input power is proportional t@ The
constantp captures the effect of the underlying system,

h% —2hobo +1  (ho — bo)?
1 — b2 10

Hence a lower bound on the required input power is
given by

+1>1.

p:

If the two systems are equale., by = hg, thenp = 1.

Thus the least amount of power in the input is needed
if the two systems are equal. In system identification
of structured systems it is recognized that it could be
hard to identify subsystems which are equal, see [10],



[11]. Here we see that in this particular scenario this « To achieve a certain accuracy the experimental length

is not the case. Iy and by are very different from must now satisfy

each otherp will be large and the required power is B2 41
large. Furthermore we can se thatif is close to+1 N > 7)\65%.
then high power is required. This is expected since we 0

invert G, in out feed-forward filter and in this case we « The required input power is proportional t@ defined
are close to the stability margin and a high accuracy is in (8). We see that, for a fixelly, if |bg| — oo then
needed.

o If it is known beforehand that the two subsystems are
equal this should of course be taken into account. I Thus a largeb, requires less input power to achieve a
this case the feed-forward filter becomés = —1 and certain accuracy.
is independent of the identified parameters. Hence itis , | ;, — p, then
not necessary to perform any system identification.

pp—0 = 1,0 —0.

4
« The optimal input signal should always be negatively ru(0) = YAeAuts by — bg + 1’
correlated with the disturbance and be N b
YAy AR B — D3+ 1
Tuv (O) = — N R Tuv (O) - N b% :
independent of the underlying system. o Again if [b;] — 1 thenr,(0) — oo. This is at the
B. Non-minimum phase system stability margin of our feed-forward controller and it

is required that we identifyG correctly as minimum
phase or as non-minimum phase. Thus high accuracy
and consequently high input power is needed.

Now we look at the case wheF, is a non-minimum phase
system,i.e., [b| > 1. The optimal feed-forward controller on
the form [B) will now be

) (hb% 4+ b — h)q + hb C. Signal generation
Fyla,0) = b2(bg + 1) ' We will now show how we can realize a input signal from

Even if we know the parameters of the true system thie optimal correlations. Here we will only show how to do

variance will not be zero in this case. The smallest errdfiS for the minimum-phase case as the calculations for the
we can make is given by non-minimum phase case is analogous. From the optimal

correlations[{I7) we can generate an input signal by using
(65 — 1) (bo — ho)*

Vmin =

b ‘ uy = Kvg + 1y,
The application cost is now given by wherer; is a white zero mean Gaussian process independent
9 1 of v, with variance), . The constanf can in this case be
Vapp(0) = E {((H + G1Fy)vr) } = Vinin < ; seen as a feed-forward filter that should be used during the

, identification. Since
Note that1/y does no longer correspond to the highest

. . . _ K2
acceptable variance but is now a bound on how much higher ru(0) = K*Xy + Ar,
the variance can be using the identified parameters compared Tun(0) = Ky,

to if we knew the true system. Redoing the same calculations

. o . . : .~ We obtain
as in the minimum phase case, the optimal input signal |s\|’¥

Tun (0) YAk

4 _ 12 K — _
N_vb0 b0+1207 N, N
Ak b VAP V2N2K2
_ 2 _ e e
given by )\r—ru(O)—K)\v_/\v( ~ >207
r(0) 'V/\e/\v’ip% where the last inequality is due to that > y.r to have a
N feasible optimization problem.
r (0) . _’7)\6)\1)5 hO(bé — 3b(2) + 4) + 2b8 — 3b0 . . .
R N b3 ’ D. White noise input
where Let us compare the results with what we get if we use a
h2(bS + 16b2 — 6b3 — 10) white input signa_l during the _experiment, uncorrelatechwit
P2 = W —1) the measured disturbanaeg, i.e., 7,,(0) = 0. Now the
g o 4 ) (8) optimization problem becomes
n ho(4b3 — 18b3 + 12bg) + 4b5 — 3b§ o
b (bg — 1) ' minimize 74(0)

Many of the observations for the minimum phase setting
also hold in this case, the differences are

. N
subject to
A K



with optimal input

Is
YA A KP V2A2K2\,p
r,(0) = .
N N(N —yAek) v v
T U Y T u Y

Comparing to the case with correlated input the required b @ 7C
power is

72)\51%2/\1}1? K K

N(N — yAek) (a) Feedback (b) Feed-forward

larger, see[{7). The difference decaysla®'? so for large Fig. 2: The relation between the input in the closed loop
N one could instead use an input signal uncorrelated wittgse and the feed-forward case.
Vt.

IV. THE GENERAL CASE partial correlation approach from closed loop optimal inpu
tgesign [14] can be used in this setting.

We will now study more general cases, when the su ) X X
First we define the generalized moments of the spectrum

systems are not necessang-filters. Mainly we will focus
the discussion on how to guarantee that the spectrum Wexo as

optimize over,®,, actually defines a spectrum, and how 1 [ 1

to formulate this as anmi. Two common ways to do this Me =5 /_F |d(e7%)[2

are to use a finite dimensional parametrization or a partial m L o
correlation parametrization of the spectrum. whered(z) = ) _,", d;2" is such that the coefficients are real

In the finite dimensional parametrization the spectrum i&Nd b€y, # 0 and has all its roots outside the closed unit

: . o
written as an infinite series and the optimization paransetefliSC- Note thatny, is real and thatn_j, = m;;
are given by the truncated vector of coefficients in the serie Many common cost functions in input design, for example
Using the Kalman-Yakubovich-Popov lemma the conditiofNiNimum input variance, can be written as linear functions
that the parameters represent a spectrum can be written%{dhe generalized moments, see [14]. If the model strusture
anLmi, see [12] for details of G(q,0) and H(q,0) are rational then by choosingz)
: ] tora : - : 9G(=,0)" OH(z0)"

Often the optimization problerfi(4) can be written in termé‘s*the least common denominator Stog T ag and
of only a finite number of parameters. The idea of the partidl! () evaluated ab = 6, we see that>"! is affine in the
correlation approach s to find conditions on these parametdleneralized momentsi, ma, ..., m, c.f., (1), see [12] for
that guarantee the existence of an infinite extension swth t€tails.

the complete sequence defines a spectrum. This can also bdN€ iNPut design probleni](4) can hence be written as a
expressed as ami see [12]. spPin a finite number of generalized momenis](10). Now

The two above approaches are however not directly a}}/® Want to classify the set of all sequences, ..., mx,

plicable to our problem. The problem is that we do no hat corresponds to a realizable experim_ent design,that
have control over the second inpuf. For example, the corrgspo.n(_js to ?K.a.nd o, th.at are regllzable. In_ [14] a
partial correlation approach only guarantees that theist eXsem|-delf|n|te description of this set is given. We will slhort
an extension, not that the extension exactly corresponds Yymmarize the result here.

®, e dw, (10)

the given properties of;. _ The sequer;ceno, M1,y M) of 2% 2 mat_rices sat_isfy-
The two approaches have however been extended to cIoé? m—i =my, fork=0,... ) 2 defines a valid experiment

loop optimal input design, see for example [13] for thd' (€ following cor:rdmons hoI

finite dimensional parametrization and [14] for the partial 1) My = o5 I Wﬁjkw fork=—n,....n.

correlation approach. We will show that our problem is just a 2) Yo dimg_i 21 =0fork=1,... n

special case of this. In closed loop input design the objecti 3) The matrix

is to find the controlleds and the spectrum of the reference mo m¥ . omT

signalry, with v, = — Ky, + r, to achieve some properties my  m& ml_,

on the identified models. See Figurel 2a. This is the same T, =

as designing the spectrum ef ®,, and the cross spectrum

betweenu; ands;, .. This is exactly what we want to do My Mp—1 -+ Mo

in the feed-forward case, we want to find conditions such is positive semi-definite.
that ®,, and ®,,, corresponds tp re_allzable experiment. Wey proof and more details can be found in [14].
see that the feed-forward case in Figurk 2b correspondsto th Remark 2: The above formulation is not only useful for

closed loop case wheff = 0 and Ho = —M. Hence We  oaq forward cases. It could as well be applied, with minor

can use the existing results from closed loop optimal inpuf, ,gifications, to more generalimo system identification
design to guarantee that the spectra in the optimization Cﬁ?oblems where some of the inputs are known but not
be realized by a reference sigrial and a controlleds with

u = =Ky, +ry = Kvg + ry. Here we will show how the  *my ,, denotes thep, ) element of the matrixny,.



controllable. This is a common case in many industriabince bothG and H have the same dynamics we see that
applications. the accuracy of the the parameteiis not important. The

A. Generating the Input Signal application cost is hence

Solving the optimization problem gives the optimal Vu,pp(e):E{((HO+GOFf(9))Ut)2} <
mg,my,...,My. The problem is then to find the feed-
forward controller K and the spectrumb, from theses which can be calculated analytically using for example
matrices. residue calculus. From this we can then defigg,, (6o).
Define the matrixT), (a) = diaga,0,a,0,...,a,0) and We will now use the framework outlined in Sectibnl IV to
let a,.. be the largest possible value af such that formulate an optimal experiment for this case. First we look
T, — T (a) is positive semi-definite. Furthermore letbe at the gradientF, defined in [2)

2

a non-zero vector such thaf,, — T (amas))v = 0 with 1 0
v = (Pn,qnsPn—1,qn—1,---,P0,q0). . Then one possible i s Trog T X
realization of the reference spectrum and the feed-forward o = 6(3 ) gg )} 0 » T+bg— "
controller is _ S e

D, (w) = |d(e’*)Pa (T+ba=T) SERTEY

s - maxy
and
Kf:.___igzl__ pi 1 m o o
p(2)M(z) = I 777‘7:0 voFo dw.

_ n —1 _ n —1 . .
whertep(z) f_ Zl:otﬁlz band Q(f) t:l Zbl:(}.(lltlz. ) Thﬁ.t By definingd(e’“) = (1 +be’*)? andmy, as in [I0) we can
spectrum ofr can hus be realizable Dy Tering Whte, o p-1 a5 linear combinations ofi, k=-2,...,2.

noise with variancea,,., through the filterd*(z). Other . . . .
realizations are possible, see [14] for details and a proof. The input signal energy can be written in termsiof as
1 [" 17 |d(e?*)]?

V. EXAMPLE - HOUSEHEATING — D, (w)dw = — =, (w)dw
. : . : 21 Jr 2 J o [d(e7)[?
In this section we will show how the framework for input 9 (11)
design for feed-forward control can be applied in a simula- _ Z B 11

tion example. We will consider the problem of controllingth
temperature in a room using electrical radiators. The obntr o _ _ _
signal us, is the temperature of the radiator apdis the wh2ere6k are the coefficients ofd(e/“)[?, i.e., |[d(e/)|* =
temperature in the room that we would like to control. The_k——» 5k€w_k- In the same way we can express the output
temperature in the room is also influenced by the outsidéiriance during the experiment as

temperaturey,, due to heat transfer in the walls. To simplify 17 1 I

the problem we consides, as white noise with varianck,. 2—/ D, (w)dw = Z Bi k1 k2] mu {kl} . (12)

A thermometer is fitted outdoors so we assume that we can “™ 2

- k=—1
measure the temperature outside perfectly. The model of tov%ereﬁk are the coefficients oft + be—7 2,

system we will use here is a simplified version of the one X . .
) . o We can now formulate the optimal input design problem
given in [15]. The model is given by . : . ) .
where we want to find either a minimum variance input
Yer1 = —byr + kiug + kavy signal or a input signal that gives the lowest output vari-

where b, k; and k; are some constants that depend odnee while satisfying the application constraints withhhig

the heat transfer coefficients between radiator and air, tl%Obab'“ty' The optimization becomes
coefficient through the walls and the sampling time. This minimize (L) or (I2)
can be rewritten as M k==2,..,2

k=—2

N
k k subjectto —P !>~V (0
Y = L 2y + e ) K = VWapp (o)
1+4+bg~1! 1+4+bg~! 1 (7 A .
—— —— M99 = _/ U e]kw7 Vi
¢ H 2w g fd(eiw)?
where we have added; as zero mean white Gaussian m
measurement noise with variange. Zdlmk,l,gl =0,k=1,...,2
The objective is to identify the parametes = 1=0
(k1,ko,b)" and design a feed-forward filter such that we mo ml ml
keep the variance in the indoor temperature due to changing m1 mg mi| =0,
outdoor temperature less thap-y. me M1 Mg

The feed-forward filter based on the identified parameters,q apove problems are difficult, if not impossible, to solve

will be analytically. As the problems arepps they can be solved
ko ( k1 )_1 ) efficiently using numerical methods. The following system

Fy(q,0) = - 14+bg 1 \1+bg! Tk parameters will be used;= —0.5, \, =3, \e =1, k1 =1




Magnitude

10~! 100

Frequency (rad/s)

0
10~2

loop input design was discussed. The framework was then
successfully applied to a numerical example.

Interesting extensions of this work would be to see what
happens if, on top of the feed-forward, feedback is added
as this is the most common case in practice. It would also
be interesting to see if some of the results for the low order
FIR-case can be extended to more general structures.

Fig. 3: The magnitude of the optimal feed-forward filters to We noted that the framework presented here can be ex-
be used during the identification for the minimum input variiended to more genersiimo system identification problems

ance case==) and the minimum variance output==).
For reference, is also shown as—{—).

and k; = 0.3. The experimental conditions af€ = 1000,

were we only can control a few of the inputs. It would
be interesting to see if this can be used in identification of
complex interconnected systems, see [17]. For exampleeif on
node locally want to identify the dynamics of the network,
how should it excite the system when it only can measure,

~ = 100 and x = 5.99 corresponding to at least5%
probability that the identified model satisfies the appiarat
requirement.

The two problems are solved witbhvx, a package for
specifying and solving convex programs [16], giving the
optimalmg, k = —2,...,2. Using the algorithm outlined in 2]
Section IV-A we generate a reference spectrimand the
feed-forward controller to be used during the identificatio
K. In both cases the optimdl, is singular and consequently 3
amaz = 0 and ®,. = 0. Therefore it is enough to use
u; = Kwv, during the identification. The magnitude of the
optimal feed-forward controlleréd for both problems are 4
shown in Figuré3 where alsl is shown for reference. We
see that when we minimize the input variance the optimal
K is a lowpass filter, while for the output variance case th °
optimal K is a constantX = —0.3. The case wher =
—0.3 corresponds to the optimal feed-forward controllerl[6]
F; = —ko/k1 = —0.3 that gives zero output variance in
y due to the measurable disturbangeBut using this feed-
forward filter during the identification gives thgt = e;, and  [7]
hence we cannot say anything about the parameéigré, g
andb from this information. However, since we know that
the subsystems have the same dynamics, this information is
enough to identify the ratié,/k; which is all information
we need to design our feed-forward controller!

We verify the results in a Monte-Carlo simulation. In[10]
each round system identification data is generated using the
optimal identification feed-forward filteds, and the param- [11]
eterski, ko andb are identified. The identified parameters
are then used to design the feed-forward controller. Finalk, 5,
we calculate the output variance due to the measurable
disturbances; when the feed-forward filteF; (Ay) is used [13]
in the application. In abow8% of the simulations the output

variance was less thdry+y, thus the results seem to be valid.
[14]

(1]

VI. CONCLUSIONS

. . . . . [15

In this paper we have considered optimal input desugh ]

when the identified model will be used in a feed-forward16]

control application. First, the first orderr-filter case was

. . 17]

considered and some fundamental properties were observ%d.
Secondly a framework for optimal input design for feed-

forward systems was presented and the relation to closed

and not affect, the inputs from its neighbors?
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