
Optimal Adversarial Strategies in Learning with Expert Advice

Anh Truong and Negar Kiyavash

Abstract— We propose an adversarial setting for the frame-
work of learning with expert advice in which one of the
experts has the intention to compromise the recommendation
system by providing wrong recommendations. The problem is
formulated as a Markov Decision Process (MDP) and solved
by dynamic programming. Somewhat surprisingly, we prove
that, in the case of logarithmic loss, the optimal strategy for
the malicious expert is the greedy policy of lying at every
step. Furthermore, a sufficient condition on the loss function
is provided that guarantees the optimality of the greedy policy.
Our experimental results, however, show that the condition is
not necessary since the greedy policy is also optimal when the
square loss is used, even though the square loss does not satisfy
the condition. Moreover, the experimental results suggest that,
for absolute loss, the optimal policy is a threshold one.

I. INTRODUCTION

Today, online recommendation systems are widely in use.
Popular sites such as Netflix and Amazon apply recommen-
dation systems to suggest movies or general merchandise to
their clients. At core of these systems, there is a prediction
algorithm that, based on recommendations received from a
set of experts (users), recommends an item to another user.
After the user consumes that item, his feedback is used to
assess the performance of experts at that round and refine
the predictions of the recommendation system in the future.
This general framework of learning from expert advice was
introduced by Littlestone and Warmuth [1] and Vovk [2].
Besides online recommendation systems, the framework has
been applied to various other applications, for instance,
finding the shortest path problem [3], [4], [5] , the metrical
task system [6], and online paging [7].

We study an adversarial setup for a two-player recommen-
dation system, where one user tries to sabotage the system
which recommends the weighed average of expert opinions.
The system initially assigns uniform weights to experts,
and updates them over time based on experts’ performance
and user’s feedback. The goal of the malicious expert is to
ruin the aggregate quality of the recommendation system
over a period of time by providing false recommendations
strategically. Note that the greedy approach of providing false
recommendation, aka “lie”, at each step is not generally
optimal as the weight update rule of the recommendation
system penalizes experts with poor performance. Thus, one
might think that a threshold policy, where the malicious

A. Truong is with Department of Industrial and Enterprise Systems
Engineering, University of Illinois at Urbana-Champaign, IL 61820, USA
truong3@illinois.edu

N. Kiyavash is with Department of Industrial and Enterprise Systems
Engineering, University of Illinois at Urbana-Champaign, IL 61820, USA
kiyavash@illinois.edu

expert tells the “truth” up to some time to gain trust from
the system and then lies thereafter, might be optimal.

In this paper, we consider the most basic setup where
both outcomes and experts’ predictions are binary valued;
loss functions are limited to logarithmic, absolute, and square
losses. This is because even under this basic setup the prob-
lem quickly becomes complex. To find the optimal policy
for the malicious expert, we formulate the problem as an
MDP and solve it by dynamic programming. We prove that,
somewhat surprisingly, when the loss function is logarithmic,
the greedy policy of lying is indeed optimal. Moreover, we
provide a sufficient condition for the loss function under
which the greedy policy is optimal. However, this condition
is not necessary as we show through simulations that there
exists other loss function, namely, square loss for which the
greedy policy is optimal, yet it does not satisfy that condition.
We also provide an example of a loss function, the absolute
loss, for which the threshold policy is optimal.

The rest of this paper is organized as follows. Section II
introduces some related work on learning with expert advice
and optimality of greedy policies. Section III describes
in detail the notations, algorithms, and formulation of the
problem. In Section IV, we prove an important property of
value function, which then induces the optimal policy in
Section V. Section VI shows our simulation results followed
by conclusion and remarks on Section VII.

II. RELATED WORK

Kleinberg et al. considered a stochastic setting for learning
with expert advice framework where predictions of experts
are drawn from a fixed but unknown distribution [8] . Also in
the stochastic setting, Truong et al. proved the convergence
of the system to the best expert for a multiplicative weight
update rule [9] . Yu et al. introduced a randomized algorithm
for a recommender system to diminish the effect of Sybil
attackers [10]. However, they make strong assumptions on
the fraction of good items and percentage of experts with
the same taste as the user to whom the recommendations
are made. None of which holds in reality. Study of the
adversarial strategies for malicious experts in learning with
expert advice framework for the most part is nonexistent. In
this paper, we propose such a setting and prove the optimality
of a greedy policy for certain loss functions.

Although greedy policies are not usually optimal [11],
[12], they are attractive as they are of low complexity and
sometimes provide a closed approximation to the optimal
solution. Sutton et al [13] proposed an ε-greedy algorithm,
which has been widely used in multi-arm bandit problems.

52nd IEEE Conference on Decision and Control
December 10-13, 2013. Florence, Italy

U.S. Government work not protected by
U.S. copyright

7315

Algorithm 1 The weighted average learning algorithm
Input: Set of expert E = {1, 2}
Initialize: pi0 = 1 for i = 1,2.
for each round k = 1, 2, ... do

Nature chooses an item.
Prediction:
Each expert i predicts xik ∈ {0, 1}.
Algorithm predicts ŷk,

ŷk =

∑
i∈E

pik−1x
i
k∑

i∈E
pik−1

. (1)

Nature reveals the outcome yk ∈ {0, 1}.
Update:
Algorithm updates weights of all experts. Each weight
is updated by

pik =

{
pik−1x

i
k if yk = 1,

pik−1(1− xik) if yk = 0.
(2)

end for

Mersereau et al [14] proved that the greedy policy asymptot-
ically coincides with the optimal policy for a class of infinite
horizon multi-arm bandit problems. Liu et al [15] analyzed
a condition on the discounted factor β for the optimality
of greedy policy when a class of so-called standard reward
function is used.

III. PROBLEM FORMULATION

Let E = {1, 2} be the set of 2 experts. We assume that
both experts are always available. At round k, expert i has
weight pik ∈ [0, 1], and his recommendation on a given item
is denoted by xik ∈ {0, 1}. Denote ~pk as the weight vector
at k, i.e., ~pk = (p1k, p

2
k). Define p̃1k =

p1k
p1k+p

2
k

, i.e., p̃1k is the

relative weight of expert 1 at step k. Similarly, p̃2k =
p2k

p1k+p
2
k

,

and ~̃pk is the relative weight vector at k, i.e., ~̃pk = (p̃1k, p̃
2
k).

The true outcome, or user’s feedback on a given item, is
denoted by yk, which is also considered to value in {0, 1}.

The learning process is given in Algorithm 1. The system
uses a weighted average rule for predictions by (1) and
a multiplicative rule for weights update by (2). After the
true outcome for the item is revealed, the system incurs a
loss l(ŷk, yk). One example of such a loss function is the
logarithmic loss defined as,

l(ŷk, yk) = −I{yk = 1} ln ŷk − I{yk = 0} ln(1− ŷk). (3)

In the case of logarithmic loss, to avoid the loss function
going to infinity, we slightly modify the binary predictions to
{ε, 1−ε}, where ε is a small number. We assume that expert
2 makes a correct recommendation, i.e., one that agrees with
users feedback, with probability µ2, the accuracy of expert
2, or

x2k =

{
yk w.p µ2,

1− yk w.p 1− µ2.
(4)

As we are interested in the performance of the system
for an adversarial setup, we assume expert 1 knows the true
outcome, yk, at time k, as well as the predictions distribution
of expert 2 (this can be learned empirically from the history
of predictions, for example.) This is a stronger adversarial
model than models of which a malicious has to mislead the
system without knowledge of the outcome. Moreover, the
whole history of predictions before time k is also available
to expert 1, i.e., he knows ~pl−1, for l = 1, ..., k − 1 and
consequently ~̃p1l−1, for l = 1, ..., k−1. In summary, at time k,
the pair of variables (yk, p̃

1
k−1) := s(k) is known to expert 1.

Note that, since p̃1k−1+ p̃2k−1 = 1, knowing p̃1k−1 is sufficient
for expert 1 to calculate the relative weight vector ~̃pk−1.
This expert then seeks an optimal policy to maximize the
accumulated loss of the system up to horizon N by choosing
a sequence of predictions {x1k}N1 . The problem is formulated
as a MDP, in which, at each time k, expert 1 selects an action
(prediction) x1k = f(s(k)) ∈ {T, L}, where{

T = I{yk = 1}(1− ε) + I{yk = 0}ε,
L = I{yk = 1}ε+ I{yk = 0}(1− ε). (5)

The objective function of expert 1 then becomes

max
x1
k(s(k)),k=1...N

N∑
k=1

Ex2
k
(l(ŷk, yk)), (6)

where the expectation is taken over x2k. The state transition
associated with this MDP is given by s(k+1) = φ(s(k), x1k).
Note that transition of {yk} is driven by an arbitrary function
known to expert 1. From (2), the evolution of relative weight
p̃1k−1 is given by:

p̃1k =


p1k−1x

1
k

p1k−1x
1
k+p

2
k−1x

2
k

if yk = 1,

p1k−1(1−x
1
k)

p1k−1(1−x
1
k)+p

2
k−1(1−x

2
k)

if yk = 0.
(7)

It is clear from (7) that, when two experts make the same
prediction at one time, their next (updated) relative weights
do not change. Otherwise, expert 1’s relative weight increases
if he makes the right recommendation while expert 2 makes
a wrong one, or his relative weight decreases if the converse
is true. Specifically,

p̃1k =


1

1+

(
1

p̃1
k−1

−1
)

1−ε
ε

if x1k = L, x2k = T,

1

1+

(
1

p̃1
k−1

−1
)

ε
1−ε

if x1k = T, x2k = L,

p̃1k−1 if x1k = x2k.

(8)

The dynamic program which solves MDP problem of (6)
is given in Algorithm 2. In Algorithm 2, ck(yk, p̃

1
k−1, x

1
k)

denotes the current cost and is defined as

ck(yk, p̃
1
k−1, x

1
k) = Ex2

k
(l(ŷk, yk)). (11)

V ∗k+1(φ(yk, p̃
1
k−1, x

1
k)) denotes the value function, the op-

timally accumulated loss from k + 1 to the final time N .
Define Vk(yk, p̃

1
k−1, x

1
k) by

Vk(yk, p̃
1
k−1, x

1
k) = ck(yk, p̃

1
k−1, x

1
k) + Ex2

k
V ∗k+1(φ(yk, p̃

1
k−1, x

1
k)).

(12)

7316

Algorithm 2 Adversary’s optimal strategy (dynamic pro-
gram)

Initialize: VN (.) = cN (.) = 0.
for each step k = N − 1 downto 1 do

Find the optimal action,

u∗k(yk, p̃
1
k−1) = arg max

x1
k

[
ck(yk, p̃

1
k−1, x

1
k)

+Ex2
k
V ∗k+1(φ(yk, p̃

1
k−1, x

1
k))
]
,

(9)

and the corresponding value function,

V ∗k (yk, p̃
1
k−1) = max

x1
k

[
ck(yk, p̃

1
k−1, x

1
k)

+Ex2
k
V ∗k+1(φ(yk, p̃

1
k−1, x

1
k))
]
.

(10)

Output: sequence u∗N−1(.), V ∗N−1(.), ..., u∗0(.), V ∗0 (.).
end for

From (3), (1) and (4), the current cost in (11) is derived as
ck(yk, p̃

1
k−1, x

1
k)

= −I{yk = 1}
[
µ2 ln

p1k−1x
1
k + p2k−1(1− ε)
p1k−1 + p2k−1

+(1− µ2) ln
p1k−1x

1
k + p2k−1ε

p1k−1 + p2k−1

]
− I{yk = 0}

[
µ2 ln

p1k−1(1− x1k) + p2k−1(1− ε)
p1k−1 + p2k−1

+(1− µ2) ln
p1k−1(1− x1k) + p2k−1ε

p1k−1 + p2k−1

]
. (13)

To simplify the notation, let us define cL(p̃1k−1) :=
ck(yk, p̃

1
k−1, L) and cT (p̃1k−1) := ck(yk, p̃

1
k−1, T). From (13)

and (5), the current costs can be written as

cL(p̃1k−1) = −µ2 ln
(
p̃1k−1(2ε− 1) + 1− ε

)
− (1− µ2) ln ε, (14)

and

cT (p̃1k−1) = −µ2 ln(1− ε)− (1− µ2) ln
(
p̃1k−1(1− 2ε) + ε

)
. (15)

One can easily verify the following two properties of the
current costs,
• (P1): cL(p̃1k−1) is an increasing function of p̃1k−1.
• (P2): cL(p̃1k−1) ≥ cT (p̃1k−1) for all p̃1k−1.

The terminal cost is set to be zero. Since finding closed-form
value functions proves intractable, we attempt to guess the
structures of optimal actions as well as value function using
policy iteration.

IV. EFFECTS OF RELATIVE WEIGHTS ON VALUE
FUNCTION

In this section, we see how the change in relative weights
influences the value function, and hence, the optimal policy.

Theorem 1. Given ~pk−1 and ~qk−1 such that q̃1k−1 ≤ p̃1k−1,
and when a logarithmic loss function is used,

V ∗k (yk, q̃
1
k−1) ≤ V ∗k (yk, p̃

1
k−1).

Proof. The theorem is proved by induction.
• The base case: at the final step N−1, by (10), the value

function is given as

V ∗N−1(yN−1, p̃
1
N−2) = max

x1
N−1

[
cN−1(yN−1, p̃

1
N−2, x

1
N−1)

+Ex2
N−1

V ∗N (φ(yN−1, p̃
1
N−2, x

1
N−1))

]
,

= max
x1
N−1

cN−1(yN−1, p̃
1
N−2, x

1
N−1), (16)

since the terminal cost is assumed to be zero. Note
that from evaluating (13) at k = N − 1, we see that
cN−1(yN−1, p̃

1
N−2, x

1
N−1) is a decreasing function of

x1N−1 when yN−1 = 1, and an increasing function of
x1N−1 when yN−1 = 0. Thus, the optimal decision at
step N − 1 is to tell a lie,

u∗N−1(yN−1, p̃
1
N−2) =

{
ε if yN−1 = 1,
1− ε if yN−1 = 0.

(17)

Then, combining (16) and (14), we have
V ∗N−1(yN−1, p̃

1
N−2)

= −µ2 ln
(
p̃1N−2(2ε− 1) + 1− ε

)
− (1− µ2) ln ε. (18)

Since V ∗N−1(.) is an increasing function of p̃1N−2, the
base case follows.

• Now, assume theorem 1 holds at step k + 1, i.e., if
q̃1k ≤ p̃1k, then V ∗k+1(yk+1, q̃

1
k) ≤ V ∗k+1(yk+1, p̃

1
k), we

show that it also holds at step k.
From property (P1) of the current costs,

cL(q̃1k−1) ≤ cL(p̃1k−1). (19)

Furthermore, if at step k, expert 1 tells a lie at both
states p̃1k−1 and q̃1k−1, the updated relative weights
satisfy q̃1k ≤ p̃1k by (8). It follows from the induction
assumption that

EV ∗k+1(φ(yk, q̃
1
k−1, L)) ≤ EV ∗k+1(φ(yk, p̃

1
k−1, L)). (20)

Inequalities (19) and (20) imply that

Vk(yk, q̃
1
k−1, L) ≤ Vk(yk, p̃

1
k−1, L), (21)

or

Vk(yk, q̃
1
k−1, L) ≤ max{Vk(yk, p̃

1
k−1, L), Vk(yk, p̃

1
k−1, T)}.

The proof will be completed if we also prove that

Vk(yk, q̃
1
k−1, T) ≤ max{Vk(yk, p̃

1
k−1, L), Vk(yk, p̃

1
k−1, T)}.

We do this by contradiction. Suppose that,

Vk(yk, q̃
1
k−1, T) > Vk(yk, p̃

1
k−1, T), (22)

and
Vk(yk, q̃

1
k−1, T) > Vk(yk, p̃

1
k−1, L). (23)

From (22) and (12), we observe that,

cT (q̃
1
k−1)− cT (p̃

1
k−1) >

EV ∗k+1(φ(yk, p̃
1
k−1, T))− EV ∗k+1(φ(yk, q̃

1
k−1, T)). (24)

7317

On the other hand, from (23) and (21),

Vk(yk, q̃
1
k−1, T) > Vk(yk, q̃

1
k−1, L).

It follows that
EV ∗

k+1(φ(yk, q̃
1
k−1, T)) − EV ∗

k+1(φ(yk, q̃
1
k−1, L))

(a)
> cL(q̃1k−1) − cT (q̃1k−1),

(b)
> cL(ũ1k−1) − cT (q̃1k−1),

(c)
> cT (ũ1k−1) − cT (q̃1k−1),

(d)
> EV ∗

k+1(φ(yk, q̃
1
k−1, T)) − EV ∗

k+1(φ(yk, ũ
1
k−1, T)), (25)

where ~uk−1 is a specific state at k such that u1k−1 :=
ε

1−εq
1
k−1 < q1k−1, which implies ũ1k−1 < q̃1k−1. Inequal-

ities (a), (b), (c) follow from (12), properties (P1), and
(P2) respectively. (d) follows from the argument of (24).
Recall from the update rule (2), when every times expert
1 tells the truth, his weight will be updated by the factor
1− ε. Hence,

u1k = u1k−1(1− ε) = q1k−1ε = q1k.

It follows that

EV ∗k+1(φ(yk, q̃
1
k−1, L)) = EV ∗k+1(φ(yk, ũ

1
k−1, T)),

and thus implies a contradiction on (25). This concludes
the proof.

V. OPTIMAL POLICY FOR LOGARITHMIC LOSS

A greedy policy is defined as follows.

Definition 1. Greedy policy is a policy in which expert 1
makes his decisions based only on the current costs.

Property (P2) of current costs and Theorem 1 implies the
trade-off between current costs and value function. Specifi-
cally, expert 1 can cause the system to incur a higher current
cost if he tells a lie rather than the truth, but then his
updated weight decreases and as does his value function (by
Theorem 1) as a consequence. Therefore, it might be optimal
to gain system trust up to a certain value before starting to
lie. Interestingly, for the logarithmic loss, we prove that the
greedy policy of always lying is optimal.

Let pm denote a realization of p̃1k−1, then from (8), we
have

pm+1 = 1
/(

1 +

(
1

pm
− 1

)
ε

1− ε

)
if x1k = T, x2k = L,

= pm(1− ε)/ (pm(1− 2ε) + ε) , (26)

and

pm−1 = 1
/(

1 +

(
1

pm
− 1

)
1− ε
ε

)
if x1k = L, x2k = T,

= pmε/ (pm(2ε− 1) + 1− ε) . (27)

We will use these notations in our proof. Note that
from (26) and (27), pm−1 < pm < pm+1. Let A =
{..., pm−1, pm, pm+1, ...} denote the state space of relative

weights of expert 1, where the one-step state transition
follows (26) and (27). The probability transition matrix is
given by Pm,m−1(u) = µ2I{u = L},

Pm,m(u) = µ2I{u = T}+ (1− µ2)I{u = L},
Pm,m+1(u) = (1− µ2)I{u = T}.

(28)

where u is the prediction of expert 1. Rewrite current costs
in (14) and (15), using this notation, as{
cL(pm) = −µ2 ln

(
pm(2ε− 1) + 1− ε

)
− (1− µ2) ln ε,

cT (pm) = −µ2 ln(1− ε)− (1− µ2) ln
(
pm(1− 2ε) + ε

)
.

Theorem 2. For a logarithmic loss applied in Algorithm 1
and Algorithm 2, the adversary’s optimal policy is a greedy
policy, one which is optimal to tell a lie at every step.

Proof. It suffices to prove

Vk(yk, pm, L) > Vk(yk, pm, T) for all k and pm, (29)

or equivalently by (12) to prove

∆V ∗k+1(yk, pm) < ∆c(pm), (30)

where ∆c(pm) = cL(pm)− cT (pm), and
∆V ∗

k+1(yk+1, pm) = EV ∗
k+1(φ(yk, pm, T)) − EV ∗

k+1(φ(yk, pm, L)).

We note that from (28),
∆V ∗k+1(yk+1, pm)

= µ2

(
V ∗k+1(yk+1, pm)− V ∗k+1(yk+1, pm−1)

)
,

+ (1− µ2)
(
V ∗k+1(yk+1, pm+1)− V ∗k+1(yk+1, pm)

)
. (31)

We prove (30) by induction.

• Base case: at step N − 1. Due to the zero assumption
of the terminal cost and property (P1) of current costs,
the claim holds true.

• Induction step:
Assume ∆V ∗k+2(yk+2, pm) < ∆c(pm). We need to
prove that (30) is true for step k. Since at step k + 1,
the optimal decision is to lie at every state, from (31),
we have
∆V ∗k+1(yk+1, pm)

= µ2 [cL(pm)

+µ2V
∗
k+2(yk+2, pm−1) + (1− µ2)V ∗k+2(yk+2, pm)

]
− µ2 [cL(pm−1)

+µ2V
∗
k+2(yk+2, pm−2) + (1− µ2)V ∗k+2(yk+2, pm−1)

]
+ (1− µ2) [cL(pm+1)

+µ2V
∗
k+2(yk+2, pm) + (1− µ2)V ∗k+2(yk+2, pm+1)

]
− (1− µ2) [cL(pm)

+µ2V
∗
k+2(yk+2, pm−1) + (1− µ2)V ∗k+2(yk+2, pm)

]
= µ2 [cL(pm)− cL(pm−1)] + µ2∆V ∗k+2(yk+2, pm−1)

+ (1− µ2) [cL(pm+1)− cL(pm)]

+ (1− µ2)∆V ∗k+2(yk+2, pm)

7318

(a)
< µ2 [cL(pm)− cL(pm−1)] + µ2∆c(pm−1)

+ (1− µ2) [cL(pm+1)− cL(pm)] + (1− µ2)∆c(pm)

= µ2 [cL(pm)− cT (pm−1)]

+ (1− µ2) [cL(pm+1)− cT (pm)] , (32)

where (a) follows from the induction assumptions
∆V ∗k+2(yk+2, pm−1) < ∆c(pm−1) and
∆V ∗k+2(yk+2, pm) < ∆c(pm). The proof will be
completed if we can show that the RHS of (32) is
equal to ∆c(pm).
Indeed,

µ2 [cL(pm)− cT (pm−1)]+(1−µ2) [cL(pm+1)− cT (pm)]

= cL(pm)− cT (pm)

⇔ (1− µ2)
[
cL(pm+1)− cL(pm)

]
= µ2

[
cT (pm−1)− cT (pm)

]
⇔ ln

pm(2ε− 1) + 1− ε
pm+1(2ε− 1) + 1− ε

= ln
pm(1− 2ε) + ε

pm−1(1− 2ε) + ε

⇔ pm(1− ε)(2ε− 1) + (1− ε)(1− 2ε)pm + (1− ε)ε
= pmε(1− 2ε) + ε(1− ε) + ε(2ε− 1)pm.

Since the last equality is true, the proof is completed.

Note that optimality result of the Theorem 2 extends to any
general loss as long as it satisfies the following condition:

(1− µ2)
[
cL(pm+1)− cL(pm)

]
≤ µ2

[
cT (pm−1)− cT (pm)

]
. (33)

While (33) is a sufficient condition, it is not a necessary one.
In the next section, we will show through our experimental
results that at least for one other kind of loss, namely square
loss, the greedy policy is optimal but the square loss does
not satisfy (33).

VI. EXPERIMENTAL RESULTS

In this section, we introduce the experimental results with
three kinds of losses: logarithmic loss, square loss, and abso-
lute loss. A synthetic dataset including 100 recommendation
steps was generated. The accuracy µ2 of expert 2 is varied
from 0 to 1. For each type of loss, we run the dynamic
program of Algorithm 2 and find the optimal policy by
comparing the difference of current costs and the difference
of value functions at every state pm.

A. Logarithmic loss

Recall that to avoid the loss going to infinity, we used
predictions {ε, 1 − ε} for experts. Here, we fix ε = 0.01.
Figure 1 shows the optimal policy for this loss when µ2 =
0.5. In Figure 1, the dash curve represents the difference
of current costs while the solid curves are the difference of
value functions at different steps. It can be seen that telling
a lie is optimal since the difference of current costs always
exceeds the difference of value functions corresponding to
lying and telling the truth for every step.

Fig. 1. Difference of current costs v.s difference of value functions for
logarithmic loss (µ2 = 0.5).

B. Square loss
Loss of the algorithm at step k is defined as

l(ŷk) = (ŷk − yk)2.
The weight update rule (2) becomes

pik =

{
pik−1e

−1 if x1k = L,
pik−1 if x1k = T.

Figure 2 shows the experimental results for the square loss
when µ2 = 0.5. We can see from Figure 2 that, the square

Fig. 2. Difference of current costs v.s difference of value functions for
square loss (µ2 = 0.5).

loss has the same optimal policy as the logarithmic loss, i.e.,
telling a lie is always optimal. Since this square loss does
not satisfy (33), it also points out that (33) is not a necessary
condition.

C. Absolute loss
Loss of the algorithm at step k is defined as l(ŷk) =

|ŷk − yk|. The weight update rule (2) becomes

pik =

{
pik−1e

−1 if x1k = L,
pik−1 if x1k = T.

7319

For this loss, the optimal policy is a threshold policy, where
expert 1 tells the truth if his relative weight is less than a
certain value, and tells a lie otherwise. Experimental results
are depicted in Figures 3 and 4, where µ2 = 0.2 and 0.5,
respectively. In Figure 3 and 4, there exists a threshold

Fig. 3. Difference of current costs v.s difference of value functions for
absolute loss (µ2 = 0.2).

Fig. 4. Difference of current costs v.s difference of value functions for
absolute loss (µ2 = 0.5).

point, where for states below this point, the difference of
value functions is greater than the difference of current costs,
and thus the optimal action of expert 1 is to tell the truth.
Conversely, at states above this point, expert 1 must tell a lie.
Observe that the threshold is non-decreasing in µ2 (due to the
limited space, some other figures corresponding to different
values of µ2 are omitted). It follows from the fact that when
expert 2 is more often accurate, the malicious expert (expert
1) should gain more trust before starting to lie to be able to
dominate the system’s recommendation.

VII. CONCLUSIONS AND REMARKS
We consider a recommendation system with two experts,

one of them honest and the other malicious. The malicious

expert tries to sabotage the system by giving wrong predic-
tions. We derives the optimal policy for the malicious expert,
i.e., one which maximizes the total loss of the system. The
problem is formulated as an MDP, and solved by dynamic
programming. Three kinds of losses are investigated in this
paper. With the logarithmic loss, interestingly, we prove that
the optimal strategy is the greedy policy of telling a lie
at all times. Further, we establish a sufficient condition for
optimality of this greedy policy for a general loss function.
Through simulation results, we show that this condition is
not necessary since the greedy policy is optimal for the
square loss, even though it does not satisfy the condition.
Our experimental results also show that for the absolute loss,
the optimal policy is a threshold policy.

VIII. ACKNOWLEDGMENTS

This work was funded in part by AFOSR grants FA 9550-
11-1-0016, FA 9550-10-1-0573, and FA 9550- 10-1-0345,;
and by NSF grant CCF 10-54937 CAR.

REFERENCES

[1] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”
in Proceedings of the 30th Annual Symposium on Foundations of
Computer Science, NC, Feb. 1989, pp. 212–261.

[2] V. G. Vovk, “Aggregating strategies,” in Proceedings of the third
annual workshop on Computational learning theory (COLT ’90), San
Francisco, CA, USA, 1990, pp. 371–386.

[3] A. György and G. Ottucsák, “Adaptive routing using expert advice,”
Computer Journal, vol. 49, pp. 180–189, Mar. 2006.

[4] B. Awerbuch and R. Kleinberg, “Adaptive routing with end-to-end
feedback: distributed learning and geometric approaches,” in Pro-
ceedings of the thirty-sixth annual ACM symposium on Theory of
computing, New York, NY, USA, 2004, pp. 45–53.

[5] A. Kalai and S. Vempala, “Efficient algorithms for online decision
problems,” Journal of Computer and System Sciences, vol. 71, pp.
291–307, Oct. 2005.

[6] A. Blum and C. Burch, “On-line learning and the metrical task
system problem,” in Proceedings of the tenth annual conference on
Computational learning theory, New York, NY, USA, 1997, pp. 45–
53.

[7] A. Blum, C. Burch, and A. Kalai, “Finely-competitive paging,” in Pro-
ceedings of the 40th Annual Symposium on Foundations of Computer
Science, Washington, DC, USA, 1999, pp. 450–.

[8] R. D. Kleinberg, A. Niculescu-Mizil, and Y. Sharma, “Regret bounds
for sleeping experts and bandits,” in Proceedings of the 21st Annual
Conference on Learning Theory - COLT 2008, Helsinki, Finland, 2008,
pp. 425–436.

[9] A. Truong, N. Kiyavash, and V. Borkar, “Convergence analysis for
an online recommendation system,” in Proceedings of the 50th IEEE
Conference on Decision and Control and European Control Confer-
ence, Orlando, Florida, US, Dec. 2011, pp. 3889 – 3894.

[10] H. Yu, C. Shi, M. Kaminsky, P. B. Gibbons, and F. Xiao, “Dsybil: Op-
timal sybil-resistance for recommendation systems,” in Proceedings of
the 2009 30th IEEE Symposium on Security and Privacy, Washington,
DC, USA, 2009, pp. 283–298.

[11] J. Bang-Jensen, G. Gutin, and A. Yeo, “When the greedy algorithm
fails,” Discrete Optimization, vol. 1, pp. 121 – 127, 2004.

[12] G. Gutin, A. Yeo, and A. Zverovich, “Traveling salesman should not
be greedy: domination analysis of greedy-type heuristics for the tsp,”
Discrete Applied Mathematics, vol. 117, pp. 81–86, 2002.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning I: Introduction.
The MIT Press, 1998.

[14] A. J. Mersereau, P. Rusmevichientong, and J. N. Tsitsiklis, “A
structured multiarmed bandit problem and the greedy policy,” IEEE
Transactions on Automatic Control, vol. 54, pp. 2787–2802, 2009.

[15] Q. Liu, K. Wang, and L. Chen, “On optimality of greedy policy for
a class of standard reward function of restless multi-armed bandit
problem,” CoRR, vol. abs/1104.5391, 2011.

7320

