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Abstract—In this paper a property of the multi-agent consensus Il. SETS AND DIGRAPHS
dynamics that relates the failure of links in the network to
jump discontinuities in the derivatives of the output respases of Throughout the papeg; is the empty setN denotes the set

the node_s is derived and verified analytically. At the next sp, of all natural numbersy = N U {0}, andR denotes the set
an algorithm for sensor placement is proposed, which would

enable the designer to detect and isolate any link failuresaoss Of all real numbers. Also, the set of integefrk 2,.. ., k} is
the network based on the observed jump discontinuities in ta denoted byNy, and any other set is represented by a curved
derivatives of the responses of a subset of nodes. These su capital letter. The cardinality of a set”, which is the number
are explained through elaborative examples. of its elements, is denoted by |, and 2(2") = { A ; # C

|. INTRODUCTION 2"} denotes the power-set of, which is the set of all its
bsets. The difference of two sets and# is denoted by
\% and is defined agx; x € 2" Ax ¢ #'}, whereA is the
gical conjunction. In additional the logical implicaticand

-implication are denoted by> and<, respectively. Matrices

Multi-agent network systems, which consist of a grouBu
of interacting dynamic agents, have found promising appli-
cations in areas such as motion coordination of robots [

Such cooperative dynamics over a network may be stron )
affected by the network failures and this has motivated t e represented by capital letters, vectors are expresged b

study of network dynamics following the removal of SomQoldface lower-case letters, and the supersdrigienotes the

links or nodes[[2]. By and large, the study of failures ign.atrix transppse. Moreoveli, denotes the identity matrix
an important topic in network science and it has variodg'th proper d|menS|on,_and the_ dgtermlnant of a maifix
practical implications[[3]. Consensus or agreement prgtoc> denoted bylet(D), while [D];; indicates the element db
has been extensively investigated in the recent literadsra Wh'Ch_'S located at |ts—.th row andj.—th column. _
fundamental evolution law for multi-agent networks [4].eTh A directed graph odigraph is defined as an ordered pair
papers([5] and[6] address the issue of detectability foglsin Of SESY := (¥, &), where¥” = {u1,..., v} is a set of
and multiple link failures in a multi-agent system under the = || vertices ands” C 7 x 7" is a set of directed edges.
agreement protocol, where it is pointed out that link faikur !N the graphical representations, each edge (,v) € &' is
are detectable for a class of directed graphs with rooted ofifPicted by a directed arc from vertexc /' to vertexw € 7.
branchings. Additional conditions in terms of the intedab Verticesx andr are referred to as theeadand tail of the
distances to the observation points are also provided fer Rd9€¢, respectively; and if = v, thene is dubbed a self-loop.
detectability of links. The chief aim of this paper is to pidey  C1Ven & set of vertices” C 7, the set of all edges for which
a method for detection and isolation of single link failure1® heads belong t@” but the tails do not, is referred to as the
in a network that evolves according to the linear agreemdRcut of 2°, and is denoted by, 2" C &. The cardinality
protocol, based on the output responses of a subset of no@&s Z is called the in-degree of”, and is characterized as
The remainder of this paper is organized as follows. Ses? = |05 2| Notice that by definition there are no parallel
tion[M gives some preliminaries on sets and graph theory, afcS In .the graphical representation de§cr|bed above.Ha.;rot
introduces the notation that is used throughout the pager. TWOrds, if two edges share the same pair of head and tail, then
main theorem that forms the analytic basis for the proposigY are identical. A matritV’ < RI”1x7Tis called an in-
detection method is stated and proved in Sedfidn I1l. Next Weighting on if v{vi,v;} C ¥/, (vi,vj) & & = [W];; = 0.
Sectior[TV a set of algorithms are proposed for the effective FOr @ given digraphy = (7, &) and any pair of vertices
lection of observation points in the network. These algons V> v} C 7, letedger := (v;,v;) € £U{e}. Theedge-index
together with the theorem in Secti@ml I1l, enable the netwof¥ € IS defined as &/'| x |7’| matrix with exactly one non-zero
designer to detect and isolate single link failures basethen €lément whichis d located at its—th row andi—th column.
observed jump discontinuities in the derivatives of thepaut This matrix is represented by(c) = T'((vi,v;)). Similarly,
responses of a subset of nodes. lllustrative examples 4@ vertex-indexof any »; € ¥ is defined as g7/ x 1

discussions in SectidalV elucidate the results and SeEfibn §/Umn vector with exactly one non-zero element which is
concludes the paper. a1l located at itsi-th row. This vector is denoted by (v;).
The adjacency matrix of is given byA(¥4) = > ., T(e), its
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ing, University of Pennsylvania, Philadelphia, PA 191@28 USA. (email: vey "y P

preciado@seas.upenn.edu). This work was supported by ONR MURI and the corresponding in-degree graph Laplacian is given by
"Next Generation Network Science”. ZL(Y)=A9)— A9).
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Given an integerk € N, a set of (possibly repeated)understood upon noting that if the time of failure is random

indices{a1, a2, ..., o} € Njy| and two vertices,v € 7, and has a continuous sample space, then “simultaneous”
an ordered sequence of edges of the fofim:= (7,v,,) , failure of more than one link is a measure zero event, hence
(VorsVas) s« s (Vap_1sVar) s (Vay, V) is called arv walk justifying the focus of investigation in this paper, whichan

with start-noder, end-node andlengthk+1. A cycle on node the “single” link failures. It is further assumed that at lkac
v refers to arv walk wherer = v. If W is an in-weighting instant of time, the designer is given access to the response
on?, thenw(#', W) =11, ., en [W];; is referred to as the of a subset of agents as well as the network information
weight of walk’?Z w.r.t W. In t;1e same venue, the number oflow digraph prior to the failure. In the case of detection,
v walks with lengthk, denoted by g(¥¢; T, v), is called the the designer is interested in determining the existencenpf a
k—th connectivityof 7 to v in digraph¥; and by convention, single link failure in the network at the instant of failure.
Co(¥;1,v) = 0if 7 # v, while @(¥;v,v) = 1. Moreover, For the isolation problem, however, the designer would like
the integer to determine “instantaneously”, not only the existence of a
. failure, but also its location. That is to determine whiatkli
A vj,vi) = kew,cggzlf?,w#O{k}’ if any, has failed and exactly at the same instant as it fails.
The proposed method is based on the derivatives of the
consensus response given[ih (3). The proof ingredientssare a
follows. Terms of the form(—.# (%)) appear upon taking
the k—th derivative of [8). Corresponding to a digrafh a
new digraph¥ is defined by adding a self-loop on each node
and it is then noted that.# (%) define an in-weighting off’.
Thence, the stage is set for the application of the summation
formula given in [[1) and the rest of the proof carries through
by partitioning the set of walks over whichl (1) is summed.

is referred to as the distance from to v; in ¢, and by
convention @¢;v;,v;) = oo if Vk € N,c,(¥;v;,1;) = 0.
For any {s,p} C Njy|, Q*(¥;vs,15) is the set of allv,u,
walks in ¢ with length k. Similarly for {s,i,p} C Ny,
OF(Gsvs,vivp) = {W € Q8D vs,v8); (vs,vi) € #}, e,
the set ofv,v, walks that include the edges, v;). Given a
set of walks(2 in digraph¥ and in-weightingsi?; and W,
on ¥, the functions

(W) = Z w(W ,Wy), In the theorem$; represents the original (healthy system)
WeQ digraph and¥, is the digraph that is missing a single link.
U(Q, Wy, Wy) = (Q, W) — &(Q, Wa), The removed link is := (v;, ;) and agent: corresponding

, . - ) i to vertexy, is an agent whose responsg) is being observed
are defied, which will find use in the proof of the main theorerp_qy the designer.

in Sectior{ 1] that follows. It is also known for an in-weidghg

W on¥, and vertices{vs,v,} C ¥, that [7]: Theorem 1. Given a multi-agent systet” and its associated
) X digraph ¢4 = (7, &), consider a vertexs, € ¥ corre-
(G5, 1), W) = [W }ps' ) sponding to agentt € ., and an edge: := (v;,1;) €

lIl. DERIVATIVES OF THE CONSENSUSRESPONSE ¢1, and denote%, = (7, &1\{¢}). Starting from the same

initial condition x(0), for ¢ > 0, let x4, (t) and z«,(t)
Givenn € N, consider a multi-agent system comprised alenote the state of the agentcalculated in the digraphs
a set.” = {x;,i € N,} of n single integrator agents, where, and%,, respectively; and defin¥ (k) := d"t—i(x%)(oﬂ -
z;, 1 € N, is the scalar state of ageat Under the linear g—kk(l'g )(0+). The following statements hold trugi) V& <
. . . + 2

agreement protocol, if the interaction structure between W(%;vj,0,) — 1,V(k) = 0, and (ii) for k = d(%; v, 1),
agents is represented by a directed information flow gramk) = Ce1 (%5 v, 1) (25(0) — ;(0)). '
g = (v,8), where? = {v;,i € N,} andVi € N, v; _ B
corresponds tar;, then the dynamic evolution law for the Proof. Define 4 = (7,6 Uyey {(v,v)}) and % =

agents is given by: (¥, & Uvey {(v,v)}) and note that--Z(%;) and —£(%,)
) define proper in-weightings of, and %, respectively. Dif-
X(t) = =Z(9)x(t), t >0, ) ferentiating both sides of{(4) times yields:
wherex(t) = (z1(t), z2(t), . .., z,(t))" . For an initial condi- T(k) = o (v ((— LGN — (— L (D)) )% (0
tion x(0) € RI”’l, the matrix exponential solution tg](2) can (k) ) (=2 )7 = (~2(#)))x(0),
be derived as: which can be rewritten as:
x(t) = 7 @'x(0), £ >0, 3) - . .
Vi) = ([(—2@)1,, - [(-2&)",,) ().
and for a particular agent; € .% represented by the vertex s=1
v; € ¥, the temporal evolution of its state is then given by:wherez,(0) is a scalar value that denotes the initial state of
i (t) = O,(Vi)Teff(%)tx(O)’ t>0. @) the agent corresponding to vertexe #. Replacing from[{l)

into the preceding expression 8 (k) leads to[(b) at the top

The next theorem paves the way for a method to detegftthe succeeding page.
and isolate the failure of any links in the network and at the For part(:), note that ift < d(%;v;,v,) — 1, then there
same instant as they fail. The latter's significance is bettere no walks of lengtht that include (v;,;) as an edge



|7]

V(k) = Z[Q)(Qk (gl; Vs, VP)? _g(gl)) - CI)(Qk (%7 Vs, V;D)v —X(%))]xs (0)’ (5)
17| i
k) :Z\I/(Q’f(%;ys7yp)7—g(g1)7—$(%))xs(0), (6)
|7]
Z\IJ (Go; v, v\ (G v, v, 1), =L (1), —L (%)) 5 (0). @)
[k
Z\IJ (Go; Vs, Viy 1), =L (%), — L (%)) 24 (0). (8)
Vilk) = [0 (10, y), - L (B1) = SO (i v, vy), 2 (%)) (0)
= [®(QF (G; vi, v\ (G v, vi, 1), =L (1)) + By v, v, 1), —L(G1)) —
‘I)(Qk(gg, Vi, Vp)\Q (%2, Vi, Vs, Vp), —Z(%Q)) - ‘I)(Qk(%, Vi, Vy, I/p), —g(gg))]ilfl (O)
L (D(QF (G5 vi, i, vp), —L(G1)) — B (Do v, i, 1), —L (%)) 24(0)
={[-Z(%)];; ck-1(G;vi,vp) — [-L(4)];; Ch1(G2; Vi, vp) b4 (0)
= [( d {Vz})ck 1(%1, vV, I/p) ( d5;1 {Vz} + 1)Ck_1(g1; v, I/p)]l'l(O) = —Ck_l(gl; v, Vp)l'i(()). (9)
Vj(k) = [@(Q" G5 v5,mp), =L (%)) — (" (%o;v5, 1), =L (%2))]5(0)
= (@ (G v5,), —ZL (%)) — q’(Qk(g v\ (G5 v, v, ), =2 (%2))]5(0)
2 [BQM ;05 1), — L (G) — B (G v5, v\ (G150, 14, ), =L (%)) (0)
= B (G155, vi, 1), =L (%)) (0) £ - ( V)l Ck—1 (15 vi,vp) w5 (0) = Cr1 (91504, 1)(0). (10)
v(k) = Z [(I)(Qk(gh Vs, ’/p)a -2 (%)) — (I)(Qk(g% Vs, ’/p)v _g(g2))]$8(0) =0 (11)
€Ny \{i,5}
and terminate at nodep Hence, fork < d(%1;v;,1vp) — 1, (vs,v4) as an edge, for otherwise one can removg ;) and

O (G v, 1) = Q¥ (G5 05, 1), smce% and %, differ only

at edge(v;, v;) and thus they have the same set of walks witt%;; v;, v,,). Now from Q’“(%; Vs, Vi, Vp) =

no (v;,v;) edge. Given thafd*(%a; vs, v,) = QF (%15 vs, 1),

construct av;v, walk in ¢;, whose length is strictly less than
@ it follows that
-ZL(4), £ (%)) =0

Vs € Ny, T(Qk(%;us,w,yp),

(8) can be rewritten ad](6) at the top of the next pagandVs:(m) = 0, as well. Thus far, it is shown that, (k) =

The next step is to partition the set of Walkzé“(%, Vs, Vp)
into two disjoint sets,0(%; vy, 1) and QF (%a; vs, 1) \

OF(“a; vy, vi, v,). Thence,V(k) in (B) can be rewritten as

V(k) =

made by the walks i (Go;vg, 1) \ Q¥ (Do v, v, 1)

Va(k) =0, whenceV (k) = Vi (k) + Va(k) = 0, completing
the proof fork < d(¢;v;,v,) — 1.
For the case ok = d(%i;v;,vp) in part (i), first note

Vi(k) + Va(k), whereV, (k) and Va(k) are given that by conditioning on the choice of the start-nogethe
by (@) and [8), and they correspond to the contributiortimmation in[(5) can be can be rewritten &%) =

Vi(k)
+ V,(k) + V(k), where the three terms are defined in

and QF(%; v, 3, 1), respectively. To finish the proof of @) to (1) at the top, and they measure the contributions

part (i), note thatv#/ e QOF(%a; vy, 1) \ QO (%a; v, V5, 1),
w(W,—L (%)) = wW,—%L(%)), since any such wall”
includes neither of the edge§;,r;) and (v;,v;), which
are the only edges at which.Z (%) and —.% (%) differ.
It is therefore true that's € Nyy|, U(QF(%;vs,vp) \
OF (Do vs, viy 1), —L(G), =L (%)) = 0, andV, (k) = 0.
On the other hand, fromm < d(%1;v;,vp) —1 and (v, v;) €
&, it follows thatm < d(%, v, vp) < d(%1;v5,vp) —1, which
in turn implies thaﬂ’“(%, Vs, Vs, Vp) = . Because withn <
d(%; v, vp) there can be no,v, walks of lengthk in “, with

due to the walks starting from nodes, v;, and the rest
of the nodes, respectively. In the following paragraphs, th
expressions for each of the the above three terms are siedplifi
in the respective order, leading to the equation in pat

The first step in simplifying the expression &f;(k) is
(£), which follows by partitioning the setQ*(%;v;,v,)
and QF (%,yz,up) Next note that nasv, of lengthm =

d(%;v;,vp) caninclude(v;, v;) as an edge. This statement is
trivial in the case of%. To see why it is true fot#, as well,
suppose to the contrary that there exists;a, walk % of



length k& with (v;,1;) as an edge. There is therefore a cyclfilure of any single link across the network.
on v; whose length is at lea®, and removing that fron¥;
yields a newv; v, walk #5 with length at mostn — 2. Now IV. PLACEMENT OF THE SENSORS
(vj, vi)#2 is av;v, walk of length at mostn —1, Wh'Ch 'S@  Throughout this sectiony = {x;,i € N,,} is a multi-agent
contraction, sincé = d(%; v;, v;). The next stem 2) follows system, withn € N a fixed integer. The digraptf = (7, &)
upon the realization thab(Q* (% ; Vi ) \ Q¥ (915 v5,v4,1), s associated with”, where? = {v,, s € N, } andVs € N,,,
—~L(%)) = (U (Do v, vp) \ Q¥ (a3 vi, v, 1), —ZL (%)), v, corresponds tas,. Moreover,z € N, is a fixed integer
which is true since none of the walks involved include anylenoting the highest order of the derivatives of the respens
of the edges(v;,v;) or (v;,v;). The rest of the equalities of the consensus dynamics of, to which the designer has
in (@ follow through as a consequence of4;v;,v,) = access. Similarly, with{k,p,i,7} C N,, the order of the
d(%;vi,vp) = k — 1, which implies that(v;,v;) is the one derivatives is denoted by € N, v, € ¥ is a node whose
and only self-loop that is included in any and all of the walkeesponse is being observed,:= (v;,1;) € & is an edge
in Q’“(%,ul, Vi, vp) Of 0k (%, Vi, Vi, Up). whose failure at time = 0 is to be detected and/or isolated
To simplify the expression forV;(k), note that since by the designer and it is further assumed thgd) # z;(0),
% is derived by removmg edgevl,u]) it holds true that i.e. whenever an edge fails, the state values at its headadnd t
(%,yj,up) = OFG;v5,v5) \ Q¥ ;v5,v4,1), which  nodes do not coincide.
leads to (= ) in -) Next, sincek = d(%;v;,v,) none Givenk € N,, let Z;, and %, be binary relations between
of the walks in QF(4; Vj7yp) include any self-loops. In the vertices and edges &f, such thatvy, € 7" andVe € &,
particular, any walk? € Q*(%;v;,v,) \ QF(41;v5,v5,1,) Wheree = (v;,1;) for some{v;,vi} C 7, (vp,€) € Z; +
includes neither of the edge®s;,v;) and (v;,1;), thence (d(¥;vj,1p) = k) A (d(#;vi, 1) = k — 1) and (v, € ) €
W, —L(G)) = wW,—L (%)), implying (%) To see Ho © -V/C € N,, (vp,€) & Zi. Note that withe = (v;,1;), by
3 . I - ] . definition (14, €) € %1 and (v}, €) € Zy.
(=), again bear in mind that = d(¢;v;,v,), together with _ L _ _
P . The preceding definitions are motivated by the observation
(vj,vi) € &1, implies that d%;v;,1v,) > k — 1 so that none de in R K11 that if th st ¢ i th
of the walks inQ*(%; v, v;, 1) include any self-loops. made In kemar at It the existence ot jumps in the
. . L (e k—th derivative of the response of a nodg is to serve as
Finally, if s ¢ {i,j}, then V¥ € QF(%;vs,vp) U L . .
P . . an indicator for the failure of edgév;,v;), then it should
O (G vs,vp), {(vj,v4), (visvi)} N W = @, since otherwise ;
o : < . hold true that(d(¥;v;,v,) = k) A (d(Z;vi,1vp) = k — 1).
it is possible to construct &;v, walk in ¢;, whose length ; . :
: ! : The problems of detection and isolation are now posed and
is strictly less thark = d(#; v;, 1;)). Hence, by an argumentaddressed as sensor placement problems in the following [8]
similar to the one Ieading t¥ (k) = 0 in the proof of part P P 9

(1), (Sr: va. 1) = O (Do v, vy) ANAYH € OF(Dr v 1) O
= Q’“(%, Vs, Up), W(W, =L (%)) = w(W ,—ZL (%)), which Problem 1. [Detection]Given a digraph¢ = (¥, &), propose
justifies (<) in (IT). Putting all three together yields tiatk) a (preferably minimal) subset of vertice#, C ¥ such that
=Vi(k) + V,(k) + V(k) = ck—1(%;vi, vp) (2(0)—2;(0)) Ve € &, Ty, € Mp, (v, €) & Ry.
and the proposition holds true fér = d(%:;v;,v,) as well.
]

The following important remark highlights the key require-
ments that need to be satisfied if Theofdm 1 is to be exploit:

Let .#p C ¥ be any solution to Problef 1, then a link
has failed at (the arbitrarily shifted) time= 0 if, and only if,
@gre exists some, € .#p andk € N, such thatdtk xp(0F)—

for detection and isolation of link failures. Srx,(07) # 0. That is, by observing the first derivatives of
) the responses of all the nodes#p, the designer determines
Remark 1. In Theorem[ll, ifd(%;v;,1,) = k, then that a failure occurs if, and only if, a jump is observed in one

d(#;vi,vp) = k — 1. On the other hand, the quantityor more nodes in#p. For the isolation problem the following

Cr—1(%1;vi, ) (2;(0) — z;(0)) that appears in part(ii) of extra tool will come handy. Given a subset of nod#s and
Theorem[lL is nonzero only ifz;(0) — x;(0)) # 0 and any edgec € & define theindicator setof ¢ w.rt. .# as
d(%;vi,vp) < k—1 orin this particular cased(%1;vi,vp)  the function.? : 2(¥) — 2((N, U{0}) x .4), given by
= k—1. Hence, if the existence of a jump discontinuity in thy((///; €)= {(k,1p) € (N, U{0}) X A; (v, €) € Ry}

k—th derivative of the output response at naggis to serve ) _ _

as the basis for a method to detect the failure of efiger;) Problem 2. [Isolation] Given a digraph¢ = (7, &), propose
at time t = 0, then it should be true that;(0) — z;(0) £ 0 & (preferably minimal) subset of verticeg; C ¥ such that
and d(@;vi,vy) = k — 1 < d@;v,1,) = k. The latter 5 is a solution to Probleni]l anda,3 € &,a # 8 <

inequality is in perfect agreement with the sufficient ctiodi I (Mr;a) # I (M B).
stated in Corollary 1 of[[6]. Given a solution#; to Probleni®, any edgeis uniquely

In the next section, the focus is shifted to the probleietermined by the set of ordered paif§(.#; ). Hence, the
of sensor placement, such that in line with Rem@rk 1, §fgec has failed at (the arbitrarily shifted) time = 0 if,
observing the jumps in the derivatives of the responses @&td onIy if, ¥(k,1p) € I(Mie), k > 0, e, (0F) -
a subset of nodes, the designer can detect and/or |solate§£g& ) # 0, and V(0,v,) € I (A;e), Vm € N,



(?t—mmxp(O““)—é’t—";:rp(O‘) = 0. In other words, by observing the Routine 2 Determine a Solution/; to Problen{
first z derivatives of the responses of all the nodgsn .#;, Input. & = (7,&)
the designer determines that the eddwas failed if, and only 1: .#; < @
if, a jump is observed in thé—th derivative of the response 2: while f;(.#;) #0 & 41 # ¥ do
of any nodev, for which (k,v,) € #(#;€), k>0, and no 3. v <= argmin{ fr(4; U{v}) — fr(1);v € V\AM1}
jumps is observed in the firstderivatives of the responses of 41 . #; < .U {v}
all nodesy,, for which (0,v,,) € (A ; ¢). 5: end while
In the following subsections, efficient algorithms are pro-6: if fr(.#1) # 0 then
posed for the selection of the observation points, which aré& .#Z; < @
the subsets#p and .#; satisfying the requirement of the 8: end if
problemd andl2. Output: .#;

A. Detection of All Failures: Coverage
Forall.# c 7 definefp : V) — P (N5 U{0}), given . RoutinBl 2 returns. Thi it and onlv if
by fo( M) = [{c € &5y € M, (1y,¢) € Bo}|. Note that which case RoutinEl 2 returng. This occurs if and only i

A > 9 V) #0.
if {4, #} Cc P(V) are such that# C ., then for all 00 #

v € ¥ it holds true thatfp (.# U{v}) — fo(4) < fp(M U
{v}) — fo(A), i.e. —fp(.) a submodular set function from V. EXAMPLES AND DISCUSSIONS
P(V) to N U{0}, which satisfies the diminishing returns or
discrete concavity property][9]. Routihé 1 uses this priyper
of the set functionfp to compute a solutionp, C ¥ to
Problen1 using an efficient greedy heuristic.

In the sequel;¥ = {v;,i € N5} is a set of five vertices,
where for alli € Nj, vertexv; corresponds to agent; in a
multi-agent system?” = {x;,i € N5}. It is further assumed
that if a link (v, v;), {4, j} C N; fails att = ¢, thenz;(t;) #
zi(ty).

Routine 1 Determine a Solution#p to Problen{l

Input: 4 = (v,8&)

: <%/D =g

- while fp(#p) # 0 do

v < argmin{ fp(ApU{v})— fp(Ap);v € ¥Y\Mp}
Mp <= Mp U {V}

: end while

Output: #p

Remark 2. The functionfp(.#1) measures the coverage of

set .#p by counting the number of links that are not yet

covered by#p. At each iteration of Routirlg 1, the extra node (@) (b)

VIS selec_ted a.nd add.eq t@p such that th.e number of neWIyFig. 1. A start digraph of size five and a directed cycle of tanfive are
covered links is maximized. Note that since o& (v;,vi),  depicted if @) anff (b), respectively.

(vi,€) € %, it follows that fp(7) = 0, whence Routingl 1 is

uaranteed to terminate. . .
9 As the first example, consider the case of a start network

B. Isolation of All Failures: Resolution (Fig.[1(a)), where there are four edges in the network anafall
them share the same head vertgxIn this case, the designer

i R can detect the failure of any single edge in the network by
fr:2(7) - Njg U {0},.glven by f1(.#/) = [{e € £:3¢ € gpserving the first derivative of the responsergf however,
E\{e}, S (M €) = (A €)}], and note that-f;(.) iS IS0 yare are no subset of nodes that can be observed for igplatin
submodglar. Thus, a greedy heuristic similar to the one jf. tailed edge. Infact,(¥) = 4 in the case of a star network,
Subsectio [V-A can be used to compute a SOlUldR C 7" 54 every edge of the network is in the same relati@nsvith

to Problent2, as follows. the nodevs; and %, with the rest of the nodes.

Remark 3. The functionf;(.#;) measures the resolution of As the second example, consider a cycle (Fig.]1(b)), whose
set.#; by counting the number of links that are not uniquelgdge set is given by = {e;,i € N5}, where fori € Ny, ¢; =
identified through their relations#z; with the vertices of set (v;,v;11) andes = (v1,v5). Associate with every vertex; a
/1. At each iteration of Routir{d 2, the extra nades selected row vectord, with five columns, whose elemefd;];,j € N;

and added ta; such that the resultant improvement in thés equal tok if (v;,¢;) € % for somek € Ny U {0}. Let
resolution of.#; is maximized. Note that unlike Probldth 1D € R5*5 be the matrix whosé—th row is equal tod; for

it is possible for Probleni]2 to have no solutions at all, irall i € N5. ThenD is given by:

Similarly to the previous section, for all# c ¥ define
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0 4 3 2 1 15 ‘ ‘
104 3 2

D=|210 4 3 (14) ]
3210 4
43210

It is evident from matrixD that any two distinct vertices
will offer a solution .#; to Problem[lL, since the locations
of 0 entries do not overlap for distinct vertices. Thence, th
designer can detect the failure of any links in the cycle netw
by observing the jumps in the first four derivatives of any
two nodes in the network. In the same vein, any set of tw
distinct vertices can also be used to uniquely determinehvhi
link has failed based on the observed jumps in the first fol
derivatives. For instance, taking/s = {v2,v3}, €1 is the only t
edge whose failure will produce a jump in the first and second
derivatives ofxo(t) and z3(t), respectively, at the time of Fig. 3. ~ The derivatives of2(t) and z3(t) are plotted for0 < ¢ < 10.
failure,t = tf. FigS[z andB depict the responses of the Secoﬁdathe time o;2falluretf =5, thered2are jump dls?ontlnu.ltles in the plots of
and third agents as well as their derivatives, for a direct@ﬁ”?(tg and gz 23(1). The plot of g x5 (1) contains an impulse df; = 5.
cycle of length five initialized ak(0) = (1,2,3,4,5)", where "¢ a:®3(t) is a continuous function of time.
for all t € R, x(t) = (z1(t), x2(t), 23(t), 24(t), 25(t))T. The
edgee; is removed at timg; = 5, and as a result, the first
derivative ofz,(t) and the second derivative af;(t) exhibit
jump discontinuities aty = 5.

— gaa(t)

— = gas(t)

.
— = st

system to detect and isolate single link failures, basecdhen t
observed jumps in the derivatives of the output responses of
a subset of nodes under the Laplacian consensus dynamics.
Two theorems were presented, which relate the jumps in the
The Time Responses of the Second and Third Agents derivatives at the time of failure to the distance of the the
failed link from the observation point. In the proofs, thein

S 4 Laplacian can be replaced with any well-defined in-weigintin
on the graph, so that the extension to general (non-Laplacia

1 linear dynamics is possible. Any sufficiently regular napkr
dynamics can be linearized at poiht= 0 (the time of link
failure), thence a generalization to nonlinear networkatgits

is also foreseeable. In the future, the authors hope to firena
such extensions.
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