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Detection and Isolation of Link Failures under the
Agreement Protocol
M. Amin Rahimian, Victor M. Preciado∗

Abstract—In this paper a property of the multi-agent consensus
dynamics that relates the failure of links in the network to
jump discontinuities in the derivatives of the output responses of
the nodes is derived and verified analytically. At the next step,
an algorithm for sensor placement is proposed, which would
enable the designer to detect and isolate any link failures across
the network based on the observed jump discontinuities in the
derivatives of the responses of a subset of nodes. These results
are explained through elaborative examples.

I. I NTRODUCTION

Multi-agent network systems, which consist of a group
of interacting dynamic agents, have found promising appli-
cations in areas such as motion coordination of robots [1].
Such cooperative dynamics over a network may be strongly
affected by the network failures and this has motivated the
study of network dynamics following the removal of some
links or nodes [2]. By and large, the study of failures is
an important topic in network science and it has various
practical implications [3]. Consensus or agreement protocol
has been extensively investigated in the recent literatureas a
fundamental evolution law for multi-agent networks [4]. The
papers [5] and [6] address the issue of detectability for single
and multiple link failures in a multi-agent system under the
agreement protocol, where it is pointed out that link failures
are detectable for a class of directed graphs with rooted out-
branchings. Additional conditions in terms of the inter-nodal
distances to the observation points are also provided for the
detectability of links. The chief aim of this paper is to provide
a method for detection and isolation of single link failures
in a network that evolves according to the linear agreement
protocol, based on the output responses of a subset of nodes.

The remainder of this paper is organized as follows. Sec-
tion II gives some preliminaries on sets and graph theory, and
introduces the notation that is used throughout the paper. The
main theorem that forms the analytic basis for the proposed
detection method is stated and proved in Section III. Next in
Section IV a set of algorithms are proposed for the effectivese-
lection of observation points in the network. These algorithms
together with the theorem in Section III, enable the network
designer to detect and isolate single link failures based onthe
observed jump discontinuities in the derivatives of the output
responses of a subset of nodes. Illustrative examples and
discussions in Section V elucidate the results and Section VI
concludes the paper.

∗ The authors are with the Department of Electrical and Systems Engineer-
ing, University of Pennsylvania, Philadelphia, PA 19104-6228 USA. (email:
preciado@seas.upenn.edu). This work was supported by ONR MURI
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II. SETS AND DIGRAPHS

Throughout the paper,∅ is the empty set,N denotes the set
of all natural numbers,W = N ∪ {0}, andR denotes the set
of all real numbers. Also, the set of integers{1, 2, . . . , k} is
denoted byNk, and any other set is represented by a curved
capital letter. The cardinality of a setX , which is the number
of its elements, is denoted by|X |, andP(X ) = {M ;M ⊂
X } denotes the power-set ofX , which is the set of all its
subsets. The difference of two setsX andY is denoted by
X KY and is defined as{x;x ∈ X ∧ x /∈ Y }, where∧ is the
logical conjunction. In additional the logical implication and
bi-implication are denoted by→ and↔, respectively. Matrices
are represented by capital letters, vectors are expressed by
boldface lower-case letters, and the superscriptT denotes the
matrix transpose. Moreover,I denotes the identity matrix
with proper dimension, and the determinant of a matrixD
is denoted bydet(D), while [D]ij indicates the element ofD
which is located at itsi−th row andj−th column.

A directed graph ordigraph is defined as an ordered pair
of setsG := (V , E ), whereV = {ν1, . . . , νn} is a set of
n = |V | vertices andE ⊆ V × V is a set of directed edges.
In the graphical representations, each edgeǫ := (τ, ν) ∈ E is
depicted by a directed arc from vertexτ ∈ V to vertexν ∈ V .
Verticesν and τ are referred to as thehead and tail of the
edgeǫ, respectively; and ifτ = ν, thenǫ is dubbed a self-loop.
Given a set of verticesX ⊂ V , the set of all edges for which
the heads belong toX but the tails do not, is referred to as the
in-cut of X , and is denoted by∂−

G
X ⊂ E . The cardinality

of ∂−
G

X is called the in-degree ofX , and is characterized as
d−

G
X = |∂−

G
X |. Notice that by definition there are no parallel

arcs in the graphical representation described above. In other
words, if two edges share the same pair of head and tail, then
they are identical. A matrixW ∈ R

|V |×|V | is called an in-
weighting onG if ∀{νi, νj} ⊂ V , (νi, νj) 6∈ E → [W ]ji = 0.
For a given digraphG = (V , E ) and any pair of vertices
{νi, νj} ⊂ V , let edgeǫ := (νi, νj) ∈ E ∪{ǫ}. Theedge-index
of ǫ is defined as a|V | × |V | matrix with exactly one non-zero
element which is a1 located at itsj−th row andi−th column.
This matrix is represented byΓ(ǫ) = Γ((νi, νj)). Similarly,
the vertex-indexof any νi ∈ V is defined as a|V | × 1
column vector with exactly one non-zero element which is
a 1 located at itsi-th row. This vector is denoted byσ(νi).
The adjacency matrix ofG is given byA(G ) =

∑

ǫ∈E
Γ(ǫ), its

degree matrixis defined as∆(G ) =
∑

ν∈V
d−

G
{ν}Γ((ν, ν)),

and the corresponding in-degree graph Laplacian is given by
L (G ) = ∆(G )−A(G ).
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Given an integerk ∈ N, a set of (possibly repeated)
indices{α1, α2, . . . , αk} ⊆ N|V | and two verticesτ, ν ∈ V ,
an ordered sequence of edges of the formW := (τ, να1

) ,
(να1

, να2
) , . . . , (ναk−1

, ναk
) , (ναk

, ν) is called aτν walk
with start-nodeτ , end-nodeν andlengthk+1. A cycle on node
ν refers to aτν walk whereτ = ν. If W is an in-weighting
onG , thenω(W ,W ) =

∏

(νi,νj)∈W
[W ]ij is referred to as the

weight of walkW w.r.t W . In the same venue, the number of
τν walks with lengthk, denoted by ck(G ; τ, ν), is called the
k−th connectivityof τ to ν in digraphG ; and by convention,
c0(G ; τ, ν) = 0 if τ 6= ν, while c0(G ; ν, ν) = 1. Moreover,
the integer

d(G ; νj , νi) = min
k∈W,ck(νj ,νi) 6=0

{k},

is referred to as the distance fromνj to νi in G , and by
convention d(G ; νj, νi) = ∞ if ∀k ∈ N, ck(G ; νj, νi) = 0.
For any{s, p} ⊂ N|V |, Ωk(G ; νs, νp) is the set of allνsνp
walks in G with length k. Similarly for {s, i, p} ⊂ N|V |,
Ωk(G ; νs, νi, νp) = {W ∈ Ωk(G ; νs, νk); (νs, νi) ∈ W }, i.e.
the set ofνsνk walks that include the edge(νs, νi). Given a
set of walksΩ in digraphG and in-weightingsW1 andW2

on G , the functions

Φ(Ω,W1) =
∑

W ∈Ω

ω(W ,W1),

Ψ(Ω,W1,W2) = Φ(Ω,W1)− Φ(Ω,W2),

are defied, which will find use in the proof of the main theorem
in Section III that follows. It is also known for an in-weighting
W on G , and vertices{νs, νp} ⊂ V , that [7]:

Φ(Ωk(G ; νs, νp),W ) =
[

W k
]

ps
. (1)

III. D ERIVATIVES OF THE CONSENSUSRESPONSE

Given n ∈ N, consider a multi-agent system comprised of
a setS = {xi, i ∈ Nn} of n single integrator agents, where
xi, i ∈ Nn is the scalar state of agenti. Under the linear
agreement protocol, if the interaction structure between the
agents is represented by a directed information flow graph
G = (V , E ), where V = {νi, i ∈ Nn} and ∀i ∈ Nn, νi
corresponds toxi, then the dynamic evolution law for the
agents is given by:

ẋ(t) = −L (G )x(t), t > 0, (2)

wherex(t) = (x1(t), x2(t), . . . , xn(t))
T . For an initial condi-

tion x(0) ∈ R
|V |, the matrix exponential solution to (2) can

be derived as:

x(t) = e−L (G )t
x(0), t > 0, (3)

and for a particular agentxi ∈ S represented by the vertex
νi ∈ V , the temporal evolution of its state is then given by:

xi(t) = σ(νi)
T e−L (G )t

x(0), t > 0. (4)

The next theorem paves the way for a method to detect
and isolate the failure of any links in the network and at the
same instant as they fail. The latter’s significance is better

understood upon noting that if the time of failure is random
and has a continuous sample space, then “simultaneous”
failure of more than one link is a measure zero event, hence
justifying the focus of investigation in this paper, which is on
the “single” link failures. It is further assumed that at each
instant of time, the designer is given access to the response
of a subset of agents as well as the network information
flow digraph prior to the failure. In the case of detection,
the designer is interested in determining the existence of any
single link failure in the network at the instant of failure.
For the isolation problem, however, the designer would like
to determine “instantaneously”, not only the existence of a
failure, but also its location. That is to determine which link,
if any, has failed and exactly at the same instant as it fails.

The proposed method is based on the derivatives of the
consensus response given in (3). The proof ingredients are as
follows. Terms of the form(−L (G ))k appear upon taking
the k−th derivative of (3). Corresponding to a digraphG , a
new digraphG̃ is defined by adding a self-loop on each node
and it is then noted that−L (G ) define an in-weighting oñG .
Thence, the stage is set for the application of the summation
formula given in (1) and the rest of the proof carries through
by partitioning the set of walks over which (1) is summed.

In the theorem,G1 represents the original (healthy system)
digraph andG2 is the digraph that is missing a single link.
The removed link isǫ := (νi, νj) and agentx corresponding
to vertexνp is an agent whose responsex(t) is being observed
by the designer.

Theorem 1. Given a multi-agent systemS and its associated
digraph G1 = (V , E1), consider a vertexνp ∈ V corre-
sponding to agentx ∈ S , and an edgeǫ := (νj , νi) ∈
E1, and denoteG2 = (V , E1K{ǫ}). Starting from the same
initial condition x(0), for t > 0, let xG1

(t) and xG2
(t)

denote the state of the agentx calculated in the digraphs
G1 and G2, respectively; and define∇(k) := dk

dtk (xG1
)(0+)−

dk

dtk (xG2
)(0+). The following statements hold true:(i) ∀k 6

d(G1; νj , νp) − 1,∇(k) = 0, and (ii) for k = d(G1; νj , νp),
∇(k) = ck−1(G1; νi, νp)(xj(0)− xi(0)).

Proof. Define G̃1 = (V , E1 ∪ν∈V {(ν, ν)}) and G̃2 =
(V , E2 ∪ν∈V {(ν, ν)}) and note that−L (G1) and−L (G2)
define proper in-weightings oñG1 and G̃2, respectively. Dif-
ferentiating both sides of (4)k times yields:

∇(k) = σ(νp)
T ((−L (G1))

k − (−L (G2))
k)x(0),

which can be rewritten as:

∇(k) =

|V |
∑

s=1

(

[

(−L (G1))
k
]

ps
−
[

(−L (G2))
k
]

ps

)

xs(0),

wherexs(0) is a scalar value that denotes the initial state of
the agent corresponding to vertexνs ∈ V . Replacing from (1)
into the preceding expression of∇(k) leads to (5) at the top
of the succeeding page.

For part(i), note that ifk 6 d(G1; νj , νp) − 1, then there
are no walks of lengthk that include(νj , νi) as an edge



∇(k) =

|V |
∑

s=1

[Φ(Ωk(G̃1; νs, νp),−L (G1))− Φ(Ωk(G̃2; νs, νp),−L (G2))]xs(0), (5)

∇(k) =

|V |
∑

s=1

Ψ(Ωk(G̃2; νs, νp),−L (G1),−L (G2))xs(0). (6)

∇1(k) =

|V |
∑

s=1

Ψ(Ωk(G̃2; νs, νp)KΩ
k(G̃2; νs, νi, νp),−L (G1),−L (G2))xs(0). (7)

∇2(k) =

|V |
∑

s=1

Ψ(Ωk(G̃2; νs, νi, νp),−L (G1),−L (G2))xs(0). (8)

∇i(k) = [Φ(Ωk(G̃1; νi, νp),−L (G1))− Φ(Ωk(G̃2; νi, νp),−L (G2))]xi(0)
a
= [Φ(Ωk(G̃1; νi, νp)KΩ

k(G̃1; νi, νi, νp),−L (G1)) + Φ(Ωk(G̃1; νi, νi, νp),−L (G1))−

Φ(Ωk(G̃2; νi, νp)KΩ
k(G̃2; νi, νi, νp),−L (G2))− Φ(Ωk(G̃2; νi, νi, νp),−L (G2))]xi(0)

b
= [Φ(Ωk(G̃1; νi, νi, νp),−L (G1))− Φ(Ωk(G̃2; νi, νi, νp),−L (G2))]xi(0)

= {[−L (G1)]ii ck−1(G1; νi, νp)− [−L (G2)]ii ck−1(G2; νi, νp)}xi(0)

= [(−d−
G1
{νi})ck−1(G1; νi, νp)− (−d−

G1
{νi}+ 1)ck−1(G1; νi, νp)]xi(0) = −ck−1(G1; νi, νp)xi(0). (9)

∇j(k) = [Φ(Ωk(G̃1; νj, νp),−L (G1))− Φ(Ωk(G̃2; νj , νp),−L (G2))]xj(0)
1
= [Φ(Ωk(G̃1; νj, νp),−L (G1))− Φ(Ωk(G̃1; νj , νp)KΩ

k(G̃1; νj , νi, νp),−L (G2))]xj(0)
2
= [Φ(Ωk(G̃1; νj, νp),−L (G1))− Φ(Ωk(G̃1; νj , νp)KΩ

k(G̃1; νj , νi, νp),−L (G1))]xj(0)

= Φ(Ωk(G̃1; νj , νi, νp),−L (G1))xj(0)
3
= [−L (G1)]ij ck−1(G1; νi, νp)xj(0) = ck−1(G1; νi, νp)xj(0). (10)

∇̄(k) =
∑

s∈N|V |K{i,j}

[Φ(Ωk(G̃1; νs, νp),−L (G1))− Φ(Ωk(G̃2; νs, νp),−L (G2))]xs(0)
α
= 0. (11)

and terminate at nodeνp. Hence, fork 6 d(G1; νj , νp) − 1,
Ωk(G̃2; νs, νp) = Ωk(G̃1; νs, νp), sinceG̃1 and G̃2 differ only
at edge(νj , νi) and thus they have the same set of walks with
no (νj , νi) edge. Given thatΩk(G̃2; νs, νp) = Ωk(G̃1; νs, νp),
(5) can be rewritten as (6) at the top of the next page.
The next step is to partition the set of walksΩk(G̃2; νs, νp)
into two disjoint sets,Ωk(G̃2; νs, νp) and Ωk(G̃2; νs, νp) K

Ωk(G̃2; νs, νi, νp). Thence,∇(k) in (6) can be rewritten as
∇(k) = ∇1(k) + ∇2(k), where∇1(k) and∇2(k) are given
by (7) and (8), and they correspond to the contributions
made by the walks inΩk(G̃2; νs, νp) K Ωk(G̃2; νs, νi, νp)
and Ωk(G̃2; νs, νi, νp), respectively. To finish the proof of
part (i), note that∀W ∈ Ωk(G̃2; νs, νp) K Ωk(G̃2; νs, νi, νp),
ω(W ,−L (G1)) = ω(W ,−L (G2)), since any such walkW
includes neither of the edges(νi, νi) and (νj , νi), which
are the only edges at which−L (G1) and −L (G2) differ.
It is therefore true that∀s ∈ N|V |, Ψ(Ωk(G̃2; νs, νp) K

Ωk(G̃2; νs, νi, νp), −L (G1), −L (G2)) = 0, and∇1(k) = 0.
On the other hand, fromm 6 d(G1; νj , νp) −1 and(νj , νi) ∈
E1, it follows thatm 6 d(G1; νi, νp) 6 d(G1; νj , νp) −1, which
in turn implies thatΩk(G̃2; νs, νi, νp) = ∅. Because withm 6

d(G1; νi, νp) there can be noνsνp walks of lengthk in G̃2 with

(νs, νi) as an edge, for otherwise one can remove(νs, νi) and
construct aνiνp walk in G1, whose length is strictly less than
d(G1; νi, νp). Now fromΩk(G̃2; νs, νi, νp) = ∅ it follows that
∀s ∈ N|V |, Ψ(Ωk(G̃2; νs, νi, νp), −L (G1), −L (G2)) = 0
and∇2(m) = 0, as well. Thus far, it is shown that∇1(k) =
∇2(k) = 0, whence∇(k) = ∇1(k) + ∇2(k) = 0, completing
the proof fork 6 d(G1; νj , νp)− 1.

For the case ofk = d(G1; νj , νp) in part (ii), first note
that by conditioning on the choice of the start-nodes, the
summation in (5) can be can be rewritten as:∇(k) = ∇i(k)
+ ∇j(k) + ∇̄(k), where the three terms are defined in
(9) to (11) at the top, and they measure the contributions
due to the walks starting from nodesνi, νj , and the rest
of the nodes, respectively. In the following paragraphs, the
expressions for each of the the above three terms are simplified
in the respective order, leading to the equation in part(ii).

The first step in simplifying the expression of∇i(k) is
(
a
=), which follows by partitioning the setsΩk(G̃1; νi, νp)

and Ωk(G̃2; νi, νp). Next note that noνiνp of length m =
d(G1; νj , νp) can include(νj , νi) as an edge. This statement is
trivial in the case ofG̃2. To see why it is true forG̃1 as well,
suppose to the contrary that there exists aνiνp walk W1 of



lengthk with (νj , νi) as an edge. There is therefore a cycle
on νi whose length is at least2, and removing that fromW1

yields a newνiνp walk W2 with length at mostm− 2. Now
(νj , νi)W2 is aνjνp walk of length at mostm− 1, which is a

contraction, sincek = d(G1; νj , νi). The next step(
b
=) follows

upon the realization thatΦ(Ωk(G̃1; νi, νp) K Ωk(G̃1; νi, νi, νp),
−L (G1)) = Φ(Ωk(G̃2; νi, νp) K Ωk(G̃2; νi, νi, νp), −L (G2)),
which is true since none of the walks involved include any
of the edges(νj , νi) or (νi, νi). The rest of the equalities
in (9) follow through as a consequence of d(G̃1; νi, νp) =
d(G̃2; νi, νp) > k − 1, which implies that(νi, νi) is the one
and only self-loop that is included in any and all of the walks
in Ωk(G̃1; νi, νi, νp) or Ωk(G̃2; νi, νi, νp).

To simplify the expression for∇j(k), note that since
G̃2 is derived by removing edge(νi, νj), it holds true that
Ωk(G̃2; νj , νp) = Ωk(G̃1; νj , νp) K Ωk(G̃1; νj, νi, νp), which

leads to (
1
=) in (10). Next, sincek = d(G1; νj, νp) none

of the walks in Ωk(G̃1; νj , νp) include any self-loops. In
particular, any walkW ∈ Ωk(G̃1; νj , νp) K Ωk(G̃1; νj , νi, νp)
includes neither of the edges(νi, νi) and (νj , νi), thence

ω(W ,−L (G1)) = ω(W ,−L (G2)), implying (
2
=). To see

(
3
=), again bear in mind thatk = d(G1; νj , νp), together with
(νj , νi) ∈ E1, implies that d(G1; νi, νp) > k − 1 so that none
of the walks inΩk(G̃1; νj , νi, νp) include any self-loops.

Finally, if s 6∈ {i, j}, then ∀W ∈ Ωk(G̃1; νs, νp) ∪
Ωk(G̃2; νs, νp), {(νj, νi), (νi, νi)} ∩ W = ∅, since otherwise
it is possible to construct aνjνp walk in G1, whose length
is strictly less thank = d(G1; νj , νp). Hence, by an argument
similar to the one leading to∇1(k) = 0 in the proof of part
(i), Ωk(G̃1; νs, νp) = Ωk(G̃2; νs, νp) and∀W ∈ Ωk(G̃1; νs, νp)
= Ωk(G̃2; νs, νp), ω(W ,−L (G1)) = ω(W ,−L (G2)), which
justifies(

α
=) in (11). Putting all three together yields that∇(k)

= ∇i(k) + ∇j(k) + ∇̄(k) = ck−1(G1; νi, νp) (xj(0)−xi(0))
and the proposition holds true fork = d(G1; νj , νp) as well.
�

The following important remark highlights the key require-
ments that need to be satisfied if Theorem 1 is to be exploited
for detection and isolation of link failures.

Remark 1. In Theorem 1, if d(G1; νj , νp) = k, then
d(G1; νi, νp) > k − 1. On the other hand, the quantity
ck−1(G1; νi, νp)(xj(0) − xi(0)) that appears in part(ii) of
Theorem 1 is nonzero only if(xj(0) − xi(0)) 6= 0 and
d(G1; νi, νp) 6 k − 1 or in this particular case,d(G1; νi, νp)
= k− 1. Hence, if the existence of a jump discontinuity in the
k−th derivative of the output response at nodeνp is to serve
as the basis for a method to detect the failure of edge(νj , νi)
at time t = 0, then it should be true thatxj(0) − xi(0) 6= 0
and d(G1; νi, νp) = k − 1 < d(G1; νj , νp) = k. The latter
inequality is in perfect agreement with the sufficient condition
stated in Corollary 1 of [6].

In the next section, the focus is shifted to the problem
of sensor placement, such that in line with Remark 1, by
observing the jumps in the derivatives of the responses of
a subset of nodes, the designer can detect and/or isolate the

failure of any single link across the network.

IV. PLACEMENT OF THE SENSORS

Throughout this section,S = {xi, i ∈ Nn} is a multi-agent
system, withn ∈ N a fixed integer. The digraphG = (V , E )
is associated withS , whereV = {νs, s ∈ Nn} and∀s ∈ Nn,
νs corresponds toxs. Moreover,z ∈ Nn is a fixed integer
denoting the highest order of the derivatives of the responses
of the consensus dynamics onS , to which the designer has
access. Similarly, with{k, p, i, j} ⊂ Nn, the order of the
derivatives is denoted byk ∈ Nz , νp ∈ V is a node whose
response is being observed,ǫ := (νj , νi) ∈ E is an edge
whose failure at timet = 0 is to be detected and/or isolated
by the designer and it is further assumed thatxi(0) 6= xj(0),
i.e. whenever an edge fails, the state values at its head and tail
nodes do not coincide.

Given k ∈ Nz, let Rk andR0 be binary relations between
the vertices and edges ofG , such that∀νp ∈ V and∀ǫ ∈ E ,
whereǫ = (νj , νi) for some{νj , νi} ⊂ V , (νp, ǫ) ∈ Rj ↔
(d(G ; νj , νp) = k) ∧ (d(G ; νi, νp) = k − 1) and (νp, ǫ) ∈
R0 ↔ ∀k ∈ Nz, (νp, ǫ) 6∈ Rk. Note that withǫ = (νj , νi), by
definition (νi, ǫ) ∈ R1 and (νj , ǫ) ∈ R0.

The preceding definitions are motivated by the observation
made in Remark 1 that if the existence of jumps in the
k−th derivative of the response of a nodeνp is to serve as
an indicator for the failure of edge(νj , νi), then it should
hold true that(d(G ; νj , νp) = k) ∧ (d(G ; νi, νp) = k − 1).
The problems of detection and isolation are now posed and
addressed as sensor placement problems in the following [8],
[9].

Problem 1. [Detection]Given a digraphG = (V , E ), propose
a (preferably minimal) subset of verticesMD ⊂ V such that
∀ǫ ∈ E , ∃νp ∈ MD, (νp, ǫ) 6∈ R0.

Let MD ⊂ V be any solution to Problem 1, then a link
has failed at (the arbitrarily shifted) timet = 0 if, and only if,
there exists someνp ∈ MD andk ∈ Nz such thatdk

dtk xp(0
+)−

dk

dtk xp(0
−) 6= 0. That is, by observing the firstz derivatives of

the responses of all the nodes inMD, the designer determines
that a failure occurs if, and only if, a jump is observed in one
or more nodes inMD. For the isolation problem the following
extra tool will come handy. Given a subset of nodesM and
any edgeǫ ∈ E define theindicator set of ǫ w.r.t. M as
the functionI : P(V ) → P((Nz ∪ {0})× M ), given by
I (M ; ǫ) = {(k, νp) ∈ (Nz ∪ {0})× M ; (νp, ǫ) ∈ Rk}.

Problem 2. [Isolation] Given a digraphG = (V , E ), propose
a (preferably minimal) subset of verticesMI ⊂ V such that
MI is a solution to Problem 1 and∀α, β ∈ E , α 6= β ↔
I (MI ;α) 6= I (MI ;β).

Given a solutionMI to Problem 2, any edgeǫ is uniquely
determined by the set of ordered pairsI (M ; ǫ). Hence, the
edge ǫ has failed at (the arbitrarily shifted) timet = 0 if,
and only if, ∀(k, νp) ∈ I (M ; ǫ), k > 0, dk

dtk xp(0
+) −

dk

dtk xp(0
−) 6= 0, and ∀(0, νp) ∈ I (M ; ǫ), ∀m ∈ Nz,



dm

dtmxp(0
+)− dm

dtm xp(0
−) = 0. In other words, by observing the

first z derivatives of the responses of all the nodesνp in MI ,
the designer determines that the edgeǫ has failed if, and only
if, a jump is observed in thek−th derivative of the response
of any nodeνp for which (k, νp) ∈ I (M ; ǫ), k > 0, and no
jumps is observed in the firstz derivatives of the responses of
all nodesνp for which (0, νp) ∈ I (M ; ǫ).

In the following subsections, efficient algorithms are pro-
posed for the selection of the observation points, which are
the subsetsMD and MI satisfying the requirement of the
problems 1 and 2.

A. Detection of All Failures: Coverage

For all M ⊂ V definefD : PV ) → P(N|E |∪{0}), given
by fD(M ) = |{ǫ ∈ E ; ∀νp ∈ M , (νp, ǫ) ∈ R0}|. Note that
if {M̂ , M̄ } ⊂ P(V ) are such thatM̂ ⊂ M̄ , then for all
ν ∈ V it holds true thatfD(M̂ ∪{ν})− fD(M̂ ) 6 fD(M̄ ∪
{ν}) − fD(M̄ ), i.e. −fD(.) a submodular set function from
P(V ) to N|E |∪{0}, which satisfies the diminishing returns or
discrete concavity property [9]. Routine 1 uses this property
of the set functionfD to compute a solutionMD ⊂ V to
Problem 1 using an efficient greedy heuristic.

Routine 1 Determine a SolutionMD to Problem 1
Input: G = (V , E )

1: MD ⇐ ∅

2: while fD(MD) 6= 0 do
3: ν ⇐ argmin{fD(MD∪{ν})−fD(MD); ν ∈ V KMD}
4: MD ⇐ MD ∪ {ν}
5: end while

Output: MD

Remark 2. The functionfD(M1) measures the coverage of
set MD by counting the number of links that are not yet
covered byMD. At each iteration of Routine 1, the extra node
ν is selected and added toMD such that the number of newly
covered links is maximized. Note that since forǫ = (νj , νi),
(νi, ǫ) ∈ R1 it follows thatfD(V ) = 0, whence Routine 1 is
guaranteed to terminate.

B. Isolation of All Failures: Resolution

Similarly to the previous section, for allM ⊂ V define
fI : P(V ) → N|E | ∪ {0}, given byfI(M ) = |{ǫ ∈ E ; ∃ǫ̂ ∈
E K{ǫ},I (M ; ǫ) = I (M ; ǫ̂)}|, and note that−fI(.) is also
submodular. Thus, a greedy heuristic similar to the one in
Subsection IV-A can be used to compute a solutionMI ⊂ V

to Problem 2, as follows.

Remark 3. The functionfI(MI) measures the resolution of
setMI by counting the number of links that are not uniquely
identified through their relationsRk with the vertices of set
MI . At each iteration of Routine 2, the extra nodeν is selected
and added toMI such that the resultant improvement in the
resolution ofMI is maximized. Note that unlike Problem 1,
it is possible for Problem 2 to have no solutions at all, in

Routine 2 Determine a SolutionMI to Problem 2
Input: G = (V , E )

1: MI ⇐ ∅

2: while fI(MI) 6= 0 & MI 6= V do
3: ν ⇐ argmin{fI(MI ∪ {ν})− fI(MI); ν ∈ V KMI}
4: MI ⇐ MI ∪ {ν}
5: end while
6: if fI(MI) 6= 0 then
7: MI ⇐ ∅

8: end if
Output: MI

which case Routine 2 returns∅. This occurs if and only if
fI(V ) 6= 0.

V. EXAMPLES AND DISCUSSIONS

In the sequel,V = {νi, i ∈ N5} is a set of five vertices,
where for alli ∈ N5, vertexνi corresponds to agentxi in a
multi-agent systemS = {xi, i ∈ N5}. It is further assumed
that if a link (νi, νj), {i, j} ⊂ N5 fails att = tf , thenxi(tf ) 6=
xj(tf ).

(a) (b)

Fig. 1. A start digraph of size five and a directed cycle of length five are
depicted in (a) and (b), respectively.

As the first example, consider the case of a start network
(Fig. 1(a)), where there are four edges in the network and allof
them share the same head vertexν5. In this case, the designer
can detect the failure of any single edge in the network by
observing the first derivative of the response ofx5; however,
there are no subset of nodes that can be observed for isolating
the failed edge. In factf2(V ) = 4 in the case of a star network,
and every edge of the network is in the same relationsR1 with
the nodeν5 andR0 with the rest of the nodes.

As the second example, consider a cycle (Fig. 1(b)), whose
edge set is given byE = {ǫi, i ∈ N5}, where fori ∈ N4, ǫi =
(νi, νi+1) andǫ5 = (ν1, ν5). Associate with every vertexνi a
row vectordi with five columns, whose element[di]j , j ∈ N5

is equal tok if (νi, ǫj) ∈ Rk for somek ∈ N4 ∪ {0}. Let
D ∈ R

5×5 be the matrix whosei−th row is equal todi for
all i ∈ N5. ThenD is given by:



D =













0 4 3 2 1
1 0 4 3 2
2 1 0 4 3
3 2 1 0 4
4 3 2 1 0













. (14)

It is evident from matrixD that any two distinct vertices
will offer a solution MI to Problem 1, since the locations
of 0 entries do not overlap for distinct vertices. Thence, the
designer can detect the failure of any links in the cycle network
by observing the jumps in the first four derivatives of any
two nodes in the network. In the same vein, any set of two
distinct vertices can also be used to uniquely determine which
link has failed based on the observed jumps in the first four
derivatives. For instance, takingM2 = {ν2, ν3}, ǫ1 is the only
edge whose failure will produce a jump in the first and second
derivatives ofx2(t) and x3(t), respectively, at the time of
failure, t = tf . Figs 2 and 3 depict the responses of the second
and third agents as well as their derivatives, for a directed
cycle of length five initialized atx(0) = (1, 2, 3, 4, 5)T , where
for all t ∈ R, x(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))

T . The
edgeǫ1 is removed at timetf = 5, and as a result, the first
derivative ofx2(t) and the second derivative ofx3(t) exhibit
jump discontinuities attf = 5.
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Fig. 2. The output responsesx2(t) andx3(t) are plotted for0 6 t 6 10.
The link failure happens attf = 5, where there is a break in the plot of
x2(t) but not ofx3(t).

The above generalizes for finite cycles and stars of arbitrary
size. In particular, there is no solution to the isolation problem
for any star network and detection can be achieved by observ-
ing the first derivative of the common head vertex. For a cycle
on the other hand, if all derivatives upto one less than the the
network size are observed, then any two nodes offer a solution
to not only the detection, but also the isolation problem.

VI. CONCLUSIONS

In this paper, a method was developed, both analytically
and algorithmically, that enables the designer of a multi-agent
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Fig. 3. The derivatives ofx2(t) and x3(t) are plotted for0 6 t 6 10.
At the time of failuretf = 5, there are jump discontinuities in the plots of
d
dtx2(t) and d2

dt2
x3(t). The plot of d2

dt2
x2(t) contains an impulse attf = 5,

while d
dtx3(t) is a continuous function of time.

system to detect and isolate single link failures, based on the
observed jumps in the derivatives of the output responses of
a subset of nodes under the Laplacian consensus dynamics.
Two theorems were presented, which relate the jumps in the
derivatives at the time of failure to the distance of the the
failed link from the observation point. In the proofs, the graph
Laplacian can be replaced with any well-defined in-weighting
on the graph, so that the extension to general (non-Laplacian)
linear dynamics is possible. Any sufficiently regular nonlinear
dynamics can be linearized at pointt = 0 (the time of link
failure), thence a generalization to nonlinear network dynamics
is also foreseeable. In the future, the authors hope to formalize
such extensions.
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