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Abstract— A recent paper by some of the authors introduced
several self-triggered coordination algorithms for first-order
continuous-time systems. The extension of these algorithms
to second-order agents is relevant in many practical appli-
cations but presents some challenges that are tackled in this
contribution and that require to depart from the analysis that
was carried out before. We design a self-triggered gossiping
coordination algorithm that induces a time-varying communi-
cation graph, which is enough connected to guarantee useful
convergence properties, and allows us to achieve the desired
coordination task in a formation of double-integrator agents
that (i) establish pair-wise communication at suitably designed
times and (ii) exchange relative measurements while reducing
the sensing and communication effort.

I. Introduction

In a number of recent works [12], [18], [7], [6], [19], [5],

authors have been focusing on cooperative control problems

in which the agents do not exchange information continu-

ously but rather at times that are decided based on current

local measurements. These coordination strategies can be

of two types: event-triggered or self-triggered coordination

control. The focus of this paper is on the second class of

coordination control algorithms and is inspired by the so-

called self-triggered gossiping algorithms of [6].

The term “self-triggered gossiping” refers to the way in

which agents establish communication: each pair of agents

connected by an edge of an undirected graph decide in real-

time the next sampling time based on the local measure-

ments. The design of these sampling times by a pair of

connected nodes is performed in a completely independent

way from the other pairs and results in an asynchronous

information exchange pattern. Moreover, this approach can

lead to a significant reduction of communication and sensor

activity: at each sampling time the sensors of the connected

agents switch to active mode, exchange measurements, com-
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pute the next sampling time and then go to sleep mode until

the next sampling time is reached.

The focus in [6] was on first-order multi-agent systems.

Nevertheless, as argued in [2], [16], in the majority of coor-

dination problems neglecting the dynamics of the systems is

not possible. In this paper we take a first step towards the de-

sign of self-triggered gossiping algorithms for second-order

linear systems: we design and analyze a self-triggered coor-

dination control algorithm that achieves practical rendezvous

of double-integrator agents with guaranteed dwell-time. By

practical rendezvous it is meant that the agents converge to

a neighborhood of the rendezvous point, where the size of

the neighborhood can be tuned at will by a parameter in

the controller. This parameter also regulates the value of the

induced dwell-time. Although the rendezvous problem for

double integrators that we treat here represents a very special

class of coordination problems for multi-agent systems, it is

usually a useful starting point for understanding more general

problems that include, e.g., formation achievement, unknown

reference velocity recovery and disturbance rejection [2],

[16], possibly for agents with nonlinear dynamics.

Besides the extension to a more general class of multi-

agent systems, one of the main contributions of this work is

the link that we establish between event-based coordination

control and a recently proved sufficient condition for the

convergence of consensus algorithms, involving very general

cut-balance conditions [8]. Indeed, one of the difficulties that

we face when going from first-order to second-order agents is

that the Lyapunov-based analysis that was pursued in [6] can

not be directly extended. Instead of insisting on the search

for an appropriate Lyapunov function (a topic that could

nevertheless be of interest for future research), we pursue

here a different approach relying on the results of [8].

Comparison with existing literature

This paper enlarges the class of systems for which the self-

triggered distributed control proposed in [6] applies. In doing

so, it explores a new investigation line based on the cut-

balance condition of [8]. The current manuscript still exhibits

a few of the features of the approach in [6], which makes

the contribution different from those in [18] and [7]. In brief,

when compared with [18], our approach requires polling

neighbors rather than broadcasting information to them, a

feature that was inspired by [12], where it was employed in

problems of deployment for agents with dynamics different

from those considered in our paper. With respect to [7],

relative measurements of single-hop neighbors are used and a

guaranteed dwell-time is ensured. Other works that focus on

event-triggering cooperative control are [5], that deals with
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event-triggered practical synchronization of linear systems,

and [19], where event-triggered output synchronization of

passive systems is studied. The main difference of our work

with [5] and [19] lies in the approach chosen to design the

triggering functions.

Our approach is inspired by non-smooth coordination

algorithms [4], [9] in which the task is achieved using

binary information. This suggests that coordination does not

require very precise information. Our triggering functions are

designed in such a way that information is collected only

when measurements are expected to change their signs. As

a secondary result of this design, the term in the control that

is due to inter-agent interaction takes value in a finite set, a

feature that simplifies the analysis of the overall system.

Linear consensus systems have been the object of numer-

ous studies, both in discrete and continuous time (see for

example the surveys [15], [17]). Typical results establish

convergence to exact consensus provided that the graph

describing the interactions remains always connected, or

satisfies some so-called repeated connectivity condition. The

specific aspect that interests us here is that, under some weak

form of symmetry of the interactions, convergence (though

not necessarily to consensus) is guaranteed independently of

the connectivity of the interaction graph. Moreover, simple

conditions for two agents to converge to the same value are

then available. These results were established for continuous-

time system in [8]. Related observations for discrete-time

systems were made in [3], [11], [10], (see also references

in [8]).

Paper organization

The paper is organized as follows. In Section II, we

discuss about the motivation for our work. In Section III we

introduce the algorithm as a hybrid system and comment on a

few of its features. In Section IV the main convergence result

is stated and proved. Numerical simulations are discussed in

Section V. The last section is devoted to the conclusions and

to a few directions for future research.

II. Motivation: Rendezvous of second-order agents

We consider a set of double integrators

ṗi = vi

v̇i = τi, i ∈ I := {1, . . . , n}
(1)

with pi, vi, τi ∈ R, distributed over a connected graph G =

(I, E), where E = {1, 2, . . . ,m} is the set of the edges. We let

A = [ai j] be a weighted adjacency matrix associated to the

graph, with aii = 0 for all i ∈ I and ai j = 0 if j < Ni, where

Ni = { j ∈ I : (i, j) ∈ E} is the set of the neighbors of i.

We assume the matrix A to be symmetric, i.e., we assume

ai j = a ji for all i, j in I.

For the distributed system above, several coordination

problems can be formulated. In this paper we focus on

a rendezvous problem in which the agents converge to a

common point with velocity which asymptotically vanishes.

More complex coordination problems can be formulated, as

discussed for instance in [2]. If for the sake of simplicity we

restrict ourselves to the case in which the non-zero entries

of the adjacency matrix are equal to 1 (this condition will be

removed starting from Section III), the rendezvous problem

for the system (1) is known (see e.g. [1]) to be solvable by

the distributed feedback law

τi = −2gvi +

n
∑

j=1

ai j(p j − pi), (2)

for any positive gain g. Furthermore, under this law the

agents rendezvous to a point which can be computed as

a function of the initial conditions. Indeed, the closed-loop

system is described by the compact form

ṗ = v

v̇ = −2gv − Lp.

If we denote the average of a vector y ∈ Rn as ave(y) =
1
n

∑n
i=1 yi, we observe that the average of positions and

velocities satisfies

d

dt
ave(p(t)) = ave(v(t))

d

dt
ave(v(t)) = −2g ave(v(t)).

Then, integration yields that

ave(p(t)) = ave(p(0)) +
1 − e−2gt

2g
ave(v(0)) (3)

and taking the limit as t→ ∞, it gives that p∗ = ave(p(0))+
1

2g
ave(v(0)).

Continuous-time distributed control algorithms like (2) are

well-known in the literature. Less attention has been paid to

algorithms which do not require a continuous exchange of

information among the agents. In this paper we investigate

a variation of (2) in which agents communicate in a pair-

wise fashion at instants that are determined in real-time. The

motivation to the design of the algorithm presented below

originates in the following result that is established in [9].

Proposition 1 In the case ai j ∈ {0, 1}, for any g > 0, all the

Krasowskii solutions to

ṗi = vi

v̇i = −2gvi −

n
∑

j=1

ai jsign(p j − pi), i ∈ I
(4)

where sign(·) : R→ {−1, 0,+1} is the function

sign(p) =



















+1 p > 0

0 p = 0

−1 p < 0,

converge to the point (p∗, 0).

We omit the definition of Krasowskii solutions for which

we refer the reader to e.g. [9]. We stress that the result above

points out that to achieve the coordination task the controllers

must only keep track of the zero-crossing events occurring to

the relative position pi− p j. The algorithm that we introduce

in the next section exploits this observation and devises a

strategy that achieves rendezvous by activating the position

sensors only at times when pi − p j is expected to reach zero.
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III. Self-triggered gossiping

Following [6], the proposed consensus algorithm is de-

scribed by a network of hybrid systems. This choice allows

us to present the algorithm in a concise yet expressive way.

We focus on a hybrid algorithm to achieve consensus for

double integrators inspired by the so-called self-triggered

gossiping algorithm of [6] that was proposed for multi-agent

systems modeled as single integrators.

We begin by introducing the additional states necessary to

the agents for implementing our algorithm. For each agent i

and neighbor j of i, we let u
j

i
∈ {−1, 0, 1} be a ternary state

that represents the sign (up to a threshold ε) that p j − pi

had the last time that it was measured, and θ
j

i
∈ R≥0 be the

remaining time until the next measurement of p j − pi. Our

algorithm will ensure that θi
j
= θ

j

i
, so that i measures p j − pi

at the same time as j measures pi − p j, and u
j

i
= −ui

j
. The

state vector for each agent is thus

ξi = (pi, vi, u
1
i , . . . , u

ni

i
, θ1i , . . . , θ

ni

i
),

where ni denotes the degree of node i, that is the number of

its neighbors.

The algorithm is described by the following dynamics. For

each i ∈ I, for all times at which θ
j

i
> 0 for every neighbor

j of i,































ṗi = vi

v̇i = −2gvi +
∑n

j=1 ai ju
j

i

u̇
j

i
= 0, j ∈ Ni

θ̇
j

i
= −1, j ∈ Ni,

(5)

and for times at which θ
j

i
= 0 for at least one neighbor j of

i, i.e., times at which a measurement is made,


























































p+
i
= pi

v+
i
= vi

u
j+

i
=

{

signε(p j(t) − pi(t)) if θ
j

i
= 0

u
j

i
(t) otherwise

θ
j+

i
=

{

f
j

i
(p(t), v(t)) if θ

j

i
= 0

θ
j

i
(t) otherwise

(6)

where f
j

i
is an appropriate mapping defined below, and signε

denotes a sign function with a threshold ε (which is a design

parameter):

signε(x) =



















+1 x > ε

0 |x| ≤ ε

−1 x < −ε.

The algorithm is initialized in such a way that θ
j

i
(0) = θi

j
(0)

and u
j

i
(0) = −ui

j
(0) for all (i, j) ∈ E. These assumptions

guarantee that θ
j

i
and θi

j
remain equal for all times, and

therefore that u
j

i
= −ui

j
. However, in the following analysis

we assume θ
j

i
(0) = 0, so that all controls are updated at time

zero: while our main statements also apply to the general

case, derivations become more involved.

The following lemma introduces a mapping f
j

i
guarantee-

ing that (i) the periods of time between two measurements

of the same relative position remain larger than a certain

positive bound, and (ii) if two agents are separated by more

than ε when they measure their relative positions, they do

not cross (i.e., their relative position keeps the same sign)

before the next measurement. Its proof is omitted due to

space limitations.

Lemma 1 Define

f
j

i
(p, v) =



































|pi − p j|

2(|vi − v j| +
di+d j

2g
)

if |pi − p j| ≥ ε

ε

2(|vi − v j| +
di+d j

2g
)

if |pi − p j| < ε,
(7)

where we denote dk =
∑n
ℓ=1 akℓ. For a given trajectory of (5),

(6) with the mapping f
j

i
as above, define for each pair of

connected nodes (i, j) the sequence of consecutive measure-

ment times t
i j
m by t

i j

0
= 0 and t

i j

m+1
= t

i j
m + fi(p(t

i j
m), v(t

i j
m)).

(i) For all m it holds true that

t
i j

m+1
− t

i j
m ≥

ε

2(|vi(0) − v j(0)| +
di+d j

2g
)
. (8)

(ii) If |p j(t
i j
m) − pi(t

i j
m)| ≥ ε, then for all t ∈ [t

i j
m, t

i j

m+1
], there

holds

|p j(t) − pi(t)| ≥
|p j(t

i j
m) − pi(t

i j
m)|

2
, (9)

and sign(p j(t) − pi(t)) = sign(p j(t
i j
m) − pi(t

i j
m)).

A few comments are in order after this result.

Remark 1 (Dwell time) By definition of θ
j+

i
, after agent i

has collected the measurements about its neighbor j at time

t, at least f
j

i
(p(t), v(t)) units of time must elapse before the

agents polls again the neighbor. In view of (8), this event

does not occur earlier than

ε

2(|vi(0) − v j(0)| +
di+d j

2g
)

units of time. In other words, given a compact set of

initial velocities of the formation, for any pair of agents

connected by a link in the graph G, there exists a minimal

inter-sampling time between two consecutive information

exchange between these two agents. This is related to the

notion of uniform semi-global dwell-time available in the

event-based control and discussed e.g. in [13]. Moreover,

since (5) evolves as a linear system during continuous

evolution, the solution to (5), (6) exists over each inter-

switching interval. As no accumulation of switching times

in finite time exists, then the solution to (5), (6) exists for

all t and is unique. In particular, the sequence t
i j
m defined in

Lemma 1 is divergent, and contains all the sampling times

of the position of j relative to i and vice-versa.

Remark 2 (Relative measurements) Consistently with the

control law (2), the piecewise constant term defined by u
j

i

only requires to measure the inter-agent relative position p j−

pi. Nevertheless, in order to compute the next sampling time,

the agent i needs information on the magnitude of both the

relative position p j − pi and the relative velocity vi − v j.
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Remark 3 (Use of local information) In view of (5), the

control that each agent i applies is τi = −2gvi +
∑n

j=1 ai ju
j

i
.

The first term is a damping term that depends on a quantity

that is available to agent i (its velocity). As such, this

information has not to be retrieved from the neighboring

agents, and it is assumed that it is available continuously

at each time. The second term is a consensus-like term that

depends on information related to neighboring agents. To

reduce the interaction between the agents, this information

is acquired only at the sampling times.

Remark 4 (Synchrony of clock variables) As we antici-

pated, the clock variables θ
j

i
and θi

j
are equal for all time.

This is a consequence of the chosen initialization and of the

definition of f
j

i
(p, v) in which |pi − p j| and |vi − v j| appear.

Remark 5 (Dynamics of the average) Formula (3) also

holds for system (5), (6), because ai j = a ji for every i, j ∈ I.

IV. Analysis and main result

The hybrid system (5), (6) is useful to properly define the

consensus algorithm that we are investigating and to explain

how the agents collect information from their neighbors.

However, to the purpose of analyzing the convergence prop-

erties of the system, we find convenient to “embed” it into

a first-order consensus algorithm as in [14]. This is possible

(for large enough g) because the p, v state variables remain

unchanged during discrete evolution. We denote by t
i j
m the

largest sampling time smaller than t, i.e., t
i j
m = max{t

i j

ℓ
: t

i j

ℓ
<

t}, for all m ∈ N (a slightly abusive notation since t
i j
m is really

a function of t). Then, for all t ∈ [t
i j
m, t

i j

m+1
] the evolution of

p, v is equivalently described by

ṗi(t) = vi(t)

v̇i(t) = −2gvi(t) +

n
∑

j=1

ai jsignε(p j(t
i j
m) − pi(t

i j
m)).

(10)

The following Lemma, whose proof could not be included

due to lack of space, provides a change of variables which

is instrumental to our main result.

Lemma 2 Define

βi j(p(t)) =



















ai j

|p j(t) − pi(t)|
if |p j(t

i j
m) − pi(t

i j
m)| ≥ ε

0 if |p j(t
i j
m) − pi(t

i j
m)| < ε.

Then, for i, j ∈ I, the coefficients βi j(x(t)) are non-negative

and such that for any trajectory there exists a β0 > 0 for

which βi j(x(t)) is either 0 or larger than β0.

Assume that g ≥

√

2di

ε
for i ∈ I, where di =

∑n
j=1 ai j. Then,

the change of coordinates [14]

yi =
1

g
vi + pi, i ∈ I (11)

x2i−1 =pi, x2i = yi, i ∈ I (12)

transforms system (10) into system

ẋh =

2n
∑

k=1

αh,k(xk − xh), (13)

where the coefficients αh,k are

α2i−1,2i(t) = g, α2i,2i−1(t) = g −
1

g

n
∑

k=1

βik(p(t)),

α2i,2 j−1(t) =
1

g
βi j(p(t)), j , i,

and all others are zero. These coefficients αh,k are nonnega-

tive and can be seen as the entries of the adjacency matrix

of a weight-balanced graph G̃ (i.e.,
∑

k αh,k =
∑

k αk,h) with

node set Ĩ = {1, . . . , 2n}.

This lemma allows us to transform the network of second-

order dynamics in (10) into a network of first-order dynam-

ics, and then to apply the convergence criteria in [8] on the

resulting graph G̃. We are then ready to prove the main result

of this paper.

Theorem 1 Consider the self-triggered gossiping algorithm

(5), (6) where ai j = a ji are the entries of the adjacency matrix

associated to a connected graph G = (I, E), ε > 0 is an

arbitrary constant, and g satisfies g ≥

√

2di

ε
for i ∈ {1, . . . , n}.

Assume that θ(0) = 0. Then, the solution to (5), (6) converges

asymptotically to a point in

{(p, v) : |p j − pi| ≤ ε ∀(i, j) ∈ E, v = 0}. (14)

Moreover, there exists a finite time T such that |p j(t)−pi(t)| ≤

ε and u
j

i
(t) = 0 for all t > T and (i, j) ∈ E.

Proof: Having shown in Lemma 2 that the weighted

graph G̃ corresponding to the first-order consensus algorithm

(13) is weight-balanced, by Proposition 1(c) in [8] we

can conclude that it satisfies the more general cut-balance

condition therein, and therefore that Theorem 1 from the

same paper applies. It follows from this theorem that (i) all

xk converge, i.e. x∗
k
= limt→∞ xk(t) exists for every k, and

(ii)
∫ ∞

t=0
αkh(s)ds = ∞ implies x∗

k
= x∗

h
. Observe that for any

i ∈ {1, . . . , n}, the coefficient α2i−1,2i(t) = g linking pi to

yi = pi + vi/g satisfies the condition
∫

+∞

0
α2i−1,2i(t)dt = ∞.

Therefore, there holds p∗
i
= x∗

2i−1
= x∗

2i
= y∗

i
= p∗

i
+ v∗

i
/g and

thus by (11) v∗
i
= limt→∞ vi(t) = 0.

We now show the existence of a time after which all

active controls are 0. Consider a pair of agents i, j connected

in the graph G and suppose, to obtain a contradiction,

that there is a diverging sequence of times at which u
j

i
is

nonzero. Observe that by (5) and (6), u
j

i
can only change

from zero to nonzero and vice-versa at the measurement

times tm
i j

, which were shown in Lemma 1 to differ from

each other by at least some positive lower bound. u
j

i
must

thus be positive on infinitely many intervals of length larger

than this lower bound. Moreover, whenever u
j

i
is positive,

it follows from Lemma 2 that α2i,2 j−1(t) ≥
β0

g
. So there

must hold
∫ ∞

0
α2i,2 j−1(t)dt = ∞, and therefore (by (ii) above)

y∗
i
= x∗

2i
= x∗

2 j−1
= p∗

j
. Remembering that y∗

i
= p∗

i
, this

implies that |pi(t) − p j(t)| converges to 0, and remains thus

smaller than ε after a certain time t̄i j. But by the definition of

our algorithm in (5) and (6), u
j

i
becomes then 0 after the first
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measurement time t
i j
m that follows t̄i j, in contradiction with

our assumption that it is nonzero on a diverging sequence of

times. Thus, there is a time T ′ after which u
j

i
(t) = 0 for all

t > T ′.

Having eventually zero controls implies that |p∗
i
− p∗

j
| ≤ ε

for all (i, j) ∈ E, for otherwise the continuity of pi−p j and the

definition of u
j

i
would imply that u

j

i
always remains positive

after a certain time. Moreover, after the time T ′, since u = 0,

each agent behaves autonomously according to ṗi = vi, v̇i =

−2gvi. Solving for the velocity yields vi(t) = vi(T )e−2g(t−T ),

whose integration leads to pi(t) = Ki −
vi(T )

2g
e−2g(t−T ) for some

constant Ki. Taking the limit, we see that limt→∞ pi(t) = Ki,

and therefore that Ki = p∗
i
, so that pi(t) = p∗

i
−

vi(T )

2g
e−2g(t−T ).

As a consequence, each relative position p j(t) − pi(t) = p∗
j
−

p∗
i
− e−2g(t−T ) v j(T )−vi(T )

2g
evolves monotonously. Since we have

already proved for any (i, j) ∈ E that there holds |p∗
j
− p∗

i
| ≤ ε

and that |p j(t
i j
m) − pi(t

i j
m)| ≤ ε at every measurement time

t
i j
m > T ′, this monotonicity implies that |p j(t) − pi(t)| ≤ ε

holds for all t > T for some T > T ′.

As opposed to Theorem 1, we recall that in (4), the gain

g can be any positive number. Actually, the numerical study

in the next section shows that convergence occurs even if

g is below the threshold given in the statement above. In

fact, the condition on g is only sufficient and is a technically

assumption needed to guarantee that the induced graph G̃

is weight-balanced. Proving convergence while lifting this

assumption remains an interesting open question.

V. Simulations

We have simulated the proposed system (5), (6) using

cycle and line graphs of different sizes, starting from random

initial conditions sampled from uniform distributions. Sim-

ulations confirm the insights from our theoretical analysis.

Specifically, we report about the case of a line graph with

five nodes, choosing three different values of the gain g. The

interest in line graphs depends on their natural occurrence

in one-dimensional problems, e.g., involving platoons of

vehicles moving on a straight line. As expected, simulations

show that positions converge asymptotically to a configura-

tion which is close to rendezvous, while velocities converge

to zero. At steady state the positions of consecutive agents

differ by no more than ε, in full accordance with Theorem 1.

Consistently, the components of the active controls that are

due to the inter-agent interaction become zero after a finite

time, when rendezvous is approximately reached. After that

time velocities exponentially die out.

As we already mentioned, the condition on g does not

seem necessary for convergence. Indeed, the simulations

depicted in Figures 2 and 3 refer to values of g below

the threshold given in Theorem 1, and nevertheless show

convergence. Actually, trajectories are smoother and may

converge faster for smaller gains. However, if we compare

Figures 1 and 2 against Figure 3, we observe that for

small enough gains the trajectories may intersect. This aspect

asks for further investigation, as in some applications these

intersections may represent collisions between agents.

VI. Conclusions

We have introduced a self-triggered gossiping algorithm to

achieve rendezvous in formations of second-order agents. In

the analysis we exploit ideas from self-triggered coordination

algorithms in combination with tools for consensus under

very general conditions. This paper represents an initial

step towards a full understanding of the problem, as many

questions are left open. In fact, we design and analyze

a coordination algorithm for a class of linear multi-agent

systems that are connected over an undirected connected

graph. The generality of the methods of [8], namely the lack

of any assumption on how the coefficients vary (with the

exception of the cut-balance condition), makes us think that

similar results can be achieved for more general classes of

connecting graphs, possibly time-varying.

Robustness is a critical feature for self-triggered control

algorithms. In [6] robustness to clock skews, delays and

quantization was investigated. We envision a similar study to

be developed for the algorithms introduced in this paper. In

fact, we expect such a robustness property to hold provided

that new triggering functions are designed to guarantee the

sign preservation property of Lemma 1 in the presence of

uncertainties. We also remark that by an appropriate redesign

of the triggering rules, the self-triggered algorithms of [6]

achieve also asymptotic coordination. Whether this redesign

is possible with the triggering rules introduced in this paper

is also a topic for future study.

We have focused on a basic (yet important) coordination

task, namely the rendezvous problem. Many other coordina-

tion tasks can be investigated, possibly taking into account

important features such as collision avoidance. Whether these

problems can be solved by the self-triggered coordination

controls introduced in this paper is left to future investigation.
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Fig. 1. Simulation of system (5), (6) on a line graph with n = 5 nodes, ε = 0.02, and g = 14.84. The condition on g in Theorem 1 is satisfied. Initial
positions in [0, 1], null initial velocities.
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Fig. 2. Simulation of system (5), (6) on a line graph with n = 5 nodes, ε = 0.02, and g = 5.65. Condition on g in Theorem 1 is not satisfied. Initial
positions in [0, 1], null initial velocities.
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Fig. 3. Simulation of system (5), (6) on a line graph with n = 5 nodes, ε = 0.02, and g = 1.41. Condition on g in Theorem 1 is not satisfied. Initial
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