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Observer Based Controller For Single Track Vehicles

Habib Dabladji, Dalil Ichalal, Hichem Arioui and Saı̈d Mammar

Abstract— The present work deals with the observer based-
controller design for nonlinear Powered Two-Wheelers Vehicles
(PTW) modeled in Takagi-Sugeno fuzzy representation. Based
on the Lyapunov method and Linear Matrix Inequality (LMI)
formulation, sufficient conditions have been derived to prove
the Input to State Stability (ISS) property of the nonlinear
PTW model with such a controller.

The main contribution of this paper is that the whole stability
of the couple observer-controller is studied by designing the
observer and the controller separately and proving the ISS of
the whole nonlinear PTW model. The aim here is to ensure
a best profile tracking of the PTW in term of roll preview
(trajectory) for large range of longitudinal velocities.

I. INTRODUCTION

In the last decade, the car fleet increased significantly with
the motorcycles one. Several works were carried out in order
to enhance safety and comfort to automobile conductors.
However, a significant time delay can be clearly noted in the
case of motorcycles. This can be confirmed by the increase
of motorcycle’s fatalities (20 times higher when driving a
car) [1].

The time delay in the development of control safety
systems for motorcycles can be explained by different
factors. Economically, the PTW market is less interesting
comparing to car one and the resources in research and
program development are paltry. Moreover, riders believe
that they do not need safety and restrictive systems which
alter their experience or their freedom of riding. Finally, from
an engineering point of view, PTW are inherently unstable
nonlinear systems whose properties strongly depend on travel
velocity.

To this fact, the design of stabilizing or safety con-
troller for such vehicles is particularly challenging. To our
knowledge, the study proposed in [5] were probably the
first to stabilize a motorcycle using nonlinear equations of
motion derived from a highly simplified model. Since the
21st century, many contributions have been given to the
modeling and the study of motorcycles dynamics [2], [11],
[17]. Nevertheless, a few works have been done on the
control of motorcycles and a little more on the observation
and the estimation of state variables and external inputs.
In [13], a robust feedback stabilization based on a linear
model at low speed has been presented. Optimal control
techniques have been explored in [9] and [18]. In the second
one, it has been combined with preview control and gain
scheduling techniques. But in both works, any proof of the
global stability of the vehicle in all riding conditions has
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been given. In [15], an optimal control has been suggested
based on the projection operator approach, but the controllers
are optimized for a specific maneuver. In [4], [7] Genetic
algorithms and fuzzy techniques have been used to control
motorcycles for a set of forward velocities and roll angles,
but as like as said before, we cannot get any proof of the
stability in all riding conditions. Based on a 2 degrees of
freedom model, a linearizing control for trajectory tracking
for an autonomous motorcycle was proposed in [22].

Furthermore, sparsely works deal with the estimation
of the dynamics of PTW. The estimate of the roll angle
was proposed in [19] but with the neglect of the steering
dynamics. The observation of steer angle was proposed in
[3] with a scheduling gains missing the estimation conver-
gence guarantee. More recently, a higher order sliding mode
observer was proposed to estimate the lateral dynamics and
steering torque in [12]. The same authors proposed also a
study on state and unknown input estimation by exploring
the Takagi-Sugeno systems and linear matrix inequalities in
[6].

To the best of our knowledge, the simultaneous estimation
and control of the lateral dynamics of PTW with a study of
the closed-loop response have never been addressed for a
large range of longitudinal velocity.

The paper is organized as follows: in section II, we
state the problem. In section III, we present the motorcycle
model used in this work. The observer and the controller are
developed in section IV and V. The simulation results of this
work are given in section VI. We finish by the conclusion
and the appendix.

II. PROBLEM STATEMENT

The main objective of this work is to design a TS-fuzzy
observer based controller in order to estimate the important
unmeasurable state variables that affect the lateral dynamics
of PTW (roll angle (φ ), lateral velocity (vy) and the lateral
forces (Fy f andFyr)), to guarantee the whole stability of the
PTW and at the same time to ensure a trajectory tracking
objective which is given by a reference roll angle (a safe
roll preview with respect to a velocity).

The class of systems that will be treated is given by
equations (1).

⎧

⎪

⎪

⎪
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⎪
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⎪

⎩

ẋ(t) =
n
∑

i=1
µi(x)Aix(t)+B1r(t)+B2u(t)

h1(t) = C11x(t)
h2(t) = C12x(t)
y(t) = C2x(t)+Dw(t)

(1)

x(t) ∈R
n×1 is the state vector,u(t) ∈R

nu×1 is the control
input, y(t) ∈ R

ny×1 is the output vector,r(t) ∈ R
1×1 and



w(t) ∈ R
nw×1 are respectively the reference signal and the

noise measurement andh1(t) ∈ R
nh1×1 and h2(t) ∈ R

nh2
×1

are respectively the sensitivity signals of the observer and
the controller. Note that the premise variables depend on
unmeasurable state variables.

Because of the presence of uncontrollable external signals
(noise measurements and reference signal) and unmeasur-
ables premise variables, we cannot apply the separation
principle to prove the stability of the observer-based con-
troller. To this end, we use the property of Input to State
Stability (ISS) that will guarantee the boundedness of the
state estimation error and trajectory tracking error.

In what follow and to prove the convergence of the ob-
server based-controller proposed in this work, the following
definition is used.

Definition 1: [8] Given a systemΣ and its state trajectory
defined by: ˙x(t) = f (x(t),u(t)). The system (Σ) verifies the
Input To State Stability (ISS) if there exists aK L function
β : Rn×R −→ R and aK function α : R −→ R such that
for each inputu(t) satisfying‖u(t)‖∞ < ∞ and each initial
conditionsx(0), the trajectory of (Σ) associated tox(0) and
u(t) satisfies:

‖x(t)‖2 ≤ β (‖x(0)‖ , t)+α (‖u(t)‖∞) (2)

The definition of aK L and aK function can be found
in the same refernce.

III. M OTORCYCLEDYNAMICS

A. Nonlinear model
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Fig. 1. Geometrical representation of the Sharp’s motorcycle model

Here, the lateral dynamics of a motorcycle are represented
by a model with four equations [16] due essentially to the
effect of lateral forces from the front and rear wheels (Fy f

andFyr) and the yaw and roll motions under rider’s steering
actions. The study of such a model aims to reconstruct the
state variables of a motorcycle in cornering situation.

These motions are expressed by the following equations
which correspond respectively to the lateral, yaw, roll and

steering dynamics:
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⎪

⎪

⎩

Mv̇y+M f kψ̈ +
(

M f j +Mrh
)

φ̈ +M f eδ̈ = Fy f +Fyr

M f k
(

v̇y+vxψ̇
)

+a2φ̈ +a3ψ̈ +a1δ̈ −a4vxφ̇

−
i f y

Rf
sinεvxδ̇ +M f kvxψ̇ = ∑Mz

(

M f j +Mrh
)

v̇y+b2φ̈ +a2ψ̈ +b1δ̈ +b5vxψ̇

+
i f y

Rf
cosεvxδ̇ = ∑Mx

M f ev̇y+b1φ̈ +a1ψ̈ +c1δ̈ −
i f y

Rf
cosεφ̇ +c3vxψ̇

+Kδ̇ = ∑Ms

(3)

where:
⎧

⎨

⎩

∑Mz = l f Fy f − lrFyr

∑Mx = b4sin(φ)−b3sin(δ )
∑Ms = −b3sin(φ)−c2sin(δ )−ηFy f + τ

(4)

The lateral forcesFy f andFyr acting, respectively, on the
front and rear wheels depend on the sideslip anglesα f and
αr and the camber anglesγ f and γr , and are expressed by:

{

σ f
vx

Ḟy f =−Fy f −Cf 1α f +Cf 2γ f
σr
vx

Ḟyr =−Fyr −Cr1αr +Cr2γr
(5)

where α f =

(

vy+l f ψ̇−ηδ̇
vx

)

− δ cos(ε), αr =
(

vy−lr ψ̇
vx

)

,

γ f = φ +δ sin(ε) and γr = φ
In this work, a normal riding is considered (without taking

into account the limit situations) which justifies the linear
form of the lateral forcesFy f and Fyr with respect to both
sideslip and camber angles.

By adding the mathematical expressions of the forces to
the motorcyle dynamics and by choosing the state vector as
x(t) = [φ δ vy ψ̇ φ̇ δ̇ Fy f Fyr]

T , the system is rewritten as
follows:

Eẋ(t) = Ã(x(t),vx)x(t)+ B̃τ(t) (6)

The obtained model is the same as the one used in [6], [10].
We suggest readers to refer to this articles for more details
on the matricesE, B̃ and Ã(x) and their parameters.

B. Exact TS model of the nonlinear motorcycle model and
augmented system with sensitivity signals

In order to express the model in TS fuzzy structure, let us
consider the following nonlinearities:

z1 = vx, z2 =
sin(φ)

φ
(7)

It can be seen that only two nonlinearities are considered
in the model presented in the previous section. This is due
to small values taken by the steering angleδ (t), and the
consideration that the lateral forces obey to linear equations.
We suppose also that the roll angle does not exceed 45◦

Without loss of generality, the motorcycle model can be
rewritten as:

ẋ(t) =
4
∑

i=1
µi(vx,x)Aix(t)+Bτ(t) , y(t) =Cx(t)+Dw(t)

whereAi = E−1Ãi , B = E−1B̃ and Ãi corresponds to the
TS formulation ofÃ, y is the output vector andw(t) includes
measurement noises. In order to ensure a state trajectory
tracking with respect to a desired roll angle, we added a



new state variable given by:eφ =
∫ t

0(φ −φr)dt , whereφ is
the real roll angle andφr is the one to be tracked.

We add also sensitivity signals. The signalh1 corresponds
to the observable part that should be sensitive to noise
measurement. We choose our sensitivity signals as high
pass filters with a cut-off frequency of 20Hz to filter high
frequencies of noises measurements, whereei is the state
estimation error that corresponds to(x− xe). The second
sensitivity signalh2 corresponds to the controller part. It is
chosen as a lower pass filter. Its cut-off frequency is chosen
equal to the biggest unstable frequency of motorcycles which
corresponds to the wobble mode (about 8∼ 10Hz).

h1i =
3s

s+30π ei , h2 =
40π

s+20π (φ −φr)
Thus, we will obtain an augmented TS-fuzzy system as

described in (1). In what follow, we may omit sometimes
time variablet for brevity and we writeµi and µ̂i instead of
µi(vx,x) and µi(vx, x̂) respectively.

IV. OBSERVER DESIGN

The objective of this section is to design a nonlinear
observer for TS-fuzzy systems.

The following nonrestrictive assumptions can be made.
Assumption 1:In the remaining it is supposed that
• The statex is bounded (stable or stabilized motorcycle)
• The pairs(Ai ,C2) are observable
• The measurement noise signals are bounded
The first assumption holds in open loop for a reduced

longitudinal speed range and the pairs(Ai ,C2) are considered
to be observable to guarantee solutions to the LMI problem.

A. State estimation

Let us consider the nonlinear observer given by

˙̂x=
4

∑
i=1

µ̂i (Ai x̂+Li(y− ŷ))+B1r +B2u , ŷ=C2x̂ (8)

Let us consider the state estimation errore(t) = x(t)− x̂(t).
The matricesLi ∈R

n×ny of the observer are to be determined.
Using equations (1) and (8), we obtain the following state
space representation:

ė=
4

∑
i=1

µ̂iΦie+Δ−LiDw , h1 =C11e (9)

where:Φi = Ai −LiC2 , Δ =
4
∑

i=1
(µi − µ̂i)Aix

According to the hypothesis of assumption 1 and the
convexity of µi , the termsΔ andw are also bounded.

B. Observer’s convergence study

The observer (8) will be synthesized by solving the
optimization problem under LMI constraints given in the
Theorem 1 in order to ensure the convergence of the observer.

Theorem 1:Under the Assumption 1, if there exists a
symmetric and positive definite matrixP1, gain matricesZi

and positive scalarsε1, ε2 and ε3 solution to the following
optimization problem,i = 1, ...,4

min
P1,Zi ,ε1,ε2,ε3

ζ1ε1+ζ2ε2+ζ3ε3 (10)

s.t.
⎛

⎜

⎜

⎝

Ωi P1 −ZiD CT
11

P1 −ε1I 0 0
−(ZiD)T 0 −ε1I 0

C11 0 0 −ε3I

⎞

⎟

⎟

⎠

< 0 (11)

where:Ωi = AT
i P1+P1Ai −ZiC2−CT

2 ZT
i

andζ1, ζ2 andζ3 are positive weighting scalars.
Thus the state errors are bounded. The gains of the

observer are computed fromLi = P−1
1 Zi . The attenuation

level of the transfers fromΔ(t) and from w(t) to state
estimation error are bounded and given respectively by the
quantities

√

ε1ε3

‖C11‖
2
2

and
√

ε2ε3

‖C11‖
2
2
.

The state estimation errors guarantee the Input To State
Stability (ISS) is given by the following property:

‖e(t)‖2 <

√

λmax(P1)

λmin(P1)
‖e(0)‖0 e−

η
2 t +

√

ε1ε3

‖C11‖
2
2

‖Δ(t)‖∞+

√

ε2ε3

‖C11‖
2
2

‖w(t)‖∞

(12)

The scalarsεi are then chosen sufficiently small in order
to have the minimal transfer fromΔ(t) and w(t) to state
estimation error.

Proof: In order to prove the convergence of the state
estimation errors, let us consider the following Lyapunov
function:V1(t) = eT(t)P1e(t)

According to the equation (9), the time derivative ofV1(t)
is given by:

V̇1(t) =
4

∑
i=1

µ̂ie
T (ΦT

i P1+P1Φi
)

e(t) (13)

+ eTP1Δ+ΔTP1e−eTP1LiDw−wTDLT
i P1e

To attenuate the transfer from the perturbation signals to the
sensitivity signals, we must satisfy (14) withεi |(i=1,...3) are
positive scalars:

ε−1
3 hT

1 h1 < ε1ΔTΔ+ ε2wTw (14)

A sufficient condition to satisfy the stability of the error
estimation and the inequality (14) is to solve the following
LMI (15):

V̇1(t)+ ε−1
3 hT

1 h1− ε1ΔTΔ− ε2wTw< 0 (15)

Which is equivalent to (16):
⎛

⎝

Ωi + ε−1
3 CT

11C11 P1 Γi

P1 −ε1I 0
ΓT

i 0 −ε2I

⎞

⎠< 0 (16)

whereΓi = ZiD
Applying the Schur’s lemma, we can easily find the LMI

given in theorem (1).
Knowing that:

λmin(P1)‖e(t)‖2
2 ≤V1(t)≤ λmax(P1)‖e(t)‖2

2 (17)

one obtains from (15) the inequality:

V̇1 <−η1V1+ ε1ΔTΔ+ ε2wTw (18)

whereη1 is a positive scalar given by:η1 =
ε−1
3 ‖C11‖

2
2

λmin(P1)



It follows:

V1(t) < V1(0)e
−η1t

+ ε1

t
∫

0

e−η1(t−s) ‖Δ(s)‖2
2ds+ ε2

t
∫

0

e−η1(t−s) ‖w(s)‖2
2

< V1(0)e
−η1t +

ε1

η1
‖Δ(t)‖2

∞ +
ε2

η1
‖w(t)‖2

∞ (19)

Using again the relation (17), we obtain:

‖e(t)‖2
2 <

λmax(P1)

λmin(P1)
‖e(0)‖2

2e−η1t

+
ε1

η1λmin(P1)
‖Δ(t)‖2

∞ +
ε2

η1λmin(P1)
‖w(t)‖2

∞

<
λmax(P1)

λmin(P1)
‖e(0)‖2

2e−η1t

+
ε1ε3

‖C11‖
2
2

‖Δ(t)‖2
∞ +

ε2ε3

‖C11‖
2
2

‖w(t)‖2
∞ (20)

This is equivalent to (12) by using the square root.
According to Lyapunov formulation of Input To State

Stability (ISS), the state errors converge to a region which
will be minimized in order to achieve a more accurate
estimation of the vehicle states. This region is as small as the
constantsεi are smaller. To enhance the performances of the
observer, a minimal values of these quantities are obtained
by minimizing the cost function given by (10).

V. CONTROLLER DESIGN

The objective of this section is to design a fuzzy controller
based on the estimated states.

As like as in the previous section, the following nonre-
strictive assumptions can be made.

Assumption 2:In the remaining it is supposed that

• The pairs(Ai ,B) are controllable
• The reference signal is bounded

A. Feedback control law

The controller proposed in this work is based on the state
estimation. Its aim is to make the motorcycle stable in all
defined forward velocities. Moreover, we try to track a state
space trajectory which is given by a reference roll angle.

Considered the system given by (1) and the control law:

u=−
4
∑

i=1
µ̂iKi x̂. Thus, the closed loop system is given by:

ẋ=
4

∑
i=1

µ̂iΞix+B1r +Δ+B2Kie , h2 =C12x (21)

where:Ξi = Ai −B2Ki

B. Closed-loop Observer based controller’s convergence
study

In the absence of measurement noise, we can easily apply
the separation principle to design an observer and a controller
separately (see [21] for more details). But in our case, by
designing them separately, we cannot prove the stability of
the observer based controller. Knowing thatΔ and r are
bounded and as like as in the previous section, we will prove

the ISS of the closed-loop system together with the observer
part.

Theorem 2:Under the Assumption (2), if there exists a
symmetric and positive definite matrixX2, gain matricesYi

and positive scalarsε4, ε5 and ε6 solution to the following
optimization problem,i = 1, ...,4

min
X2,Yi ,ε4,ε5,ε6

ζ4ε4+ζ5ε5+ζ6ε6 (22)

s.t.
⎛

⎜

⎜

⎝

Πi I B1 X2CT
12

I −ε4I 0 0
BT

1 0 −ε5I 0
C12X2 0 0 −ε6I

⎞

⎟

⎟

⎠

< 0 (23)

where:Πi = AiX2+X2Ai −B2Yi −YT
i BT

2
andζ4, ζ5 andζ6 are positive weighting scalars.
Then the state vector is bounded. The gains of the con-

troller are computed fromKi =YiX
−1
2 . The attenuation level

of the transfers fromΔ(t), from r(t) and fromw(t) to state
vector and to state estimation error is bounded and depends
proportionately to scalarsεi (i = 1, ...,6).

The scalarsεi are then chosen sufficiently small in order
to have the minimal transfer from disturbance signals to state
vector.

Proof:
In order to prove the stability of the state vector

x(t), let us consider the following Lyapunov function:
V2(t) = xT(t)P2x(t)

According to the equation (21), the time derivative ofV2(t)
is given by:

V̇2(t) =
4

∑
i=1

µ̂i

(

xTϒix
)

+ f (e)

+ xTP2 (Δ+B1r)+
(

ΔT + rTBT
1

)

P2x (24)

where: ϒi = P2(Ai − B2Ki) + (Ai − B2Ki)
TP2 and

f (e) =
4
∑

i=1
µ̂i
(

xTB2Kie+eTKT
i BT

2 x
)

Noting that combining equations (13) and (24), we obtain
a BMI problem. A solution to this problem was proposed in
[20] by resolving the LMIs in 2 steps but they lead to a lot
of conservatism for the observer based-controller solution.

Inspired by [21], we use the separation principle to prove
the ISS stability of our system with perturbation and unmea-
surable premise variables by treating each part separately and
without taking into account the bilinear terms in the solution.

Let us consider:dV2a(t) = V̇2− f (e)
To attenuate the transfer from the perturbation signals to

the sensitivity signals, we must satisfy (25):

ε−1
6 hT

2 h2 < ε4ΔTΔ+ ε5rT r (25)

We propose to solve the following LMI (26):

dV2a(t)+ ε−1
6 hT

2 h2− ε4ΔTΔ− ε5rT r < 0 (26)

This yields to the following inequality:
⎛

⎝

ϒi + ε−1
6 CT

12C12 P2 P2B1

P2 −ε4I 0
BT

1 P2 0 −ε5I

⎞

⎠< 0 (27)



Note that the LMI (27) is equivalent to (23) given in
theorem (2) by multiplying at left and at right by a Matrix
T (T = diag[P−1

2 I I ]) and applying the Schur’s lemma with
X2 = P−1

2 andYi = KiX2. If the later holds, this implies:

V̇2(t)<−η2‖x‖2
2+ w̃T ε̃w̃+ f (e) (28)

where:η2 = ε−1
6 ‖C12‖

2
2 and w̃= (ΔT rT)T

Using the fact that:

λmin(P2)‖x‖2
2 ≤ V2(t) (29)

∂V2

∂x
≤ η3‖x‖2 (30)

η3 > 0 (31)

This imply:

f (e) =
∂VT

2

∂x

4

∑
i=1

µ̂iB2Kie (32)

< η3

4

∑
i=1

µ̂ ‖B2Ki‖2‖x‖2‖e‖2 (33)

one obtains the inequality:

V̇2 <−η2‖x‖2
2+α ‖x‖2‖e‖2+ w̃T ε̃w̃ (34)

with α >
4
∑

i=1
µ̂ ‖B2Ki‖2

It follows

V̇2 < −
η2

2
‖x‖2

2

−
η2

2

(

‖x‖2
2−

2α

η2
‖x‖2‖e‖2+

(

α

η2
‖e‖2

2

)

−

(

α

η2
‖e‖2

2

))

+ w̃T ε̃w̃

< −
η2

2
‖x‖2

2+
α

2η2
‖e‖2

2+ w̃T ε̃w̃

< −
η2

2λmax(X2)
V2+

α

2η2λmax(P1)
V1+ w̃T ε̃w̃ (35)

Combining (18) with (35), we obtain:
(

V̇1
V̇2

)

<

(

−η1 0
α

2η2λmax(P1)
− η2

2λmax(X2)

)(

V1
V2

)

+

(

ε2 0 ε3
ε4 ε5 0

)

⎛

⎝

‖Δ‖2
2

‖r‖2
2

‖w‖2
2

⎞

⎠ (36)

The matrix multiplied by the vector (Vi) is a negative
definite matrix. As explained in the proof of theorem 1,
this confirms the ISS of the observer based controller and
the convergence of the all the state variables to a region
which will be minimized in order to achieve a more accurate
estimation of the states, stability of the controlled system and
an accurate trajectory tracking. This ball is as small as the
constantsεi are smaller. To enhance the performances of the
observer, a minimal values of these quantities are obtained
by minimizing the cost function given by (10) and (22).

VI. SIMULATION RESULTS

The nonlinear system, including longitudinal and lateral
dynamics of two-wheeled vehicle is used. It requires three
inputs: the rider’s steering torque applied on the handlebars
(which is our control input) and the two longitudinal torques
applied on both front and rear wheels. It takes into account
all the important nonlinearities of motorcycle model and
moreover the lateral forces are used in their nonlinear form
given in [14]. The control of the longitudinal part has not
been taken in consideration.

The observer estimating the lateral dynamics and steering
torque using only the measured statesψ̇ and φ̇ given by the
inertial unit andδ̇ and δ obtained from a suitable encoder.
The longitudinal velocity is considered varying from 10m/s
to 20m/s

In the absence of noise measurement the results are in
figures (2,3). We see that all the state variables are well
estimated except the lateral velocity, but the boundedness
of the error estimation is always guaranteed.
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Fig. 2. (top) actual roll angle (blue) and estimated roll angle (below) and
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Fig. 3. actual states (blue) and estimated states (red)

In order to test the observer in the presence of measure-
ment noise, let us consider the same observers parameters
and assume that the measurement signals are affected by
a centered and random noise with magnitude 5% of the
maximal values of the measured variables. The obtained
results are depicted in the figures (4,5). The states are then



well estimated except also the lateral velocity but it is always
bounded.
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Fig. 5. actual states (blue) and estimated states (red) and measured states
(green)

We see that in both cases, only the lateral velocity has
significant error estimation. The lateral velocity is one of the
hardest states to observe accurately and this can be confirmed
by the well-conditioned nature of the observability and con-
trollability matrices. However; because of the insignificant
values of the lateral velocity compared to the longitudinal
one, we can explain why this error does not affect the
performances of the roll angle tracking.

VII. C ONCLUSION

In this paper, an observer based controller is proposed to
estimate the lateral dynamics of an autonomous single track
vehicle and to track a desired roll angle. A nonlinear model is
then considered and transformed to a TS fuzzy structure. The
observer based controller is designed to ensure a best profile
tracking of the PTW in term of roll preview for a large range
of longitudinal velocities. The specificity of this work is the
inclusion of the noise measurement and the unmeasurable
premise variables. Moreover and from the engineering point
of view, to our knowledge, designing a controller or an
observer based controller and proving its stability for a
large range of forward velocities has never been done.

The convergence study of the couple observer-controller is
studied using Lyapunov theory and LMI conditions are given
to ease the design of the observer based controller. It is
pointed out that this couple guarantees the ISS property.
Simulation results are provided to illustrate the effectiveness
of the proposed observer based controller even with noise
measurements. In future work, the nonlinear model will be
redefined to take into account the dynamics of an actuation
system. This will be achieved in order to automate a scooter
and to get a steering torque more filtered. Some validation
results with this motor will be published in future works.
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