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Abstract— Networked multi-agent systems are widely mod-
eled as graphs where the agents are represented as nodes and
edges exist between the agents that interact directly. In this
setting, the degree of a node is the number of edges incident
to it. For such systems, degree regularity (uniformity of degree
across the nodes) typically provides desirable properties such as
robustness and fast mixing time. As such, a key task is to achieve
degree regularization in a decentralized manner. In this paper,
we present a locally applicable rule that achieves this task.
For any connected initial graph, the proposed reconfiguration
rule preserves the graph connectivity and the total number of
edges in the system while minimizing the difference between
the maximum and the minimum node degrees.

I. INTRODUCTION

Multi-agent networks have been used to characterize a
large number of natural and engineered systems such as
protein networks, social networks, communication systems,
transportation systems, power grids, and robotic swarms, to
name a few. Such systems can be represented via their inter-
action graphs where the nodes correspond to the agents and
the edges exist between the agents having direct interaction
(e.g., [1], [2], [3]). Although the nature of these systems
can be quite different, the impact of the interaction graph
on the system behavior turns out to be a common feature.
Therefore, various system properties such as robustness
(how severely the system is influenced by perturbations of
process/local components) and mixing time (how rapidly
information spreads throughout the network) are usually
analyzed through the topology of the interaction graph (e.g.,
[4], [5], [6], [7]). Robust interaction graphs with fast mixing
times are desirable in numerous multi-agent applications
including, but not limited to, flocking and swarming (e.g.,
[8]), sensor coverage (e.g., [9]), distributed estimation (e.g.,
[10]), and distributed control of robotic networks (e.g., [11]).

Node (or edge) connectivity is one of the fundamental
robustness measures in graph theory. A graph is said to be
k-node (or edge) connected if at least k nodes (or edges)
must be removed to disconnect the graph. In general, graphs
with higher connectivity have higher robustness to random
failure of its components [4]. An arguably richer measure
of robustness, and also mixing time, is the expansion rate.
Expansion rate of a graph is quantified in terms of node, edge
or spectral expansions. Node and edge expansions are refined
notions of connectivity, whereas spectral expansion is given
by the spectral gap of the adjacency matrix. Graphs with high
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expansion rates are called expanders. Expanders are usually
sparse yet well-connected, hence they are robust and they
have fast mixing times. A detailed overview of expanders
along with their numerous applications are presented in [12].

One class of graphs known to be excellent expanders
is Ramanujan graphs [13], which are contained within the
family of regular graphs. A graph is called a d-regular graph
if each node has d edges incident to it. Moreover, a d-regular
graph is Ramanujan if its spectral gap is greater than or
equal to d− 2

√
d− 1. Regular graphs are one of the widely

studied families of graphs due to their prevalence and typical
properties such as robustness and fast mixing. For instance,
it is known that almost every d-regular graph has a node
connectivity d [14]. Furthermore, for d ≥ 3, almost every
d-regular graph is Ramanujan [15], [16]. In other words,
for d ≥ 3, if a graph is picked uniformly at random from
the set of all possible d-regular graphs having n nodes, the
probability of picking a Ramanujan graph approaches 1 as
n increases.

Robustness and fast mixing in random regular graphs
motivate the question of how a given system can be recon-
figured so that the agents have similar (equal if possible)
degrees. One possible way of achieving this by a central
authority observing the whole graph structure is presented in
[17], where random neighbors of maximally connected nodes
are rewired to minimally connected nodes until a regular
configuration is achieved. In this work, we study how such
reconfiguration can be achieved in a decentralized fashion.

In this paper, we present a locally applicable rule that
achieves the decentralized degree regularization. This re-
configuration rule only demands the nodes to have in-
formation available within their immediate neighborhoods.
Furthermore, it preserves the graph connectivity and the total
number of edges in the system. This rule induces stochastic
dynamics of the graph topology, and we show that any
feasible trajectory of the resulting system is a minimizing
sequence for the difference between the maximum and the
minimum node degrees in the system (with a probability 1).
This difference converges to 0 if a regular graph is achievable
with the available number of edges, and it converges to 1
otherwise.

The organization of this paper is as follows: Section II
presents some preliminaries. Section III presents the decen-
tralized degree regularization problem and the proposed so-
lution. Section IV provides some simulation results. Finally,
Section V concludes the paper.



II. PRELIMINARIES

In this section, we present some tools and definitions from
graph theory that will be used in the remainder of this paper.

An undirected graph, G = (V,E), consists of a set of
nodes, V , and a set of edges, E, given by unordered pairs of
nodes. A graph is connected if there exists a path between
any pair of nodes. A path is a sequence of nodes such that
an edge exists between any two consecutive nodes in the
sequence. A path is called a simple path if it contains no
repeated nodes. Any two nodes are said to be adjacent if
an edge exists between them. We refer to the set of nodes
adjacent to any node, i ∈ V , as its neighborhood, Ni, defined
as

Ni = {j | (i, j) ∈ E}. (1)

For any node i, the number of nodes in its neighborhood
is called its degree, di, i.e.,

di = |Ni|, (2)

where |Ni| denotes the cardinality of Ni. For any graph G,
we use δ(G), ∆(G) and d̄(G) to denote the minimum, the
maximum and the average degrees, respectively. A graph is
said to be d-regular, if all the entries of its degree vector
are equal to d. The degree irregularity of a graph can
be measured via the difference of the maximum and the
minimum node degrees in the system. Let f(G) be a function
defined as

f(G) = ∆(G)− δ(G). (3)

We refer to f(G) as the degree range.
In our setting, nodes will seek to achieve the minimization

of the degree range by rearranging their neighborhoods
according to certain rules based on locally available infor-
mation. In this context, we adopt the framework of graph
grammars [18]. Graph grammars provide a systematic rep-
resentation for local rules by encoding them in label (state)
dependent local graph transformations. Some graph grammar
preliminaries are presented next.

A rule is represented by an ordered pair of labeled graphs,
r = (gl, gr), where the labels represent the node states. As
such, a rule is a change in the edge set that transforms
graphs isomorphic to gl to graphs isomorphic to gr. The
graphs gl and gr have the same node set, and the number of
nodes in this set is called the rule size. A rule is said to be
applicable to a graph G, if G has a subgraph isomorphic to
gl. A grammar, Φ, is a set of rules.

An initial graph G0 along with a grammar Φ defines a sys-
tem represented as (G0,Φ). Note that (G0,Φ) defines a non-
deterministic dynamical system since, at any instant, many
rules in Φ may be simultaneously applicable, possibly via
intersecting subgraphs. A trajectory, τ , of a system (G0,Φ)
is a sequence (finite or infinite) of graphs {G0,G1, . . .}, where
each Gk+1 in the sequence is obtained from Gk via the
application of some rules in the grammar Φ. A trajectory
is finite if and only if no rules are applicable to the final
graph on the trajectory.

III. DECENTRALIZED DEGREE REGULARIZATION

The decentralized degree regularization problem is a prob-
lem of finding a decentralized scheme to minimize the degree
range in a networked system while preserving its connectivity
and the total number of edges. Preservation of connectiv-
ity is vital for various applications. Without connectivity,
information and interactions cannot spread throughout the
network, and certain parts behave independently as separate
systems. Preservation of the total number of edges bounds the
number of resources used in the system. Each edge represents
an interaction typically requiring a power consumption, an
information exchange, a measurement, or a physical link.
As such, sparsity (having a small number of edges) is an
important feature of networked systems. For instance, one
can always come up with a local rule leading to a complete
graph, which has the ultimate robustness and mixing time,
but not a good option for large systems due to the lack of
sparsity. Hence, we assume that the initial configuration of a
given system is built using a certain number of available
resources (edges), and we search for a rather desirable
reallocation of these edges. In particular, we search for a
set of locally applicable rules (a graph grammar) and define
the decentralized degree regularization problem as follows.

Definition (Decentralized Degree Regularization Problem):
Find a graph grammar, Φ, such that any trajectory τ =
{G0,G1, . . .} of (G0,Φ), where G0 = (V,E0) is a connected
graph, is (with probability 1) a minimizing sequence for
the degree range, f(Gk), subject to Gk being connected and
|Ek| = |E0| for every Gk ∈ τ .

As a solution to the decentralized degree regularization
problem, we propose a grammar, Φ∗, that consists of a single
rule. In this grammar, we set the label of a node to be its
degree, and we define Φ∗ as

s

r

* s + 1

r − 1

*

, s < r

where s, r and ∗ denote the degrees of the corresponding
nodes. The rule requires s < r, whereas * is arbitrary and it
is unaffected by the application of the rule.

In accordance with Φ∗, nodes behave as follows: Let i
and j be two adjacent nodes, and let r and s denote their
degrees respectively. If s < r, then a link is formed between
j and an arbitrary neighbor of i, say h, that is not currently
linked with j. At the same time, the link between i and h is
terminated. Note that Φ∗ only requires information available
within local neighborhoods. If each node knows the degrees
of its immediate neighbors, then whenever Φ∗ is applicable,
at least one node will be able to detect it.

One of the important properties for distributed systems
is concurrency. In a concurrent system, multiple subsystems
may operate simultaneously at any time instant. In graph



grammars, concurrency is modeled by the commutativity
of rule applications. That is to say, if an application of
a rule needs the output of an other rule application, then
these events need to happen sequentially. Since Φ∗ consists
of a single rule, at any instant it can be simultaneously
executed at distinct locations on the graph. In order to
represent the concurrency in the system, for any trajectory
τ = {G0,G1, . . .}, let Ck = {c1, c2, . . . , cm} denote the
set of distinct ordered node triplets that are involved in the
concurrent applications of Φ∗ to Gk. The ordered triplets in
Ck can be represented as

cp = {s′p, r′p, ∗′p}, ∀p = 1, 2, . . . , |Ck|, (4)

where s′p, r
′
p, ∗′p ∈ V denote the nodes involved in the

corresponding application of Φ∗ with labels (degrees) s, r,
and ∗, respectively. Note that for every cp, cq ∈ Ck, if p 6= q,
then cp ∩ cq = ∅.

We start our analysis of Φ∗ by first showing that the re-
sulting trajectories satisfy the constraints of the decentralized
degree regularization problem.

Proposition 3.1 Let G0 = (V,E0) be a connected graph,
and τ = {G0,G1, . . .} be an arbitrary trajectory of the system
(G0,Φ∗). Then, Gk is connected for every Gk ∈ τ .

Proof: (Induction) Let Gk and Gk+1 be two consecutive
graphs in τ , and let Gk be connected. Furthermore, let Ck

denote the set of distinct node triplets, each of them given as
in (4), involved in concurrent applications of Φ∗ at instant k.
If Gk is connected, then for every node pair, i and j, there
exists a finite simple path P from i to j. If P does not have
a subsequence of the form {r′p, ∗′p} (or {∗′p, r′p}), for any
p = 1, 2, . . . , |Ck|, then P is a valid path on Gk+1 as well.
Otherwise, if P constains such subsequences, replace those
{r′p, ∗′p} (or {∗′p, r′p}) in P with {r′p, s′p, ∗′p} (or {∗′p, s′p, r′p})
to obtain a valid path between i and j on Gk+1. Hence, if
G0 = (V,E0) is connected, then every Gk ∈ τ is connected.

Proposition 3.2 Let G0 = (V,E0) be a graph, and
τ = {G0,G1, . . .} be an arbitrary trajectory of the system
(G0,Φ∗). Then, |Ek| = |E0| for every Gk ∈ τ .

Proof: Φ∗ contains a single rule that preserves the
number of edges in the system. Hence it is not possible to
change the number of edges in the system via Φ∗, and the
number of edges remain constant along any trajectory τ .

Note that if the number of edges is constant along any
trajectory of the system (G0,Φ∗), then so is the average
degree of nodes, d̄.

Corollary 3.3 The average degree, d̄, is constant along any
trajectory of the system (G0,Φ∗).

Next, we present the equilibrium points for Φ∗. These
equilibrium points are the graphs such that Φ∗ is not ap-
plicable anywhere on them. We are particularly interested in

equilibrium points that are connected graphs, since we have
already shown that Φ∗ maintains connectivity.

Proposition 3.4 Let G = (V,E) be a connected graph. G
is an equilibrium point for Φ∗ if and only if G is a regular
graph.

Proof:
⇒:(Contradiction) Let G be an irregular graph. Since G is
connected, if G is irregular, then there exists i, j ∈ V such
that (i, j) ∈ E and di > dj . Note that di = |Ni \Nj |+ |Ni∩
Nj |+ 1 and dj = |Nj \Ni|+ |Ni∩Nj |+ 1. If di > dj , then
|Ni \ Nj | − |Nj \ Ni| > 0 implying |Ni \ Nj | > 0. Hence,
for such i and j, node i always has a neighbor that is not
adjacent to node j. Consequently, Φ∗ is applicable to G and
it is not an equilibrium point.
⇐: If G is a regular graph, then by definition all the nodes
have the same degree. So, there is no pair i, j ∈ V such that
(i, j) ∈ E and di > dj . Consequently, Φ∗ is not applicable
anywhere on the graph G, and G is an equilibrium point.

Note that for a given initial configuration, G0, the mainte-
nance of connectivity and the total number of edges define
a feasible set of graphs. In general, depending on G0, this
feasible set may not contain an equilibrium point for Φ∗. In
particular, if the average degree of the initial configuration,
d̄0, is not an integer, then the feasible set does not contain any
regular graph. Hence, we want to address two questions: 1)
if the feasible set includes equilibrium points, will (G0,Φ∗)
converge to an equilibrium point?, 2) how does (G0,Φ∗)
behave if the feasible set does not contain any equilibrium
point?

We address these two questions by inspecting how the
degree range behaves along the possible trajectories of
(G0,Φ∗). For any trajectory, τ = {G0,G1, . . .}, let τf =
{f(G0), f(G1), . . .} be the degree range sequence along the
trajectory τ . Firstly, we will prove the convergence of τf by
showing that it is bounded below and it is monotonically
decreasing.

Proposition 3.5 Let G be a graph, and let f(G) be its degree
range. Then, f(G) ≥ 0. Furthermore, f(G) = 0 if and only
if G is a regular graph.

Proof: By definition ∆(G) ≥ δ(G), and we have
f(G) = ∆(G) − δ(G) ≥ 0. Moreover, δ(G) ≤ di ≤ ∆(G)
for all i = 1, 2, . . . , n. Hence, if ∆(G) − δ(G) = 0, we
obtain di = δ(G) = ∆(G) for all i = 1, 2, . . . , n. For such a
case, each node has the same degree, and the corresponding
graph is regular.

Proposition 3.6 Let Gk and Gk+1 be consecutive graphs on
a trajectory τ of the system (G0,Φ∗). Then, their degree
ranges satisfy

f(Gk+1)− f(Gk) ≤ 0. (5)

Proof: We prove this by showing that, under Φ∗, ∆ is
monotonically decreasing, and δ is monotonically increasing.



For the sake of contradiction, let us assume that ∆ increases
using Φ∗. Then, a node with maximum degree participates
in an application of Φ∗ as the s-labeled node. However, the
rule requires s < r, and by definition we have ∆ ≥ di for
any node i in the system. Hence, we reach a contradiction.
Similarly, let us assume that δ decreases using Φ∗. Then,
a node with minimum degree participates in an application
of Φ∗ as the r-labeled node. However, the rule requires
s < r and by definition we have di ≥ δ for any node
i in the system. Hence, again we reach a contradiction.
Consequently, we obtain f(Gk+1)− f(Gk) ≤ 0.

Corollary 3.7 Let τ = {G0,G1, . . .} be an arbitrary tra-
jectory of (G0,Φ∗). Then, the degree range sequence τf =
{f(G0), f(G1), . . .} converges to a finite integer τ∗f .

Proof: In light of Proposition 3.5, τf is bounded below.
Furthermore, Proposition 3.6 states that it is monotonically
decreasing. Hence, one can conclude that τf is a convergent
sequence, and since f(G) is an integer valued function, it
converges to a finite integer τ∗f .

Next, we will prove that any τf converges to the minimum
possible value that can be achieved using |E0| edges. Note
that (G0,Φ∗) is a non-deterministic dynamical system since,
at any instant, a node may have multiple neighbors having
degrees smaller than its own degree. Furthermore, for each
such neighbor, the node may have multiple neighbors that
can participate as * to the application of the rule. In such
cases, one combination is randomly chosen among the pos-
sible rule applications by assigning a non-zero probability
to each option. In this setting, the resulting dynamics is
non-deterministic, and each time step k, the set denoting
the concurrently applied rules, Ck, is a random variable. We
will prove that, under the stochastic dynamics of (G0,Φ∗),
τf almost surely converges to the minimum feasible value.

Let Pr(m;G) denote the probability that in m time steps
(G,Φ∗) reaches a graph with a smaller degree range. Note
that, since f is monotonically decreasing on any trajectory
of (G,Φ∗), we have

Pr(m;G) ≤ Pr(m′;G), ∀m′ ≥ m. (6)

Lemma 3.8 Let τ = {G0,G1, . . .} be an arbitrary trajectory
of (G0,Φ∗). For any Gk′ ∈ τ , let τk′ = {Gk′ ,Gk′+1, . . .} be
a contiguous subsequence of τ such that the degree range
is constant along τk′ . If there exists a finite m∗ such that
Pr(m∗;Gk) > 0 for all Gk ∈ τk′ , then τk′ almost surely has
a finite length.

Proof: Let Pr(τ∞k′ ) denote the probability of having
an infinitely long contiguous subsequence, τ∞k′ , along which
the degree range is constant. Since the degree range never
decreases within some finite time along τ∞k′ , for any finite
positive integer m, we have

Pr(τ∞k′ ) ≤
∞∏
i=0

(1−Pr(m;Gk′+im)). (7)

If there exists a finite m∗ such that Pr(m∗;Gk) > 0 for
all Gk ∈ τ∞k′ , then we can plug m = m∗ into (7) and have
the infinite product equal to 0. Hence, if such m∗ exists, we
obtain Pr(τ∞k′ ) = 0.

Lemma 3.9 For any graph G, if there exists a graph with a
smaller degree range, G′, that can be reached from G using
Φ∗ in m time steps, then Pr(m′;G) > 0 for all m′ ≥ m.

Proof: If there exists such a G′, then there is a non-
zero probability that (G,Φ∗) will reach G′ in m steps, i.e.,
Pr(m;G) > 0. In light of (6), we have Pr(m′;G) > 0 for
all m′ ≥ m.

Next, we present a simple algorithm to show that for any
G, if f(G) ≥ 2, then a graph G′ having f(G′) < f(G) can
always be reached in finite time steps via Φ∗. To this end,
we consider a shortest simple path, P ∗ = {i∗, j∗, . . . , q∗},
such that di∗ = ∆ and dq∗ = δ. In other words, for any
P = {i, j, . . . , q}, if di = ∆ and dq = δ, then P ∗ satisfies

|P ∗| ≤ |P |. (8)

Algorithm I

1 : input: G = (V,E) s.t. f(G) ≥ 2
1 : initialize: m = 0, G− = G, df = 0
2 : while df = 0
3 : Find a P ∗ = {i∗, j∗, . . . , q∗} on G−
4 : Find an i ∈ V s.t. (i, i∗) ∈ E−, (i, j∗) /∈ E−
5 : E+ = (E− \ {i, i∗}) ∪ {(i, j∗)}
6 : G+ = (V,E+)
7 : df = f(G+)− f(G−)
8 : G− = G+
9 : m = m+ 1
10 : end while
11 : return m

Proposition 3.10 For any connected graph G with a degree
range f(G) ≥ 2, Algorithm I returns an integer m satisfying
Pr(m;G) > 0.

Proof: For any graph, one can always find a shortest
simple path, P ∗, between a node with maximum degree and
a node with minimum degree. We will first show that the
rewiring in Algorithms I (line 5) is a valid application of
Φ∗. Note that for such a P ∗ = {i∗, j∗, . . . , q∗}, we always
have dj∗ < di∗ . Since di∗ is the maximum degree in the
system, it is always greater than or equal to the degree of
an other node. Furthermore, dj∗ can not be equal to di∗

since this would contradict (8) and give us a shorter path,
{j∗, . . . , q∗}, between a node with maximum degree and a
node with minimum degree. Since dj∗ < di∗ , one can always
find a node i as described in line 4 of Algorithm I, and the
rewiring in line 5 is a valid application of Φ∗.



At each iteration of the while loop in Algorithm I, G+ has
either fewer nodes having a degree ∆(G), or a shorter P ∗

compared to G−. If dj∗ < di∗ − 1 we have the first case,
and if dj∗ = di∗ − 1 we have the second case. However,
getting a shorter P ∗ also eventually reduces the number of
nodes having degree ∆(G), since if |P ∗| = 1, then we have a
valid application of Φ∗ to which nodes having degrees ∆(G)
and δ(G) participate and end up having degrees ∆(G) − 1
and δ(G) + 1, respectively. For any graph G with f(G) ≥ 2,
this implies a reduction in the number of agents having a
degree ∆(G). Hence, eventually we get a graph G+ where
each node has a degree smaller than ∆(G). Furthermore,
since the minimum degree is monotonically increasing, for
the final G+ we have f(G+) < f(G). In light of Lemma 3.9,
this implies that for the value, m, returned by Algorithm I,
we have Pr(m;G) > 0.

Theorem 3.11 Let τ = {G0,G1, . . .}, be an arbitrary trajec-
tory of (G0,Φ∗) for a connected G0. Then, the degree range
sequence, τf = {f(G0), f(G1), . . .}, converges to an integer
τ∗f that almost surely satisfies

0 ≤ τ∗f ≤ 1. (9)

Proof: From Corollary 3.7, we know that τf converges
to an integer τ∗f . Let τk′ be a contiguous subsequnce of τ
such that f is constant along τk′ . Let f(Gk′) denote this
constant value. If f(Gk′) ≥ 2, then for any Gk ∈ τk′ ,
Algorithm I provides a value mk satisfying Pr(mk;Gk) > 0.
Let m∗ be the maximum of those mk. Using m∗, in light of
Lemma 3.8, we can say that almost surely τk′ has a finite
length. Since (G0,Φ∗) is in equilibrium only when a regular
configuration is attained (f(G) = 0), a finite length τk′ with
f(Gk′) ≥ 2 implies a reduction in f at the end of τk′ . Using
this along with Proposition 3.5, we conclude that τf almost
surely converges to an integer value 0 ≤ τ∗f ≤ 1.

Note that in solving the decentralized degree regularization
problem for general graphs, (9) is the best result that can be
achieved. This is because f(G) = 0 is not always feasible
when the initial number of edges is preserved throughout the
dynamics. Clearly, if the average degree in the system, d̄, is
not an integer, then it is not possible to form a regular graph
with the available number of edges. Next, we focus on the
cases where it is possible to form a regular graph, i.e. d̄ ∈ N.

Lemma 3.12 Let G be an irregular graph, let d̄ be the
average degree of G, and let f(G) be the degree range of G.
If d̄ ∈ N, then f(G) ≥ 2.

Proof: For any graph G = (V,E), one can always
represent its degree vector, d, as

d = δ(G)1 + d̃, (10)

where 1 is a vector having all its entries equal to 1. Since
there is at least one node having the minimum degree, d̃ has

at least one entry being equal to 0. The average degree, d̄,
satisfies

d̄ =
1

n
1T d = δ(G) +

1

n
1T d̃. (11)

Using (11), we get

d̄− δ(G) =
1

n
1T d̃. (12)

Note that if d̄ ∈ N and G is irregular, we have d̄−δ(G) ≥ 1,
and (12) implies

1

n
1T d̃ ≥ 1. (13)

Since at least one entry of d̃ is equal to 0, d̃ can have at
most n−1 positive entries. In light of (13), the sum of those
positive entries are greater than or equal to n. Hence, at least
one of them is greater than 1, and f(G) ≥ 2.

Theorem 3.13 Let G0 be a connected graph having an
average degree d̄. If d̄ ∈ N, then an arbitrary trajectory
of (G0,Φ∗) almost surely converges to a d̄-regular graph.

Proof: Let τ = {G0,G1, . . .}, be an arbitrary trajec-
tory of (G0,Φ∗), and let f(G) be the function given in
(3). Then, in light of Theorem 3.11, the sequence τf =
{f(G0), f(G1), . . .} almost surely converges to an integer
0 ≤ τ∗f ≤ 1. Furthermore, in light of Lemma 3.12, for a
graph G having an integer average degree d̄, f(G) 6= 1.
Hence, we conclude that if d̄ ∈ N, then almost surely τ∗f = 0

and the trajectory converges to a d̄-regular graph.

We combine Theorem 3.11 and Theorem 3.13 to
give the following corollary for the convergence of
τf = {f(G0), f(G1), . . .} along the possible trajectories of
(G0,Φ∗).

Corollary 3.14 Let τ = {G0,G1, . . .}, be an arbitrary tra-
jectory of (G0,Φ∗) for a connected G0. Then, the degree
range sequence τf = {f(G0), f(G1), . . .} almost surely
converges to an integer τ∗f such that

τ∗f =

{
0 if d̄ ∈ N
1 otherwise, (14)

where d̄ denotes the average degree of G0.

IV. SIMULATION RESULTS

In this section, we present some simulation results for
the proposed decentralized degree regularization scheme. We
randomly generate a connected initial graph using 20 nodes
and 30 edges. Note that with this many nodes and edges,
a 3-regular graph can be formed. Starting from the initial
configuration, nodes concurrently update their neighborhoods
according to Φ∗, and the system converges to a 3-regular
configuration. Some graph configurations along an arbitrary
trajectory of the system (G0,Φ∗) are depicted in Fig. 1,
whereas the degree range, f(Gk), along the same trajectory is
shown in Fig. 2. As it can be seen in Fig. 2, the initial graph



has a degree range equal to 4. This value rapidly drops to 3,
and then to 2 within the first 10 steps. Then, the degree range
stays at 2 for a relatively longer period as the incidences that
can reduce the degree range get fewer. During this period, for
most of the rule applications, the degrees of the participating
nodes satisfy r− s = 1 and the result is a degree swapping.
Yet, rule applications involving nodes with maximum and
minimum degrees, where r − s = 2, eventually occur and
the system reaches a 3-regular configuration at k = 116.
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Fig. 1. Gk at some instants along an arbitrary trajectory of (G0,Φ∗).
On this trajectory, the initial graph (k=0) converges to a 3-regular graph
(k=116) via some concurrent applications of Φ∗ in 116 time steps. On each
Gk , nodes are labeled with their degrees.
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)
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Fig. 2. Degree range, f(Gk), along the trajectory depicted in Fig. 1.

V. CONCLUSION

In this paper, we posed a decentralized degree regular-
ization problem and presented a solution. The decentralized

degree regularization problem is motivated by the earlier
results in the literature showing that, for d ≥ 3, random
d-regular graphs are almost surely Ramanujan, and as such
they are excellent expanders.

Our solution to the decentralized degree regularization
problem is a graph grammar, Φ∗, consisting of a single
rule. Application of Φ∗ requires each node to only know
the degrees of its neighbors. According to Φ∗, if any node
has a neighbor with fewer connections, then one of its other
neighbors is rewired to the one with fewer connections. The
total number of edges and the connectivity are preserved
under the resulting dynamics. Furthermore, starting with any
connected initial graph, with a probability 1, the degree
range converges to 0 if a regular graph is reachable, and
it converges to 1 otherwise. Some simulation results for the
proposed scheme were also presented in the paper.

For any connected initial graph, the scheme presented in
this paper provides almost sure convergence to a connected
regular graph if a regular configuration is feasible using the
available number of edges. However, the resulting graph
may not always be an excellent expander since the non-
Ramanujan configurations may also be attractive. As a future
work, we want to improve the proposed scheme to avoid
possible convergence to such undesired equilibrium points.
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