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Abstract— We propose a framework for the decentralized
control of a team of agents that are assigned local tasks
expressed as Linear Temporal Logic (LTL) formulas. Each
local LTL task specification captures both the requirements
on the respective agent’s behavior and the requests for the
other agents’ collaborations needed to accomplish the task. Fur-
thermore, the agents are subject to communication constraints.
The presented solution follows the automata-theoretic approach
to LTL model checking, however, it avoids the computation-
ally demanding construction of synchronized product system
between the agents. We suggest a decentralized coordination
among the agents through a dynamic leader-follower scheme,
to guarantee the low-level connectivity maintenance at all times
and a progress towards the satisfaction of the leader’s task. By
a systematic leader switching, we ensure that each agent’s task
will be accomplished.

I. INTRODUCTION

Cooperative control for multi-agent systems have been
extensively studied for various purposes like consensus [18],
formation [4], [5], and reference-tracking [10], where each
agent either serves to accomplish a global objective or fulfil
simple local goals such as reachability. In contrast, we focus
on planning under complex tasks assigned to the agents, such
as periodic surveillance (repeatedly perform A), sequencing
(perform A, then B, then C), or request-response (whenever
A occurs, perform B). Particularly, we follow the idea of
correct-by-design control from temporal logic specifications
that has been recently largely investigated both in single-
agent and multi-agent settings. In particular, we consider
a team of agents modeled as a dynamical system that are
assigned a local task specification as Linear Temporal Logic
(LTL) formulas. The agents might not be able to accomplish
the tasks by themselves and hence requirements on the other
agents’ behaviors are also part of the LTL formulas. Consider
for instance a team of robot operating in a warehouse that are
required to move goods between certain warehouse locations.
While light goods can be carried by a single robot, help
from another robot is needed to move heavy goods, i.e. the
requirement on another agents’ behavior is a part of its LTL
task specification.

The goal of this work is to find motion controllers and
action plans for the agents that guarantee the satisfaction of
all individual LTL tasks. We aim for a decentralized solution
while taking into account the constraints that the agents can
exchange messages only if they are close enough. Following
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the hierarchical approach to LTL planning, we first generate
for each agent a sequence of actions as a high-level plan that,
if followed, guarantees the accomplishment of the respective
agent’s LTL task. Second, we merge and implement the
syntesized plans in real-time, upon the run of the system.
Namely, we introduce a distributed continuous controller for
the leader-follower scheme, where the current leader guides
itself and the followers towards the satisfaction of the leader’s
task. At the same time, the connectivity of the multi-agent
system is maintained. By a systematic leader re-election, we
ensure that each agent’s task will be met in long term.

Multi-agent planning under temporal logic tasks has been
studied in several recent papers [2], [9], [12], [14]–[16],
[19]–[21]. Many of them build on top-down approach to
planning, when a single LTL task is given to the whole team.
For instance, in [2], [20], the authors propose decomposition
of the specification into a conjunction of independent local
LTL formulas. On the other hand, we focus on bottom-
up planning from individual specification. Related work
includes a decentralized control of a robotic team from local
LTL specification with communication constraints proposed
in [6]. However, the specifications there are truly local
and the agents do not impose any requirements on the
other agents’ behavior. In [9], the same bottom-up planning
problem from LTL specifications is considered and a partially
decentralized solution is designed that takes into account
only clusters of dependent agents instead of the whole
group. This approach is later extended in [19], where a
receding horizon approach to the problem is suggested. Both
mentioned studies however assume that the agents are fully
synchronized in their discrete abstractions and the proposed
solutions rely on construction of the synchronized product
system between the agents, or at least of its part. In contrast,
in this work, we avoid the product construction completely.

The contribution of the paper can be summarized as the
proposal of a decentralized motion and action control scheme
for multi-agent systems with complex local tasks which
handles both connectivity constraints and collaborative tasks.
The features of the suggested solution are as follows: (1)
the continuous controller is distributed and integrated with
the leader election scheme; (2) the distributed leader election
algorithm only requires local communications and guarantees
sequential progresses towards individual desired tasks; and
(3) the proposed coordination scheme operates in real-time,
upon the run of the system as opposed to offline solutions
that require fully synchronized motions of all agents.

The rest of the paper is organized as follows. In Section II
we state the necessary preliminaries. Section III formally
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introduces the considered problem. In Section IV we describe
the proposed solution in details. Section V demonstrates the
results in a simulated case study. Finally, we conclude in
Section VI.

II. PRELIMINARIES

Given a set S, let 2S, and Sω denote the set of all subsets
of S, and the set of all infinite sequences of elements of S,
respectively. An infinite sequence of elements of S is called
an infinite word over S, respectively.

Definition 1 An LTL formula φ over the set of services Σ
is defined inductively as follows:

1) every service σ ∈ Σ is a formula, and
2) if φ1 and φ2 are formulas, then φ1 ∨ φ2, ¬φ1, Xφ1,

φ1 Uφ2, Fφ1, and Gφ1 are each formulas,
where ¬ (negation) and ∨ (disjunction) are standard Boolean
connectives, and X (next), U (until), F (eventually), and G
(always) are temporal operators.

The semantics of LTL is defined over infinite words
over 2Σ. Intuitively, σ is satisfied on a word w =
w(1)w(2) . . . if it holds at its first position w(1), i.e. if
σ ∈ w(1). Formula Xφ holds true if φ is satisfied on the
word suffix that begins in the next position w(2), whereas
φ1 Uφ2 states that φ1 has to be true until φ2 becomes true.
Finally, Fφ and Gφ are true if φ holds on w eventually, and
always, respectively. For the formal definition of the LTL
semantics see, e.g. [1].

The set of all words that are accepted by an LTL formula
φ is denoted by L(φ).

Definition 2 (Büchi Automaton) A Büchi automaton over
alphabet 2Σ is a tuple B = (Q, qinit, 2

Σ, δ, F ), where
• Q is a finite set of states;
• qinit ∈ Q is the initial state;
• 2Σ is an input alphabet;
• δ ⊆ Q×Σ×Q is a non-deterministic transition relation;
• F is the acceptance condition.

The semantics of Büchi automata are defined over infinite
input words over 2Σ. A run of the Büchi automaton B over
an input word w = w(1)w(2) . . . is a sequence ρ = q1q2 . . .,
such that q1 = qinit, and (qi, w(i), qi+1) ∈ δ, for all i ≥ 1.
A run ρ = q1q2 . . . is accepting if it intersects F infinitely
many times. A word w is accepted by B if there exists an
accepting run over w. The language of all words accepted by
B is denoted by L(B). Any LTL formula φ over Π can be
algorithmically translated into a Büchi automaton B, such
that L(B) = L(φ) [1] and many software tools for the
translation exist, e.g., [8].

Given an LTL formula ϕ over Σ, a word that satisfies
ϕ can be generated as follows. First, the LTL formula is
translated into a corresponding Büchi automaton. Second,
the Büchi automaton is viewed as a graph G = (V,E),
where V = Q, and E is given by the transition relation
δ in the expected way: (q, q′) ∈ E ⇐⇒ ∃S ⊆ Σ, such that

(q,S, q′) ∈ δ. By finding a finite path (prefix) followed by a
cycle (suffix) containing an accepting state, we find a word
that is accepted by B, which is a word that satisfies ϕ in
a prefix-suffix form S1 . . . Sp(Sp+1 . . . Ss)

ω . Details can be
found e.g., in [1].

In this particular work, we are interested only in subsets of
2Σ that are singletons. Thus, with a slight abuse of notation,
we interpret LTL over words over Σ, i.e. over sequences of
services instead of sequences of subsets of services.

III. PROBLEM FORMULATION

A. Agent Dynamics and Network Structure

Let us consider a team of N agents, modeled by the single-
integrator dynamics:

ẋi(t) = ui(t), i ∈ N = {1, . . . , N}, (1)

where xi(t), ui(t) ∈ R2 are the state and control inputs of
agent i at time t > 0, xi(0) is the given initial state, and xi(t)
is the trajectory of agent i from 0 to t ≥ 0. We assume that
all agents start at the same instant t = 0.

Suppose that each of the agents has a limited communi-
cation radius of r > 0. This means that at time t, agent
i can communicate, i.e., exchange messages directly with
agent j if and only if ‖xi(t) − xj(t)‖ ≤ r. This constraint
imposes certain challenges on the distributed coordination
of multi-agent systems as the inter-agent communication or
information exchange depends on their relative positions.

Agents i and j are connected at time t if and only if
either ‖xi(t) − xj(t)‖ ≤ r, or if there exists i′, such
that ‖xi(t) − xi′(t)‖ ≤ r, where i′ and j are connected.
Hence, two connected agents can communicate indirectly.
We assume that initially, all agents are connected. The
particular message passing protocol is beyond the scope of
this paper. For simplicity, we assume that message delivery
is reliable, meaning that a message sent by agent i will be
received by all connected agents j.

B. Task Specifications

Each agent i ∈ N is assigned a set of Mi services Σi =
{σih, h ∈ {1, . . . ,Mi}} that it is responsible for, and a set of
Ki regions, where subsets of these services can be provided,
denoted by Ri = {Rig, g ∈ {1, . . . ,Ki}}. For simplicity of
presentation, Rig is determined by a circular area:

Rig = {y ∈ R2|‖y − cig‖ ≤ rig} (2)

where cig ∈ R2 and rig are the center and radius of the
region, respectively, such that rig ≥ rmin > 0, for a fixed
minimal radius rmin . Furthermore, each region in Ri is
reachable for each agent. Labeling function Li : Ri → 2Σi

assigns to each region Rig the set of services Li(Rig) ⊆ Σi
that can be provided in there.

Some of the services in Σi can be provided solely by the
agent i, while others require cooperation with some other
agents. Formally, agent i is associated with a set of actions
Πi that it is capable of executing. The actions are of two
types:
• action πih of providing the service σih ∈ Σi; and



• action $ii′h′ of cooperating with the agent i′ in pro-
viding its service σi′h′ ∈ Σi′ .

A service σih then takes the following form:

σih = πih ∧
∧

i′∈Cih

$i′ih, (3)

for the set of cooperating agents Cih, where ∅ ⊆ Cih ⊆
N \ {i}. Informally, a service σi is provided if the agent’s
relevant service-providing action and the corresponding co-
operating agents’ actions are executed at the same time.
Furthermore, it is required that at the moment of service
providing, the agent and the cooperating agents from Cih
occupy the same region Rig , where σih ∈ Li(Rig).

Definition 3 (Trace) A valid trace of agent i is a tuple
tracei = (xi(t),TAi ,Ai,TSi ,Si), where
• xi(t) is a trajectory of agent i;
• TAi = t1, t2, t3, . . . is the sequence of time instances

when agent i executes actions from Πi;
• Ai : TAi → Πi represents the sequence of executed

actions, both the service-providing and the cooperating
ones;

• TSi = τ1, τ2, τ3, . . . is a sequence of time instances
when services from Σi are provided. Note that TSi is a
subsequence of TAi and it is equal to the time instances
when service-providing actions are executed; and

• Si : TSi → Σi represents the sequence of provided
services that satisfies the following property for all
l ≥ 1: There exists g ∈ {1, . . . ,Ki}, such that
(i) xi(τl) ∈ Rig , Si(τl) ∈ Li(Rig), and Si(τl) =

σih ⇒ Ai(τl) = πih, and
(ii) for all i′ ∈ Cih, it holds that xi′(τl) ∈ Rig and

Ai′(τl) = $i′ih.

In other words, the agent i can provide a service σih only
if (i) it is present in a region Rig , where this service can
be provided, and it executes the relevant service-providing
action πih itself, and (ii) all its cooperating agents from Cih
are present in the same region Rig as agent i and execute
the respective cooperative actions needed.

Definition 4 (LTL Satisfaction) A valid trace tracei =
(xi(t),TAi ,Ai,TSi = τ1, τ2, τ3, . . . ,Si : TSi → Σi), satisfies
an LTL formula over ϕi, denoted by tracei |= ϕi if and only
if Si(τ1)Si(τ2)Si(τ3) . . . |= ϕi.

Remark 1 Traditionally, LTL is defined over the set of
atomic propositions (APs) instead of services (see, e.g. [1]).
Usually APs represent inherent properties of system states.
The labeling function L then partitions APs into those that
are true and false in each state. The LTL formulas are
interpreted over trajectories of systems or their discrete
abstractions.

In this work, we consider an alternative definition of LTL
semantics to describe the desired tasks. Particularly, we
perceive atomic propositions as offered services rather than
undetachable inherent properties of the system states. For

instance, given that a state is determined by the physical
location of an agent, we consider atomic propositions of
form “in this location, an object can be loaded”, or “there
is a recharger in this location” rather than “this location
is dangerous”. In other words, the agent is in our case
given the option to decide whether an atomic proposition
σih ∈ L(Rig) is in state xi(t) ∈ Rig satisfied or not. In
contrast, σi ∈ Σi is never satisfied in state xi(t) ∈ Rig , such
that σi 6∈ L(Rig). The LTL specifications are thus interpreted
over the sequences of provided services along the trajectories
instead of the trajectories themselves.

C. Problem statement

Given the above settings, we now formally state our
problem:

Problem 1 Given a team of the agents N subject to dynam-
ics in Eq. 1, synthesize for each agent i ∈ N
• a control input ui
• a time sequence TAi , and
• an action sequence Ai,

such that the trace tracei = (xi(t),TAi ,TSi ,Ai,Si) is valid
and satisfies the given local LTL task specification ϕi over
the set of services Σi.

IV. PROBLEM SOLUTION

Our approach to the problem involves an offline and an
online step. In the offline step, we synthesize a high-level
plan in the form of a sequence of services for each of the
agents. In the online step, we dynamically switch between
the high-level plans through leader election. The whole team
then follows the leader towards providing its next service.

In this section, we provide the details of the proposed
solution. Namely, we define the notion of connectivity graph
for the multi-agent system as a necessary condition for
the rest of the solution. Further, we focus on decentralized
control of the whole team of agents towards a selected
goal region R`g that is known only to a leading agent `
while maintaining their connectivity. Finally, we discuss the
election of leading agents and progressive services to be
provided, and goal regions to be visited that guarantee the
satisfaction of all agents’ tasks in long term.

A. Connectivity Graph

Before discussing the structure of the proposed solution,
let us introduce the notion of agents’ connectivity graph
that will allow us to handle the constraints imposed on
communication between the agents.

Recall that each agent has a limited communication radius
r > 0 as defined in Section III-A. Moreover, let ε ∈ (0, r)
be a given constant. It is worth mentioning that ε plays an
important role for the edge definition below. In particular, it
introduces a hysteresis in the definition for adding new edges
to the communication graph.

Definition 5 Let G(t) = (N , E(t)) denote the undirected
time-varying connectivity graph formed by the agents, where



E(t) ⊆ N × N is the edge set for t ≥ 0. At time t = 0,
we set E(0) = {(i, j)|‖xi(0)− xj(0)‖ < r} At time t > 0,
(i, j) ∈ E(t) if and only if one of the following conditions
hold:
(i) ‖xi(t)− xj(t)‖ ≤ r − ε, or

(ii) r− ε < ‖xi(t)− xj(t)‖ ≤ r and (i, j) ∈ E(t−), where
t− < t and |t− t−| → 0.

Note that the condition (ii) in the above definition guaran-
tees that a new edge will only be added when the distance
between two unconnected agents decreases below r−ε. This
property is crucial in proving the connectivity maintenance
by Lemma 1 and the convergence by Lemma 2.

Consequently, each agent i ∈ N has a time-varying set of
neighbouring agents, with which it can communicate directly,
denoted by Ni(t) = {i′ ∈ N | (i, i′) ∈ E(t)}. Note that
if j is reachable from i in G(t) then agents i and j are
connected, i.e., they can communicate directly or indirectly.
From the initial connectivity requirement, we have that G(0)
is connected. Hence, maintaining G(t) connected for all t ≥
0 ensures that the agents are always connected, too.

B. Continuous Controller Design

In this section, let us firstly focus on the following
problem: given a leader ` ∈ N at time t and a goal region
R`g ∈ R`, propose a decentralized continuous controller
that: (1) guarantees that all agents i ∈ N reach R`g at
a finite time t < ∞; (2) G(t′) remains connected for all
t′ ∈ [t, t]. Both objectives are critical for the leader selection
scheme introduced in Section IV-C, which ensures sequential
satisfaction of ϕi for each i ∈ N .

Denote by xij(t) = xi(t) − xj(t) the pairwise relative
position between neighbouring agents, ∀(i, j) ∈ E(t). Thus
‖xij(t)‖2 =

(
xi(t)−xj(t)

)T (
xi(t)−xj(t)

)
denotes the cor-

responding distance. We propose the continuous controller
with the following structure:

ui(t) = −bi
(
xi − cig

)
−

∑
j∈Ni(t)

∇xi
φ
(
‖xij‖

)
, (4)

where ∇xi
φ(·) is the gradient of the potential function

φ
(
‖xij‖

)
with respect to xi, which is to be defined; bi ∈

{0, 1} indicates if agent i is the leader; cig ∈ R2 is the
center of the next goal region for agent i; bi and cig are
derived from the leader selection scheme in Section IV-C
later.

The potential function φ(‖xij‖) is defined as follows

φ
(
‖xij‖

)
=

‖xij‖2

r2 − ‖xij‖2
, ‖xij‖ ∈ [0, r), (5)

and has the following properties: (1) its partial derivative of
φ(·) over ‖xij‖ is given by

∂ φ
(
‖xij‖

)
∂ ‖xij‖

=
−2r2 ‖xij‖

(r2 − ‖xij‖2)2
≥ 0 (6)

for ‖xij(t)‖ ∈ [0, r) and the equality holds when ‖xij‖ = 0;
(2) φ

(
‖xij‖

)
→ 0 when ‖xij‖ → 0; (3) φ

(
‖xij‖

)
→ +∞

when ‖xij‖ ∈ [0, r). As a result, controller (4) becomes

ui(t) = −bi
(
xi − cig

)
−

∑
j∈Ni(t)

2r2

(r2 − ‖xij‖2)2
(xi − xj),

(7)
which is fully distributed as it only depends xi and xj , ∀j ∈
Ni(t).

Lemma 1 Assume that G(t) is connected at t = T1 and
agent ` ∈ N is the fixed leader for all t ≥ T1. By
applying the controller in Eq. (7), G(t) remains connected
and E(T1) ⊆ E(t) for t ≥ T1.

Proof: Assume that G(t) remains invariant during
[t1, t2) ⊆ [T1, ∞), i.e., no new edges are added to G(t).
Consider the following function:

V (t) =
1

2

N∑
i=1

∑
j∈Ni(t)

φ(‖xij‖)+
1

2

N∑
i=1

bi(xi−cig)T (xi−cig),

(8)
which is positive semi-definite. The time derivative of (8)
along system (1) is given by

V̇ (t) =

N∑
i=1

∂V

∂xi
ẋi

=

N∑
i=1, i 6=`

(( ∑
j∈Ni(t)

∇xi
φ(‖xij‖)

)
ui

)

+

( ∑
j∈N`(t)

∇x`
φ(‖x`j‖) + (x` − c`g)

)
u`.

(9)

By (4), for follower i 6= `, the control input is given by

ui = −
∑

j∈Ni(t)

∇xiφ(‖xij‖)

since bi = 0 for all followers. For the single leader `, its
control input is given by

u` = −(x` − c`g)−
∑

j∈N`(t)

∇x`
φ(‖x`j‖)

since b` = 1. This implies that

V̇ (t) = −
N∑

i=1, i 6=`

‖
∑

j∈Ni(t)

∇xi
φ(‖xij‖)‖2

− ‖(x` − c`g) +
∑

j∈N`(t)

∇x`
φ(‖x`j‖) ‖2 ≤ 0.

(10)

Thus V (t) ≤ V (0) < +∞ for t ∈ [t1, t2). It means that
during [t1, t2), no existing edge can have a length close to
r, i.e., no existing edge will be lost by the definition of an
edge.

On the other hand, assume a new edge (p, q) is added to
G(t) at t = t2, where p, q ∈ N . By Definition 5, it holds
that ‖xpq(t2)‖ ≤ r − ε and φ(‖xpq(t2)‖) = r−ε

ε(2r−ε) < +∞
since 0 < ε < r. Denote the set of newly-added edges at
t = t2 as Ê ⊂ N ×N . Let V (t+2 ) and V (t−2 ) be the value



of Lyapunov function from (8) before and after adding the
set of new edges to G(t) at t = t2. We get

V (t+2 ) = V (t−2 ) +
∑

(p, q)∈Ê

φ(‖xpq(t2)‖)

≤ V (t−2 ) + |Ê| r − ε
ε(2r − ε)

< +∞.
(11)

Thus V (t) < ∞ also holds when new edges are added. As
a result, V (t) < +∞ for t ∈ [T1, ∞). By Definition 5, one
existing edge (i, j) ∈ E(t) will be lost only if xij(t) = r.
It implies that φ(‖xij‖) → +∞, i.e., V (t) → +∞ by (8).
By contradiction, we can conclude that new edges might be
added but no existing edges will be lost, namely E(T1) ⊆
E(t), ∀t ≥ T1.

To conclude, given a connected G(t) at t = T1 and a fixed
leader ` ∈ N for t ≥ T1, it is guaranteed that G(t) remains
connected, ∀t ≥ T1.

Lemma 2 Given that G(t) is connected at t = T1 and the
fixed leader ` ∈ N for t ≥ T1, it is guaranteed that under
controller in Eq. (7) there exist T1 ≤ t < +∞

xi(t) ∈ R`g, ∀i ∈ N . (12)

Proof: First of all, it is shown in Lemma 1 that
G(t) remains connected for t ≥ T1 if G(T1) is connected.
Moreover E(T1) ⊆ E(t), ∀t ≥ T1, i.e., no existing edges
will be lost.

Now we show that all agents converge to the goal region
of the leader in finite time. By (10), V̇ (t) ≤ 0 for t ≥ T1

and V̇ (t) = 0 when the following conditions hold: (1) for
i 6= ` and i ∈ N , it holds that∑

j∈Ni(t)

2r2

(r2 − ‖xij‖2)2
(xi − xj) = 0; (13)

(2) for the leader ` ∈ N , it holds that

(x` − c`g) +
∑

j∈N`(t)

2r2

(r2 − ‖x`j‖2)2
(x` − xj) = 0. (14)

Denote by

hij =
2r2

(r2 − ‖xij‖2)2
, ∀(i, j) ∈ E(t). (15)

We can construct a N × N matrix H satisfying H(i, i) =∑
j∈Ni

hij and H(i, j) = −hij , where i 6= j ∈ N . Since
xij ∈ [0, r − ε), ∀(i, j) ∈ E(t), it holds that hij >
0. As shown in [17], H is positive semidefinite with a
single eigenvalue at the origin, of which the corresponding
eigenvector is the unit column vector of length N , denoted
by 1N . By combining (13) and (14), we get

H ⊗ I2 · x + (x− c) = 0 (16)

where ⊗ denotes the Kronecker product [11]; x is the stack
vector for xi, i ∈ N ; I2 is the 2 × 2 identity matrix; c =
1N ⊗ clg. Then

H ⊗ I2 · c = (H ⊗ I2) · (1N ⊗ clg) = (H · 1N )⊗ (I2 · clg).

Since H ·1N = 0N , it implies that H⊗I2 ·c = 02N . By (16),
it implies that H ⊗ I2 · (x − c) = 0. Since we have shown
that H is positive semidefinite with one eigenvalue at the
origin, (16) holds only when x = c, i.e., xi = c`g , ∀i ∈ N .

By LaSalle’s Invariance principle [13], the closed-loop
system under controller in Eq. (7) will converge to the largest
invariant set inside the region

S = {x ∈ R2N |xi = c`g,∀i ∈ N}, (17)

as t → +∞. In other words, it means that all agents in N
converge to the same point c`g . Since clearly c`g ∈ R`g , by
continuity all agents would enter R`g which has a minimal
radius rmin by (2). Consequently, there exists t < +∞ that
xi(t) ∈ R`g , ∀i ∈ N .

To conclude, given a connected initial graph G(T1) and
the fixed leader ` ∈ N for t ≥ T1, it is guaranteed that under
controller in Eq. (7) all agents will converge to the region
R`g in finite time.

C. Progressive Goal and Leader Election

To complete the solution to Problem 1, we discuss the
election of the leader ` and the choice of a goal region R`g
at time t. As the first offline and fully decentralized step,
we generate for each agent i a high-level plan, which is
represented by the sequence of services that, if provided,
guarantee the satisfaction of ϕi. Secondly, in a repetitive
online procedure, each agent i is assigned a value that,
intuitivelly, represents the agent’s urge to provide the next
service in its high-level plan. Using ideas from bully leader
election algorithm [7], an agent with the strongest urge is
always elected as a leader within the connectivity graph. By
changing the urge dynamically at the times when services
are provided, we ensure that each of the agents is elected
as a leader infinitely often. Thus, each agent’s precomputed
high-level plan is followed.

1) Offline high-level plan computation: Given an agent
i ∈ N , a set of services Σi, and an LTL formula ϕi over Σi,
a high-level plan for i can be computed via standard model-
checking methods as described in Section II. Roughly, by
translating ϕi into a language equivalent Büchi automaton
and by consecutive analysis of the automaton, a sequence of
services Ωi = σi1 . . . σipi(σipi+1 . . . σisi)

ω , such that Ωi |=
ϕi can be found.

2) Urge function: Let i be a fixed agent, t the current time
and σi1 . . . σik a prefix of services of the high-level plan Ωi
that have been provided till t. Moreover, let τiλ denote the
time, when the latest service, i.e., σiλ = σik was provided,
or τiλ = 0 in case no service prefix of Ωi has been provided,
yet.

Using τiλ, we could define agent i’s urge at time t as a
tuple

Υi(t) = (t− τiλ, i). (18)

Furthermore, to compare the agents’ urges at time t, we use
lexicographical ordering: Υi(t) > Υj(t) if and only if
• t− τiλ > t− τjλ, or
• t− τiλ = t− τjλ, and i > j.



Note that i 6= j implies that Υi(t) 6= Υj(t), for all t ≥ 0.
As a result, the defined ordering is a linear ordering and at
any time t, there exists exactly one agent i maximizing its
urge Υi(t).

3) Overall algorithm: The algorithm for an agent i ∈ N
is summarized in Alg. 1 and is run on each agent separately,
starting at time t = 0.

Algorithm 1 Solution to Prob. 1
Input: Agents’ own ID i, the set of all agent IDs N , formula ϕi
Output: tracei

1: compute plan Ωi := σi1 . . . σipi(σipi+1 . . . σisi)
ω

2: τiλ := 0; σiν := σi1
3: send ready(i) and wait to receive ready(j) for all j ∈ N \{i}

4: if i = N then
5: send init elect(i, tcurr ), where tcurr is the current time
6: end if
7: loop
8: wait to receive a message m
9: switch m

10: case m = init elect(i′, t) for some i′ ∈ N and time t
11: send me(Υi(t)) and wait to receive me(Υj(t)) from

all j ∈ N \ {i}
12: elect the leader ` ∈ N maximizing Υ`(t)
13: send finish elect(i) and wait to receive finish elect(j)

from all j ∈ N \ {i}
14: if ` = i then
15: bi := 1
16: pick R`g = Rig , such that σiν ∈ Li(Rig)
17: repeat
18: apply controller ui from Eq. (7)
19: until xj(t) ∈ R`g for all j ∈ {i} ∪ Ciν
20: send execute request($jiν) for all j ∈ Ciν
21: execute πiν
22: τiλ := 0; σiν := σiν+1

23: update prefixes of TAi ,Ai,TSi , and Si
24: send init elect(i, tcurr ), where tcurr is the current

time
25: else
26: bi := 0
27: repeat
28: apply controller ui from Eq. (7)
29: until a message m is received; goto line 9
30: end if
31: case m = execute request($ii′h′) for some i′ ∈ N ,

and σi′h′ ∈ Σi′
32: execute $ii′h′

33: update prefixes of TAi , and Ai; goto line 9
34: end switch
35: end loop

The algorithm is initialized with the offline computation
of the high-level plan Ωi = σi1 . . . σipi(σipi+1 . . . σisi)

ω as
outlined above, and setting the values τiλ = 0, σiν = σi1
(lines 1 – 2). Then, the agent broadcasts a message to
acknowledge the others that it is ready to proceed and waits
to receive analogous messages from the remaining agents
(line 3). The first leader election is triggered by a message
sent by the agent N (lines 4 – 6) equipped with the time
stamp tcurr of the current time.

Several types of messages can be received by the agent i.
Message init elect(i′, t), where i′ is an arbitrary agent ID

and t is a time stamp, notifies that leader re-election is
triggered (line 10). In such a case, the agent sends out the
message me(Υi(t)) containing its own urge value Υi(t) at
the received time t and waits to receive analogous messages
from the others (line 11). The agent with the maximal urge
is elected as the leader (line 12) and the algorithm proceeds
when each of the agents has set the new leader (line 13).
Note that the elected leader is the same for all the agents.

The rest of the algorithm differs depending on whether
the agent i is the leader (14–25) or not (25–30). The leader
applies the controller from Eq. (7) to reach a region where the
next service σiν can be provided (lines 15–19). At the same
time, it waits for the cooperating agents to reach the same
region (line 19). Then it provides service σiν , with the help
of the others (lines 20–21) and it sets the new latest service
providing time τiλ = 0, and the next service to be provided
σiν to the following service in its plan, i.e. σiν+1, where,
with a slight abuse of notation, we assume that σisi+1 =
σipi+1 (line 22). For simplicity of presentation, we assume
that the execution of an action πiν is synchronized with the
execution of the action $jiν , for all j ∈ Ciν . The details
of the synchronization procedure are beyond the scope of
this paper; for instance, the leader can decide a future time
instance when $jiν should be executed and send it as a part
of the execute request message. Finally, the leader triggers
a leader re-election (line 24) with the current time tcurr as
a time stamp.

A follower simply applies the controller from Eq. (7)
until it receives a message from the leader (lines 25–29).
The message can be either execute request($ii′h′) for a
cooperating agent or init elect(i′, t) for a non-cooperating
agent.

The algorithm naturally determines the trace tracei =
(xi(t),TAi ,Ai,TSi ,Si) of the agent i as follows: The trajec-
tory xi(t) is given through the application of the controller ui
from Eq. (7) (lines 18 and 28). The sequences TAi ,Ai,TSi ,Si
are iteratively updated upon the agent’s run (lines 23 and 33).
Initially, they are all empty sequences and a time instant, an
action, or a service is added to them whenever an action is
executed (lines 21 and 32) or a service is provided (line 21),
respectively.

To prove that the proposed algorithm is correct, we first
prove that each agent i is elected as a leader infinitely many
times:

Lemma 3 Given an agent i ∈ N at time t, there exists
T ≥ t, such that Υi(T ) > Υj(T ), for all j ∈ N , and t ≥ 0.

Proof: Proof is given by contradiction. Assume the
following:

Assumption 1 For all t′ ≥ t there exists some j ∈ N , such
that Υi(t

′) < Υj(t
′).

Consider that ` ∈ N is set as the leader at time t, and an
agent i′ ∈ N maximizes Υi′(t) among all agents inN . Then,
from the construction of Alg. 1 and Lemmas 1 and 2, there



exists τ`ν ≥ t when the next leader’s desired service σ`ν
has been provided and a leader re-election is triggered with
the time stamp τ`ν . Note that from Eq. (18), Υi′(τ`ν) is still
maximal among the agents in N , and hence i′ becomes the
next leader. Furthermore, there exists time τi′ν ≥ τ`ν when
the next desired service σi′ν of agent i′ has been provided,
and hence Υi′(τi′ν) < Υj(τi′ν), for all j ∈ N , including the
agent i.

Since we assume that i does not become a leader for any
t′ ≥ t (Assump. 1), it holds that Υi′(t

′′) < Υi(t
′′) for all

t′′ ≥ τi′ν . Inductively, we can reason similarly about the
remaining agents. As they are only finite number of agents
N , after large enough T ≥ t, we obtain that Υj(t

′) < Υi(t
′)

for all j and for all t′ ≥ T . This contradicts Assump. 1 and
hence the proof is complete.

From Lemmas 1, 2, and 3, the correctness of the high-level
plan computation (proven e.g., in [1]), and the construction
of Alg. 1, we obtain, that φi is satisfied for all i ∈ N .

From Alg. 1, each agent synthesizes its high-level plan
Ωi and waits for the first leader to be elected. Denote the
first leader by `1 ∈ N . Lemma 2 guarantees that there exists
a finite time t1 > 0 that x`1(t1) ∈ R`1ν , while at the same
time Lemma 1 ensures that the communication network G(t)
remains connected, ∀t ∈ [0, t1]. At τ`1ν ≥ t1, the first service
σ`1ν of the leader’s high-level plan is provided, defining a
prefix of the agent i’s trace as TAi (1) = τ`1ν , Ai(τ`1ν) =
πiν , TSi (1) = τ`1ν , Si(τ`1ν) = σiν . Furthermore, TAj (1) =
τ`1ν , Aj(τ`1ν) = $jiν . Afterwards, a new leader `2 ∈ N
is elected according to Alg. 1 and R`2ν is set as the goal
region. Now the controller from Eq. (7) is switched to the
case when `2 is the leader. By induction, we obtain that for
all t ≥ 0 it holds
• Given a leader `t and a goal region R`ν at time t, there

exists t̄ ≥ t, when x`(t̄) ∈ R`ν .
• G(t) is connected.

Together with Lemma 3, we conclude that φi is satisfied for
all i ∈ N .

Corollary 1 The proposed solution in Alg. 1 is a solution
to Problem 1.

V. EXAMPLE

In the following case study, we present an illustrative
example of a team of four autonomous robots with heteroge-
neous functionalities and capacities. The proposed algorithms
are implemented in Python 2.7. All simulations are carried
out on a desktop computer (3.06 GHz Duo CPU and 8GB
of RAM).

A. System Description

Denote by the four autonomous agents R1, R2, R3 and
R4. They all satisfy the dynamics specified by (1). They all
have the communication radius 1.5m, while ε is chosen to be
0.1m. The workspace of size 4m× 4m is given in Figure 1,
within which the regions of interest for R1 are R11, R12 (in
red), for R2 are R21, R22 (in green), for R3 are R31, R32

(in blue) and for R4 are R41, R42 (in cyan).

Besides the motion among these regions, each agent can
provide various services as described in the following: agent
R1 can load (lH , lA), carry and unload (uH , uA) a heavy
object H or a light object A. Besides, it can help agent R4

to assemble (hC) object C ; agent R2 is capable of helping
the agent R1 to load the heavy object H (hH ), and to execute
two simple tasks (t1, t2) without help from others; agent R3

is capable of taking snapshots (s) when being present in its
own or others’ goal regions; agent R4 can assemble (aC)
object C under the help of agent R1.

B. Task Description

Each agent within the team is locally-assigned complex
tasks that require collaboration: agent R1 has to periodically
load the heavy object H at region R11, unload it at region
R12, load the light object A at region R12, unload it at region
R11. In LTL formula, it is specified as

φ1 = GF
(
(lH ∧ hH ∧ r11) ∧ X(uH ∧ r12)

)
∧

GF
(
(lA ∧ r12) ∧ (uA ∧ r11)

)
;

Agent R2 has to service the simple task t1 at region R21

and task t2 at region R22 in sequence, but it requires R2 to
witness the execution of task t2, by taking a snapshot at the
moment of the execution. It is specified as

φ2 = F
(
(t1 ∧ r21) ∧ F(t2 ∧ s ∧ r22)

)
;

Agent R3 has to surveil over both of its goal regions (R31,
R32) and take snapshots there, which is specified as

φ3 = GF(s ∧ r31) ∧ GF(s ∧ r32);

Agent R4 has to assemble object C at its goal regions (R41,
R42) infinitely often, which is specified as

φ4 = GF(aC ∧ r41) ∧ GF(aC ∧ r42).

Note that tasks φ1, φ3 and φ4 require the collaboration task
be performed infinitely often.

C. Simulation Results

Initially, the agents start evenly from the x-axis, i.e.,
(0, 0), (1.3, 0), (2.6, 0), (3.9, 0). By Definition 5, the ini-
tial edge set is E(0) = {(1, 2), (2, 3), (3, 4)}, yielding a
connected G(0).

The system is simulated for 35s, of which the video
demonstration can be viewed here [3]. In particular, when
the system starts, each agent synthesizes its local plan as
described in Section IV-C.1. After running the leader election
scheme proposed in Section IV-C, agent R1 is chosen as the
leader. As a result, controller (4) is applied for R1 as the
leader and the rest as followers, while the next goal region
of R1 is R11. As shown by Theorem 2, all agents belong to
R41 after t = 3.8s. After that agent R2 helps agent R1 to
load object H. Then agent R2 is elected as the leader after
collaboration is done, where R21 is chosen as the next goal
region. At t = 6.1s, all agents converge to R21. Afterwards,
the leader and goal region is switched in the following order:
R3 as leader to region R31 at t = 6.1s; R4 as leader to region
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Fig. 1: Left: the workspace structure, where the goal regions for
each agent are indicated by color; Right: snapshot of simulation at
t = 11.2s.

Time (s) (0, 3.8) (3.8, 6.1) (6.1, 8.1) (8.1, 10.6)
Leader R1 R2 R3 R4

Goal Region R11 R21 R31 R41

Time (s) (10.6, 14.2) (14.2, 16.3) (16.3, 18.2) (18.2, 20.1)
Leader R4 R2 R3 R1

Goal Region R42 R22 R32 R12

Time (s) (20.1, 24.2) (24.2, 25.7) (25.7, 28.1) (28.1, 31.4)
Leader R1 R3 R3 R4

Goal Region R11 R31 R32 R41

TABLE I: Leader Eelection Scheme

R41 at t = 8.1s; R4 as leader to region R42 at t = 10.6s; R2

as leader to region R22 at t = 14.2s; R3 as leader to region
R32 at t = 16.3s; R1 as leader to region R12 at t = 18.2s;
R1 as leader to region R11 at t = 20.1s; R3 as leader to
region R31 at t = 24.2s; R3 as leader to region R32 at
t = 25.7s; R4 as leader to region R41 at t = 28.1s; R4 as
leader to region R42 at t = 31.4s. The above arguments are
summarized in Table I.

Figure 1 shows the snapshot of the simulation at time
t = 11.2s, when agent R4 was chosen as the leader and
R42 as the goal region. Figure 2 shows the trajectory of
R1, R2,R3, R4 during time [0, 34.7s], in red, green, blue,
cyan respectively. Furthermore, the pairwise distance for
neighbours within E(0) is shown in Figure 2. It can be
verified that they stay below the constrained radius 1.5m
thus the agents remain connected.

VI. CONCLUSIONS AND FUTURE WORK

We present a distributed motion and task control frame-
work for multi-agent systems under complex local LTL tasks
and connectivity constraints. It is guaranteed that all individ-
ual tasks including both local and collaborative services are
fulfilled, while at the same time connectivity constraints are
satisfied. Further work includes inherently-coupled dynamics
and time-varying network topology.
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