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Abstract

An extension of a novel state estimation scheme is presented. The proposed method is developed 

for model predictive control (MPC) of an artificial pancreas for automatic insulin delivery to 

people with type 1 diabetes mellitus; specifically, glycemia control based on feedback by a 

continuous glucose monitor. The state estimation strategy is akin to moving-horizon estimation, 

but effectively exploits knowledge of sensor recalibrations, ameliorates the effects of delays 

between measurements and the controller call, and accommodates irregularly sampled output 

measurements. The method performs a function fit and a sampling action to synthesize a mock 

output trajectory for constructing the state. In this paper the structure of the fitted function 

prototype is divorced from the structure of the function that is sampled, facilitating the strategic 

elimination of prediction artifacts that are not observed in the actual plant. The proposed 

estimation strategy is demonstrated using clinical data collected by a Dexcom G4 Platinum 

continuous glucose monitor.

I. Introduction

Model Predictive Control (MPC) finds increased favor due to its flexibility in handling, e.g., 

constraints, complex dynamics, and sophisticated cost objectives [1,2]. In MPC the control 

input is characterized by optimizing a future control input trajectory with respect to the 

predicted evolution of the plant, based on a dynamic model. A crucial element of every MPC 

implementation is a mechanism to characterize an initial condition from which to perform 

predictions. This initial condition is typically a function of the model's past outputs and 

inputs. For regressor models, e.g., an Auto-Regressive model with eXogenous inputs (ARX), 

the initial condition may be constructed trivially from past measurements and control 

commands. For state-space models, used more typically in MPC, the initial state is provided 

by a state estimator, of which various flavors exist. Simple recursive linear estimators, e.g., 

the Luenberger observer and Kalman filter, are straightforward to implement and frequently 

highly effective. Moving-Horizon Estimation (MHE) has been gaining traction as an 

alternative to recursive strategies and provides, to estimation, the benefits that MPC 

provides, to control synthesis, over its alternatives [2,3].
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In [4] the authors proposed a novel state estimator akin to MHE, but conceptually distinct, 

that has three advantages over above-mentioned alternatives: 1) Sensor recalibrations – step-

changes in sensor output not related to changes in plant output – are accommodated 

gracefully. Without special treatment recalibrations cause highly dynamic estimator outputs 

that can cause undesirable control action. 2) Measurement times and controller call-times are 

exploited, facilitating superior state estimates when controller and sensor are not 

synchronized. 3) Irregularly timed sensor output can be accommodated; alternative 

estimators are based on fixed sample-periods, and naively feeding-in irregular measurements 

causes inaccuracies. These advantages are pertinent to the authors’ application. The 

proposed estimator functions by fitting a continuous-time function to recent measurements, 

and sampling it at the controller call time, and exact integer multiples of the MPC model's 

sample-period, to synthesize a mock output trajectory for constructing the state estimate. 

Effects of delays between sensor and controller, and of irregular measurements, are 

ameliorated by the function fit and sampling. Sensor recalibrations are accommodated by 

permitting a discrete step in the value, but not the derivatives, of the fitted function following 

sensor recalibrations.

A contribution of this paper over [4] is that the fitted function is not sampled directly. 

Instead, a second function is derived from it, and the mock outputs for constructing the state 

estimate are synthesized by sampling this new function. For example, to obtain a good fit 

and exploit a long history of measurements, a high order polynomial may serve as the 

prototype function. However, higher orders may introduce prediction artifacts not observed 

during plant operation. To yield superior predictive power it may be beneficial to eradicate 

higher order effects by sampling a straight line. A minor contribution of this paper is that an 

equality constraint is introduced in the function fit at measurement times following a 

recalibration. This explicitly forces the fitted function to equal the data obtained at a sensor 

recalibration. The paper makes two pedagogic contributions. First, the action and benefits of 

the proposed approach are demonstrated on Continuous Glucose Monitor (CGM) data, not 

numerical examples, in contrast to [4]. Second, the amelioration of plant-model mismatches 

is demonstrated. This was partially done in [4] with respect to steady-state errors, but in this 

paper we demonstrate a crucial advantage with respect to dynamic errors.

The overall goal of this work is an artificial pancreas for the automated delivery of insulin to 

people with type 1 diabetes mellitus [5,6,7,8]. To achieve this the authors and their 

collaborators have been developing MPC strategies [9,10,11,12,13]. The feedback signal is 

an estimate of the blood glucose concentration, provided by a CGM [14]. A CGM's output 

drifts and thus it must periodically be recalibrated with respect to an accurate reference 

measurement. The CGMs used by the authors typically update their output every 5 minutes; 

the sample-period of the MPC model [11]. However, current CGMs are not intended for 

automatic control purposes, but are designed to produce human readable output, and 

withhold update information at times of high uncertainly. Furthermore, the CGM sensor 

communicates wirelessly with the receiver, and communications interference may introduce 

delays. This leads to irregularly spaced measurements and delays between the receipt of a 

measurement update and the next controller update, which should occur every 5 minutes as 

precisely as possible. In the currently employed recursive state estimators these factors 
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induce output predictions that, sometimes very clearly, are not extensions of the measured 

output trajectory, do not correspond to the actual output trajectory measured subsequently, 

and may produce insulin infusion commands that are inappropriate or dangerous. The 

purpose of the proposed estimator is to facilitate effective and safe control.

II. Background

A. Insulin-glucose model summary

The insulin-glucose model used for performing MPC predictions was described in [11]; it is 

a discrete-time, third-order ARX model, with T = 5 min sample-period, insulin-infusion 

input, and blood glucose level output. The linearization point is the patient's basal-rate input, 

and an output concentration of 110 mg/dL. The model can be written as the single-input 

single-output linear time-invariant (LTI) system

(1)

with state , n = 3, and (A, C) observable (see [4]).

B. Model predictive control outline

Let  denote the set of integers,  the set of positive integers, and  the set {a, . . ., b} of 

consecutive integers from a to b. Let  denote the prediction horizon, and u and x the 

predicted values of input u and state x. Then, MPC performs closed-loop control by 

applying, at each step i, the first control input  of the predicted, optimal control input 

trajectory , characterized by the minimization

of a suitable cost function J(·) (details omitted for brevity), subject to suitable constraints, 

and furthermore subject to the predictions performed employing model (1):

(2)

The predicted state trajectory is initialized in (2) to the estimated model state xi, the value of 

which profoundly affects the performance of the resulting MPC control law. No notational 

distinction between the actual and estimated state is made, because state x of (1) can only be 

estimated.

C. Recursive linear estimator

At each step i let  denote the most recent sensor measurement. The state estimator 

employed currently is the recursive linear estimator of (3) with gain L obtained by solving a 
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Riccati equation (details omitted). Crucially, this estimator is based on model (1) used for 

MPC predictions.

(3a)

(3b)

Model (1) is a state-space realization of an ARX model, as is stated in Section II-A, and the 

MPC predictions could trivially be initialized using the history of sensor measurements and 

control commands. However, the recursive estimator of (3) is favored because it provides a 

convenient framework for tuning the state estimator's noise rejection capabilities.

D. State-reconstruction given exact input-output history

At each step i, given the exact sequence  of past outputs (and present), and 

further given the exact sequence  of past control inputs, the current state xi of 

model (1) may be reconstructed, given the above-stated observability of the (A, C) pair. For 

brevity the mechanics of the reconstruction procedure are omitted; the interested reader is 

referred to Section 2.5 of [4].

E. Comments

During a recalibration the sensor output ỹ undergoes a step change not present in the plant 

output. After a recalibration all three above-mentioned initialization procedures – the 

recursive estimator (3), the regressor initialization of model (1) mentioned in Section II-C, 

and the reconstruction procedure outlined in Section II-D – produce MPC predictions 

oriented strongly in the direction of the recalibration, not in accordance with the actual CGM 

output trend (see Figure 1).

The initialization schemes above are appropriate when measurements are synchronous with 

controller call times, and temporally evenly distributed at exactly the sample-period of 

model (1); T = 5 min. In a clinical application these assumptions are not always true, and 

timing discrepancies may cause badly initialized predictions (see [4]).

III. Estimator design

A. Measurements and recalibrations

Throughout Section III we suppose that the control system is called at time t = 0, and thus 

each output measurement has a negative time-stamp associated with it. Each measurement is 

defined by a triple (ỹj, tj, rj) where  denotes the measurement index,  denotes 

a history horizon that is a design parameter, ỹj is the measured output value obtained at time 

tj, satisfying , and rj ∈ {0, 1} denotes a recalibration flag defined 

such that rj := 0 if no sensor recalibration occurred in the period [tj, t1], and rj := 1 if a 

recalibration was performed within that period. For simplicity it is assumed that exactly one 
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sensor recalibration has occurred over the history horizon. If no recalibration was performed 

the method as stated below can be straightforwardly simplified (details omitted). The case of 

multiple recalibrations during the history horizon is not described for clarity of exposition, 

but can be accommodated.

B. Estimation procedure

We first select a continuous-time function prototype , where Θ is a set of admissible 

parameters. For example, in this paper we employ the p-order polynomial (4) where p is a 

design parameter. Functions other than polynomials may be employed or preferable, 

depending on the application and the properties of the plant's output.

(4)

Let  denote the size of the sensor recalibration, that is identified from the measurement 

data, and further let

For each  define the error, between the discontinuous fitted function f(·) and the data, 

as follows:

The use of rj facilitates the inclusion or omission of the step δ for uncalibrated or 

recalibrated measurements, respectively.

Let  denote the optimal parameter as characterized in the previous controller call, and 

further let  denote the index of the first measurement since the recalibration, i.e., ĵ is 

the only value of  such that rj+1 – rj = 1.

The optimal augmented parameter vector  is characterized by solving the quadratic 

program

subject to the equality constraint
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(5)

where ,  denotes a cost for penalizing parameter deviations θ – θi–1, 

and  denote costs to penalize errors ej, time-dependent with respect to 

relative time the measurement was taken, but not time-dependent with respect to actual time.

We next derive a further continuous-time function  from f(t, θ*). Again, depending on 

the application and properties of the plant's output trajectory, the reader's preference may 

vary. In this work we keep it simple and define the affine function

(6)

We next synthesize a mock output trajectory {yi, yi–1, yi–2, . . .} by sampling the function 

g(t) at times t ∈ {0, −T, −2T, . . .}. In combination with the known (assumed) trajectory of 

past control inputs, this synthesized output trajectory is employed in the procedure outlined 

in Section II-D to construct the current state xi.

C. Comments

The function g(·) is an addition to the proposal of [4], and is considered useful because 

dynamic artifacts can strategically be eradicated from the state estimate by eliminating 

elements of the structure of f(·). For example, longer history horizons M may facilitate 

identifying a fit f(·) that better captures the output trend of the measurements. However, long 

histories require higher order polynomials, including second, and maybe higher, order terms, 

to capture any curvature in the output trajectory. Performing a straight-line fit would 

possibly not permit capturing the trend well. However, a state estimate reconstructed from an 

output trajectory with strong curvature results in predictions that have high curvature (see 

Section IV-F), but such predictions were not observed in the authors’ application. By 

capturing the trend in f(·), but synthesizing the mock output trajectory via the tangent g(·), 

all curvature effects of second, and higher, order are expressly rendered non-existent in the 

state estimate.

The equality constraint (5) is a further addition to the proposal described in [4] and forces 

the fitted function f(t, θ*) to equal the sensor measurement after a recalibration.

IV. Demonstrative example

A. The CGM data

In this section four state estimation schemes are contrasted using CGM data depicted by 

blue dots in Figure 1; each subplot depicts the same CGM trajectory. The data were obtained 

from a type 1 diabetic adult wearing the Dexcom G4 Platinum CGM. To facilitate a 

demonstration of the effects of recalibrations the data were manipulated as follows: The 
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data-points over the period 18:31–01:06 were raised by 30 mg/dL, increasing the size of a 

pre-existing recalibration at 18:31, and introducing a recalibration at 01:11 that was not 

originally present. This is an arbitrary change made for demonstrative purposes for this 
paper, but is not unrealistic.

B. MPC strategy

Depicted by red dots and lines in Figure 1 are the output trajectories predicted by the MPC 

algorithm. In each subfigure of Figure 1 the MPC algorithm employed was identical and 

used a prediction horizon N = 9 (NT = 45 min). Other MPC details are omitted for brevity 

and are not relevant.

C. Insulin delivery history

The CGM data are fixed; there is no “closed loop” from insulin input to CGM output. Thus, 

for simplicity and consistency between subfigures, the insulin delivery history employed 

when characterizing the state estimate is constant and the subject's basal rate, i.e., ui = 0 in 

terms of LTI model (1). This issue is somewhat revisited later in Section V.

D. High gain recursive linear state estimator

Depicted in Figure 1 (A) is the result when using a recursive linear state estimator. The 

estimator has a high gain, and the predicted output trajectories’ starting values are generally 

in close accordance with the CGM values. The estimator outputs Cxi are connected by a 

green solid line that is mostly not visible, because the CGM data are neatly superimposed, as 

is desired. However, at times of high-speed transients, e.g., after 05:00, the estimator output 

trails behind the CGM trajectory due to a delay of roughly 4 minutes between the CGM data 

and subsequent controller call-times.

After sensor recalibrations (18:31, 01:11) the estimator output value Cxi converges quickly 

to the recalibrated CGM output trajectory. However, the state estimate experiences a highly 

dynamic response for a prolonged period of time following the recalibration, because 

knowledge of a recalibration cannot be taken into account. The MPC predictions are 

obviously initialized at an appropriate value, but inappropriate velocity and acceleration. 

Improving the MPC predictions after recalibrations was the primary motivation for 

developing the proposed state estimation strategy [4].

The reader is cautioned that model (1) characterized in [11] is a so-called control-relevant 
model, designed for use in control synthesis, and suffers large plant-model mismatches that 

are difficult to eradicate due to the high inter-subject and intra-subject variability of human 

physiology. The three poles are purposefully sluggish, and the inability to quickly 

manipulate the rate of change of the predicted outputs, despite a predicted insulin delivery 

over the predictions, is evidence of this. At times of high acceleration in sensor output the 

predictions diverge from the output trajectory that is traversed in reality. To a degree such 

divergence is acceptable, and not correctable by design of the state estimator.

The predictions starting at roughly 19:00, 02:10, and 08:40 are initialized such that they veer 

away from the CGM trajectory, despite a lack of such trend components in the CGM data 
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preceding the controller call. This phenomenon is demonstrated and discussed in more detail 

later in Section V.

E. Proposed estimator: General comments

Figures 1 (B,C,D) depict the results obtained when using the proposed state estimator with 

three different tunings, described in Sections IV-F through IV-H. Although different, the 

three tunings’ results share two important commonalities. First, the value and velocity of the 

initial condition of the MPC predictions appears to appropriately accommodate the CGM 

recalibrations. Instead of wild deviations, the predictions capture the trend of the recent 

CGM trajectory despite the step change in value of the sensor output. The second 

commonality is that during the rapid transients after 05:00, the estimator output trajectory 

Cxi is nearly not discernible, because the CGM trajectory is closely superimposed. This 

indicates that CGM time-stamps and controller call-times are exploited effectively to reject 

delays between sensor outputs and controller updates, in contrast to the recursive estimator.

F. Second-order f(·), but without proposed g(·)

Depicted in Figure 1 (B) is the result when employing the proposed strategy's fitting 

function f(·) with the following settings: p = 2, i.e., f(·) is a quadratic function; M = 5, i.e., 5 

past CGM samples are used in the function fit; {R1, . . ., RM} = {1, 1, 0.8, 0.5, 0.3}, i.e., 

CGM measurements prior to the previous two are de-emphasized in the data fitting; Q = 

diag(0, 1, 0), i.e., there is a penalty on the rate of change (a “viscosity”) of the optimal 

parameter vector  as i progresses, counteracting high-frequency disturbances. However, we 

do not define the sampling function g(·) according to (6) as proposed, but sample f(·) in 

accordance with the original proposal of [4], i.e., g(t) := f(t, θ*).

This tuning clearly induces predictions that contain excessive second-order components, and 

the resulting predictions tend to diverge from the observed CGM trajectory, sometimes 

strongly, even when CGM fluctuations are very mild. During the oscillations after 05:00 the 

CGM trajectory's curvature is continued, and exacerbated, in the MPC predictions, leading 

to significantly amplified maximum and minimum predicted values, compared to any of the 

three alternatives. Interestingly, similar phenomena occur when employing the standard 

notion of MHE, but this is not discussed or demonstrated further in this paper.

G. Proposed estimator: Second-order f(·)

Figure 1 (C) depicts the result when employing the same settings as above for f(·), but 

defining the sampling function g(·) as in (6), as proposed in this paper. As g(·) is an affine 

function, second-order dynamics are explicitly eradicated from the state estimate, resulting 

in improved predictive power in MPC. The authors consider this state estimator superior to 

that of Section IV-F. However, except during post-recalibration periods where it is superior, 

it appears comparable to the recursive estimator of Figure 1 (A).

H. Proposed estimator: First-order f(·)

Depicted in Figure 1 (D) is the result when employing the proposed strategy with the 

following settings: p = 1, M = 3, {R1, . . ., RM} = {1, 1, 0.01}, Q = diag(0, 5, 0). This choice 
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of settings implies f(·) is a straight-line fit, using three data points, with very high emphasis 

on the first two when no recalibration has occurred within the last three steps, and an exact 

fit to all three previous CGM points when one recalibration was performed. The value of Q 
implies the viscosity imposed on the velocity term is higher than in the previous two tunings 

of the proposed estimator. As f(·) is a straight line it holds that g(t) = f (t, θ*).

The resulting predictions generally look comparable to those of the recursive estimator of 

Figure 1 (A), except that recalibrations and delays are properly accounted for, as described 

in Section IV-E. One subtle phenomenon appears to have been eliminated by the proposed 

estimator. This effect is a result of dynamic plant-model mismatch, and is described and 

discussed further in Section V. The effect manifests itself in the MPC predictions shortly 

before 06:00; the predicted peak glucose values are 29 mg/dL lower (253 vs. 282 mg/dL) 

than with the recursive estimator of Figure 1 (A). Furthermore, the predictions at 08:20 are a 

continuation of the CGM trajectory, as opposed to the recursive estimator where predicted 

glucose values accelerate upwards.

For the case studied in this paper the shorter history horizon M = 3 seemed to outperform the 

longer one M = 5; the authors emphasize that none of the presented estimators can be 

considered “best in class”. A possible reason is that polynomials constitute bad prototype 

functions for this data. A better choice of function f(·) may permit exploiting a longer history 

horizon and glean superior state estimates.

V. Plant-model mismatch

In this section we provide a numerical example to demonstrate how the proposed estimator 

eliminates some dynamic plant-model mismatches, by basing its estimate on the data alone, 

for a specific model's state, not employing the actual model, or its state, when constructing 

the state estimate, as the recursive linear estimator does. We consider the CGM trajectory 

depicted by blue dots in Figure 2: Constant at 70 mg/dL from midnight to 01:00, then rising 

at 2 mg/dL/min until 03:00, then constant at 300 mg/dL until 06:00. CGM measurements 

and controller call-times are synchronous.

A. Dynamic rebound

The recursive estimator results in predictions that are initialized with a rate of change 

exceeding 2 mg/dL/min for a few steps starting at 01:25, and with a strongly negative rate of 

change after 03:25, despite no such signal being present in the CGM measurements. This is 

because the CGM trajectory does not constitute an output trajectory that is admissible w.r.t. 

model (1), as is common in practice, and due to the high gain the state estimate xi of the 

recursive estimator must adopt values resulting in a close match between CGM and the 

estimator output Cxi. In contrast, the proposed state estimator does not suffer this 

phenomenon. In Figure 1 (A) the “dynamic rebounding” of the recursive estimator can be 

seen at roughly 19:00, 02:10, and 08:40. It may also be the reason why the predictions’ 

peaks, as predicted around 06:00, are significantly higher in Figure 1 (A) than in Figure 1 

(D).
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B. State dependence on input history

Plotted in the top subfigure of Figure 3 are the final predictions, starting at 06:00, resulting 

from the recursive and proposed estimator as plotted in Figure 2. The predicted output 

trajectories accelerate downwards due to the predicted insulin delivery. However, the 

proposed estimator results in predictions starting with no rate of change, because the CGM 

data is constant. In contrast, the recursive estimator induces predictions initialized with a 

negative rate of change, again, despite no such signal being present in the CGM 

measurements. The reason for this is that Figure 2 is based on a constant basal-rate input (ui 

= 0), as was Figure 1, and according to the model such an input should lower the blood 

glucose value. However, in practice it frequently does not. Plotted in the bottom subfigure of 

Figure 3 are the final predictions, starting at 06:00, of the same simulation scenario as 

before, but with a constant control input of 4× the basal-rate; this choice of input is arbitrary 

and made only for demonstrative purposes. Higher insulin delivery lowers glucose values, 

according to the model, and in both cases the predictions achieve a lower glucose value at 

their final step, as expected, due to the higher insulin delivery history. Crucially, the 

recursive estimator initializes the predictions with a more negative rate of change than in the 

top subfigure, due to this higher delivery history. In contrast, the proposed estimator 

correctly initializes the predictions with a rate of change of zero, in accordance with the 

CGM trend.

VI. Conclusion

A novel state estimation scheme for use in MPC was extended, and its functionality 

demonstrated in the context of glycemia control with CGM feedback. The proposed strategy 

is effective because it exploits knowledge of sensor recalibrations, sensor time-stamps and 

controller time-stamps, and eliminates certain phenomena due to plant-model mismatches. 

The modification proposed in this paper permits the strategic eradication of prediction 

artifacts that are not usually observed in the actual data. The proposed method is 

underpinned by the use of one function prototype that is fitted to the data, and a sampling 

function that is determined from the fitting function. In future work the most effective 

structures for these two functions will be investigated.
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Fig. 1. 
Subfigure A: High gain recursive linear state estimator. Subfigures B, C, D: Proposed state 

estimator with three different tunings (see Sections IV-F, IV-G & IV-H). Blue dots: CGM 

sensor output. Red dots and line: MPC predictions (9 steps, 45 min) of blood-glucose levels 

based on state estimate. CGM and MPC law identical in all four cases. The green line 

connects the output estimate Cxi that is based on the state estimate, and is mostly not visible. 

It is clearly visible at recalibration points (18:31, 01:11), and for the recursive linear 

estimator (Subfigure A), when the CGM's rate of change is high (ca. 05:00-08:00).
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Fig. 2. 
Blue dots: CGM. Red/green dots and line: MPC predictions based on state estimate. CGM 

and MPC law identical in both cases. Top: Recursive linear state estimator (Figure 1 (A)). 

Bottom: Proposed estimator with parameters of Section IV-H (Figure 1 (D)).
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Fig. 3. 
Blue dots: CGM. Green dots and solid line: MPC predictions based on proposed state 

estimator. Red dots and dashed line: MPC predictions based on recursive linear state 

estimator. CGM and MPC law identical in both cases. Top: Basal control input, i.e., ui = 0, 

corresponding to Figure 2. Bottom: Control input elevated at 4× basal-rate, for 

demonstration.
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