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Weighted Difference Approximation of Value Functions
for Slow-Discounting Markov Decision Processes

Yin-Lam Chow and Junjie Qin

Abstract— Modern applications of the theory of Markov
Decision Processes (MDPs) often require frequent decision
making, that is, taking an action every microsecond, second,
or minute. Infinite horizon discount reward formulation is
still relevant for a large portion of these applications, because
actual time span of these problems can be months or years,
during which discounting factors due to e.g. interest ratesare of
practical concern. In this paper, we show that, for such MDPs
with discount rate α close to 1, under a common ergodicity
assumption, a weighted difference between two successive value
function estimates obtained from the classical value iteration
(VI) is a better approximation than the value function obtained
directly from VI. Rigorous error bounds are established which
in turn show that the approximation converges to the actual
value function in a rate (αβ)k with β < 1. This indicates
a geometric convergence even if discount factorα → 1.
Furthermore, we explicitly link the convergence speed to the
system behaviors of the MDP using the notion ofǫ−mixing time
and extend our result to Q-functions. Numerical experiments
are conducted to demonstrate the convergence properties ofthe
proposed approximation scheme.

I. I NTRODUCTION

A large number of practical problems that involved with
decision making under uncertainty can be modeled as
Markov Decision Problems (MDPs). Among them, many
with relatively long planning horizons are suitably casted
as infinite horizon MDPs, with either discounted reward or
average reward criteria [1]. While discounted reward formu-
lation features easier-to-implement computational methods
such as value iteration, in cases where the discount factor
is very close to1, it is known that the convergence for
the discounted reward value iteration can be unacceptably
slow. This occurs for example in communication network and
computer systems applications where decisions have to be
made frequently. The average reward criteria, together with
their theoretical analysis and algorithmic development, were
in part motivated by these observations. However, for these
slow-discounting problems, the approach of first modeling
the problem approximately as an average reward MDP and
then solving it with corresponding algorithms (cf. Chapter5
of [2] for more details) may give a suboptimal policy with
respect to the original discounted reward criteria.

This paper provides a scheme for approximating value
functions of slow-discounting MDPs. The approximation is
in the form of a weighted difference between two successive
value function estimates obtained from the classical VI. In
particular, building from theories connecting the averagere-
ward criteria and discounted reward criteria, we demonstrate
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that the approximation has a geometric convergence with an
error bound of the order(αβ)k which approaches zero even
when α → 1, whereβ < 1 under a common ergodicity
assumption andk is the iteration count for VI. The rate
parameterβ is then characterized with the well-understood
notion of ǫ-mixing time for average reward problems.

The contributions of this paper are summarized as follows:
• We show that using a weighted difference between two

successive iterates, the classical VI algorithm can be
made practical even if the discount factor is arbitrarily
close to one.

• We characterize the convergence of such value function
approximation and discuss its relation to the notation of
ǫ−mixing time. The error bounds for the value function
approximation provides novel insights on the discounted
Bellman operator for ergodic MDPs, and theoretical
backups for learning algorithms which may need to
solve slow-discounting MDPs in its iterates1.

• We extend the above weighted difference approximation
scheme to Q-functions, which is more commonly used
in many reinforcement learning algorithms.

A. Related Literature

Several methods have been proposed for solving MDPs
with discount factorα close to 1. Among them, splitting
methods and relative value iteration (RVI) are well studied.
The Gauss-Seidel VI is the most noteworthy example of
splitting methods [1], which has(αβGS)k convergence,
whereαβGS is related to the norm of corresponding splitting
matrices. However theβGS < 1 term is usually difficult
to evaluate in general settings. In Section VI, the perfor-
mance of our approximation scheme and Gauss-Seidel VI is
compared numerically. The RVI algorithm, proposed by [4]
for average reward problems and generalized to discounted
reward settings by [5] and [6], is shown to have a(αβRVI)k

convergence in [7]. The convergence is proved in terms of
the relative value function, which is the difference between
the value of each state and the value of a fixed pre-selected
state, andβRVI < 1 is the second largest eigenvalue of the
transition probability matrix corresponding to the optimal
policy. While both the RVI and our approximation scheme
are analyzed under a similar ergodicity assumption, we
contrast these two approaches as follows:

• RVI is constructed to be an algorithm to obtain the
relative value function, which provides sufficient in-

1For example, the polynomial sample complexity bounds for reinforce-
ment learning algorithm proposed in [3] will not be meaningful if α → 1

and if classical VI is used for solving the MDP in each step.
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formation to compute the optimal policy. However, to
get the actual value function, one has to perform one-
step policy evaluation after the algorithm converges,
which requires solving a large linear system when
the number of state is tremendous. Our approximation
scheme estimates the value function directly, which is
superior to RVI in applications such as hybrid systems
where the actual value functions for each subsystem are
often needed for comparison.

• The βRVI term in the convergence rate of RVI is
hard to evaluate ahead of solving the problem since
it corresponds to the optimal policy. Our convergence
rate can be obtained directly from the problem data
beforehand.

• Our approach is both conceptually and implementation-
wise simpler as its major computation is merely the
classical VI.

B. Paper Organization

The rest of the paper is organized as follows. Section
II introduces the problem setup and definitions used. The
approximation scheme based on weighted difference is pro-
vided in Section III, followed by a proof on its error bound. A
characterization for the rate parameterβ is derived in Section
IV, based on a connection to the concept ofǫ−mixing time.
The results of a numerical experiment are given in Section
VI. Finally, this paper concludes with Section VII.

II. PROBLEM SETUP

Consider an infinite horizon discounted MDP character-
ized by the quintuple(S,A, R, P, α). Here S and A are
finite sets representing the state space and the action space.
For each(x, a, y) ∈ S × A × S, Ra(x, y) ∈ [0, Rmax] and
Pa(x, y) ∈ [0, 1] are reward and probability of transitioning
from statex to statey after taking actiona, respectively. The
discount rate is denoted asα ∈ (0, 1). In standard MDPs,
the agent aims to identify a stationary policyµ : S → A that
maximizes the expected discounted reward

E

[

∞
∑

t=1

αtRµ(xt)(xt, xt+1)

]

.

Starting from each statex ∈ S, theN -step accumulated
discounted reward for policyµ is defined as

V N
µ (x) = E

[

N
∑

t=1

αtRµ(xt)(xt, xt+1)

∣

∣

∣

∣

∣

x0 = x

]

.

By Monotone Convergence Theorem, the infinite horizon
value function with respect to control policyµ is given by

Vµ(x) = lim
N→∞

V N
µ (x) = E

[

∞
∑

t=1

αtRµ(xt)(xt, xt+1)

∣

∣

∣

∣

∣

x0 = x

]

and the (optimal) value function is defined byV ⋆(x) ,

maxµ Vµ(x). Similarly, we can define the state-action value
function for each state-action pair(x, a) ∈ S×A and policy
µ as Qµ(x, a) =

∑

y∈S Pa(x, y)(Ra(x, y) + αVµ(y)), and
the optimalQ−function as

Q⋆(x, a) =
∑

y∈S

Pa(x, y)(Ra(x, y) + αV ⋆(y)). (1)

Note thatV ⋆(x) = maxa∈A Q⋆(x, a) is the value function
that satisfies the Bellman equation:V ⋆(x) = T [V ⋆](x), for
every x ∈ S. The Bellman operator for discounted reward
function is denoted byT [·], where

T [V ](x) , max
a∈A

∑

y∈S

Pa(x, y)(Ra(x, y) + αV (y)). (2)

for α ∈ (0, 1), andV : S → R is an arbitrary function. We
can write expression (1) as the Bellman equation of optimal
Q−function: Q⋆(x, a) = F [Q⋆](x, a), ∀x ∈ S, a ∈ A,
whereF [·] is theQ−function Bellman operator, defined as

F [Q](x, a) =
∑

y∈S

Pa(x, y)(Ra(x, y) + αmax
b∈A

Q(y, b)),

for α ∈ (0, 1), and Q : S × A → R is an arbitrary
function. Furthermore, letµQ be a policy which satisfies
µQ ∈ argmaxa∈A Q(x, a).

Ergodicity assumptions are widely used in the analysis
of stochastic optimal control and reinforcement learning
[3], [8]. Motivated by identical assumptions made in the
analysis of the relative value iteration algorithm for average
reward MDPs (cf. Proposition 5.3.2 in [2]), we give a more
quantitative characterization of the ergodicity assumption.

Assumption II.1. For any admissible policyπ =
{µ0, µ1, . . . , µDρ−1} and initial state x ∈ S, there exist
ρ ∈ (0, 1), Dρ > 0 and y0 ∈ S such that

Pπ(x0 = x, xDρ
= y0) , [Pa0Pa1 . . . PaDρ−1 ]xy0 ≥ ρ, (3)

whereak = µk(xk), k = 0, . . . , Dρ − 1.

III. W EIGHTED DIFFERENCEAPPROXIMATION AND ITS

CONVERGENCEPROPERTIES

It is well known that there are some intrinsic relationships
between maximum average reward and maximum discounted
reward MDPs. As discussed in [9], for any admissible control
policies, an average reward can be viewed as an orthogonal
projection of the discounted reward where the relative value
function is a(1−α) multiple of the residual vector. Further-
more, from Theorem 1 in [10], whenα → 1, the discounted
reward can be approximated by maximum average reward.
However, this approximation is valid only whenα → 1.
Also this approach has a major drawback, as finding the
optimal control policies (Blackwell optimal control policies)
for discounted reward MDPs is usually computationally ex-
pensive (cf. Chapter 10 of [1] for more details). Motivated by
these observations, and under Assumption II.1, this section
develops a new value function approximation for discounted
reward MDPs using weighted difference methods, which also
arises in average reward value iteration. We also show that
the error bound of this algorithm is geometric and is always
smaller than the classical value iteration.

For any specificz ∈ S, define the “gain”λ∗ and the “bias”
h⋆ for discounted reward MDPs:

h⋆(x) = V ⋆(x) − V ⋆(z), λ⋆ = (1− α)V ⋆(z).

By Fixed Point theorem:T [V ⋆](x) = V ⋆(x), we have the
following identity:

λ⋆ + h⋆(x) = T [h⋆](x).



This is analogous to the Fixed Point theorem for average
reward uni-chain MDPs. Now, we define

β = (1 − ρ)1/Dρ ∈ (0, 1). (4)

This term can be viewed as an improved discounted factor,
and it is well defined, based on the ergodicity assumption
(Assumption II.1). More discussions aboutβ will be given
in the next section.

Now, define the weighted difference value function ap-
proximation scheme:

WDVF Approximation Scheme — Given an
initial value function estimateV0 : S → R, and
a discounted factorα ∈ (0, 1), for k ∈ {1, 2, . . .},
estimate the(k + 1)th−step value function as fol-
lows:

Vk+1(x)=
T k+1[V0](x)−αT

k[V0](x)

1− α
, ∀x ∈ S. (5)

Different from the classical value iteration (which esti-
mates the value function asT k[V 0] at the(k+1)th step), the
WDVF approximation uses a normalized one-step differ-
ence:(T k+1[V0](x)−αT k[V0](x))/(1−α) in each updates. If
we represent thekth−step value function estimate in classical
value iteration by

V k(x) = T k[V0](x),

the (k + 1)th−stepWDVF approximation is equivalent to

Vk+1(x) =
V k+1(x)− αV k(x)

1− α
, ∀x ∈ S, α ∈ (0, 1).

It is obvious that for anyα ∈ (0, 1), if V k(x) → V ∞(x) =
V ⋆(x), then Vk+1(x) → V ⋆(x), for any x ∈ S. In the
next theorem, we will show that the error bound ofWDVF
approximation converges faster than the error bound of the
classical value iteration. Before getting into the details, define
the following constant:

CD = max
ℓ∈{0,1,...,Dρ−1}

‖T ℓ[V0]− T ℓ[h⋆]‖d
(αβ)ℓ

> 0 (6)

where‖V ‖d = maxx∈S V (x) − minx∈S V (x).2 This con-
stant will characterize the leading coefficient of the error
bound inWDVF algorithm for discounted reward problems,
whose explicit formulation is provided in the following
theorem.

Theorem III.1. For k ∈ Z
+ and anyx ∈ S, let Vk+1(x)

be the(k+1)th−stepWDVF approximation obtained from
equation (5). This value function approximation has the
following error bound in‖ · ‖d semi-norm:

‖Vk+1 − V ⋆‖d ≤
α(1 + β)(αβ)k

1− α
CD (7)

and the following error bound for anyx ∈ S:

− 2CD
(αβ)k

1− α
≤ Vk+1(x) − V ⋆(x) ≤ 2CD

(αβ)k

1− α
. (8)

Furthermore, letc(x) = T k−1[V0]− T k[V0]. Then,
α(c(x) − ‖c‖∞)

1− α
≤Vk+1(x)−Vk(x)≤

α(c(x) + ‖c‖∞)

1− α
. (9)

Proof. See appendix.

2The‖·‖d notation is identical to the span-semi norm notation in equation
(6.6.3) in [1].

Remark III.2. The difference between any two succes-
sive value function estimates in theWDVF approximation
scheme is bounded. However, the sequence of value function
is not monotonically increasing/decreasing.

Remark III.3. Similar to the relative value iteration algo-
rithm in Section 6.6.4 in [1] and in [5] (which is namely the
modified dynamic programming algorithm), theWDVF ap-
proximation is based on the normalized differences between
value functions. Thus, these two methods share similar semi-
norm convergence rates (the definition ofγ in Theorem 6.6.6
in [1] is identical to β, whenDρ = 1). Nevertheless, our
proposed algorithm also has a convergence rate of(αβ)k

in sup-norm, while up to the authors’ knowledge, no such
analysis exists for the relative value iteration algorithm.

IV. T HE CONNECTION WITHǫ−MIXING TIME

In the previous section, we characterize the error bound
of the WDVF approximation scheme in terms ofCD, α
andβ, whereCD depends onα, β and the value function.
The intuition behind the discounted factorα is very clear.
However, based on equation (4), we only know thatβ is
related to the ergodicity of a Markov decision process (cf.
Section 3 of [11] for details). Its explicit meaning is not
well understood. In order to understand the meaning behind
β, it is natural to study the notion of “ǫ−mixing time” in
average reward MDPs. Although we will formally define this
notion later,ǫ−mixing time can be viewed as a metric that
measures the “ergodic strength” (the convergence speed of
sample average reward function to relative reward function)
of average reward MDPs. Intuitivelyǫ−mixing time andβ
describe similar features in a Markov decision process.

In this section, we will formulate a relationship betweenβ
and theǫ−mixing time. This in turn establishes a connection
between the error bound of theWDVF approximation
scheme andǫ−mixing time.

First, define the Bellman operator for an un-discounted
reward function, similar to the case of average reward MDP:

T [h](x) = max
a∈A

∑

y∈S

Pa(x, y)(h(x) +Ra(x, y)), ∀x ∈ S.

Also, defineΠ to be the set of sequence of general ad-
missible policies. The average reward MDP is given by
maxπ∈Π Jπ(x0), where

Jπ(x0) = lim sup
N→∞

1

N
E

[

N
∑

t=1

Rµt(xt)(xt, xt+1)

]

. (10)

andπ = {µ0, µ1, . . .}. From Proposition 5.1.1 and 5.1.2 in
[2], the “ lim sup” can be replaced by“ lim” if we restrict
Π to be the set of stationary admissible policies, i.e.,π =
{µ, µ, . . .}.

From Section 5.1.3, Proposition 5.1.8 in [2], for average
reward MDP, suppose the relative rewardλ⋆ : S → R and
the bias rewardh⋆ : S → R satisfy the following pair of
optimality equations:

λ⋆(x) =max
a∈A

∑

y∈S

Pa(x, y)λ
⋆(y), (11a)

λ⋆(x)+h⋆(x)=max
a∈A

∑

y∈S

Pa(x, y)(Ra(x, y)+h
⋆(y)) (11b)



whereA is the set of control actions that maximizes the
first optimization problem. Then,µ⋆, which attains the
maximum of these two expressions simultaneously, is the
stationary optimal control policy of the average reward MDP.
Furthermore, the following expression holds for anyN ′ ∈ N.
1

N ′
E

[

∑N ′−1
k=0 Rµ⋆(xk)(xk, xk+1) + h⋆(xN ′) | x0 = x, µ⋆

]

− λ⋆(x) = h⋆(x)/N ′, ∀x ∈ S. (12)

Thus, with h⋆(x) being a finite real valued bias function
obtained from expression (11), by lettingN ′ → ∞, we can
show thatλ⋆(x) is the optimal average reward:

λ⋆(x) = lim
N ′→∞

1

N ′
E

[

∑N ′−1
k=0 Rµ⋆(xk)(xk, xk+1) | x0 = x, µ⋆

]

.

Consider a stationary policyµ where the Markov chain
induced byµ only has one recurrent class. We call such
stationary policy a uni-chain policy. By proposition 5.2.5
in [2], if all admissible stationary policies are uni-chain,
Assumption II.1 holds withµk = µ, for any k ∈ N.
Proposition 5.2.3 in [2] implies that the gainλ⋆(x) is the
same for all states. Then, the first equation in expression
(11) holds trivially andA = A. Thus the stationary optimal
policy µ⋆ can be found by the following expression:

µ⋆(x) ∈ argmax
a∈A

∑

y∈S

Pa(x, y)(Ra(x, y) + h⋆(x))

andλ⋆ is the optimal average reward that satisfies the fixed
point theorem for average reward MDP:

λ⋆ + h⋆(x) = T [h⋆](x), ∀x ∈ S.

Next, the notion ofǫ−mixing time in a MDP is discussed.
The standard notion of mixing time of a stationary control
policy µ quantifies the smallest numberN of steps required
to ensure that the distribution on states afterN steps is within
ǫ of the stationary distribution induced byµ. The distance
between these distributions is measured by the Kullback-
Leibler divergence, the variation distance, or some other stan-
dard metrics. There are well-known methods for bounding
this mixing time in terms of the second eigenvalue of the
transition probability matrixP , using underlying structural
properties such as “conductance”. Similar to Definition 5
in [3], it turns out that we can state our results for a
weaker notion of mixing time that only requires the expected
discounted reward afterN steps, induced by the stationary
optimal control policy to approach an asymptotic reward.

Definition IV.1. The ǫ−mixing time of any stationary op-
timal control policy,µ⋆ ∈ argmaxµ Vµ(x), is the smallest
constantτ⋆ǫ such that for allN ′ ≥ τ⋆ǫ and all x ∈ S,
∣

∣

∣

∣

1

N ′
E

[

∑N ′−1
k=0 Rµ⋆(xk)(xk, xk+1)|x0 = x, µ⋆

]

−λ⋆

∣

∣

∣

∣

≤ ǫ. (13)

Before getting to the main result of this section, we define

CA = max
ℓ∈{0,1,...,Dρ−1}

‖T
ℓ
[V0]− T

ℓ
[h⋆]‖d

(1− ρ)ℓ/Dρ
> 0. (14)

Similar to the definition ofCD > 0, this coefficient will
characterize the constant term of an upper bound for average
reward problems. The next theorem provides this upper
bound in terms of the time horizonN ′, CA > 0 andβ > 0.

Also, it gives an expression betweenǫ−mixing time and
constantβ ∈ (0, 1).

Theorem IV.2. Let V0(x) = 0 for anyx ∈ S. Then, for any
x ∈ S, and for anyN ′ ≥ 1, there exists a constantCA > 0
such that

∣

∣

∣

∣

1

N ′
E

[

∑N ′−1
k=0 Rµ⋆(xk)(xk, xk+1) | x0 = x

]

− λ⋆

∣

∣

∣

∣

≤
2CA

N ′

β

1− β
, ∀x ∈ S.

(15)

where

µ⋆(x) ∈ argmax
a∈A

∑

y∈S

Pa(x, y)(h(x) +Ra(x, y)).

Furthermore, this implies

β ≥ ǫτ⋆ǫ /(2CA + ǫτ⋆ǫ ),

whereτ⋆ǫ is the ǫ−mixing time in Definition IV.1.3

Proof. For any specificz ∈ S andk ∈ {1, 2, . . .}, define:

hk(x) = T
k
[V0](x)− T

k
[V0](z),

λk(x) = T
k
[V0](x) − T

k−1
[V0](x), ∀x ∈ S.

This implies that

λk(x) + hk−1(x) = T [hk−1](x).

Recall‖V ‖d = maxx∈S V (x)−minx∈S V (x). Similar to the
arguments in Lemma III.1 for discounted reward problems,
we can show that

‖T
Dρ

[V (1)]− T
Dρ

[V (2)]‖d ≤ (1 − ρ)‖V (1) − V (2)‖d.

We can show by induction, and fixed point theorem of
average reward MDPs that

kλ⋆ + h⋆(x) = T
k
[h⋆](x).

Moreover, letk = qDρ + ℓ, for ℓ = {0, 1, . . . , Dρ − 1},
whereq is the greatest common divisor ofk andDρ. As in
in Lemma III.1, here we can also show that

‖T
k
[V0]− T

k
[h⋆]‖d ≤ (β)qN‖T

ℓ
[V0]− T

ℓ
[h⋆]‖d ≤ CAβ

k.

Following similar derivations as in Lemma III.1, the above
results further imply that‖hk − h⋆‖∞ ≤ CAβ

k and

‖T
k
[V0]− T

k−1
[V0]− λ⋆‖∞ = ‖λk − λ⋆‖∞

≤ 2‖hk − h⋆‖∞ ≤ 2CAβ
k.

Furthermore, by a telescoping sum,
∣

∣

∣

∣

∣

T
N
[V0](x)− V0(x)

N
− λ

⋆

∣

∣

∣

∣

∣

≤

N
∑

k=1

‖T
k
[V0]− T

k−1
[V0]− λ⋆‖∞

N

≤
2CA

N

N
∑

k=1

β
k =

2CA

N ′

β(1− βN′

)

1− β
≤

2CA

N ′

β

1− β

for any x ∈ S. SinceV0(x) = 0 for all x ∈ S, the above
result implies expression (15). Now, forN0 = 2CAβ/(ǫ(1−
β)), one obtains

∣

∣

∣

∣

∣

∣

E

[

∑N ′−1
k=0 Rµ⋆(xk)(xk, xk+1) | x0 = x

]

N ′
− λ⋆

∣

∣

∣

∣

∣

∣

≤ ǫ

for anyN ′ ≥ N0. Then, based on the definition ofǫ−mixing
time in Definition IV.1, we conclude that2CAβ/(ǫ(1−β)) ≥
τ⋆ǫ andβ ≥ ǫτ⋆ǫ /(2CA + ǫτ⋆ǫ ).

3Proof of this result is omitted in this conference version and can be
found atweb.stanford.edu/˜ychow.

web.stanford.edu/~ychow


Now, we are in position to give a relationship between
the number of steps needed for convergence ofWDVF
approximation andǫ−mixing time τ⋆ǫ . Given a constant
θ > 0. From Lemma III.1, the condition‖Vk − V ⋆‖∞ ≤ θ
holds if

2CD(αβ)k−1

1− α
≤ θ ⇐⇒ k ≥ log

(

θ(1 − α)

2CD

)

/ log(αβ) + 1.

From theβ bound given by Theorem IV.2, we know that, if
the number of steps is given by the following expression:

k ≥Cθ , max

{

log (θ(1 − α)/(2CD))

log (αǫτ⋆ǫ /(2CA + ǫτ⋆ǫ ))
+ 1, 1

}

, (16)

whereτ⋆ǫ is the ǫ−mixing time andCD, CA are given by
equations (6) and (14) respectively, then‖Vk − V ⋆‖∞ ≤ θ
is guaranteed. We summarize this result as follows:

Theorem IV.3. Let Vk(x) be thekth WDVF approximation
obtained from equation (5), for anyx ∈ S. The number of
steps required for‖Vk − V ⋆‖∞ ≤ θ is at leastCθ.

V. M ODIFIED Q-VALUE ITERATION

In this section, we study the convergence properties of
modifiedQ−value iteration. First, define the following algo-
rithm for modified Q-value iteration:

WDQVF Approximation Scheme — Given an
initial value function estimateV0 : S → R, and a
discounted factorα ∈ (0, 1). Let Q0(x, a) be the
following initial Q−function estimate:

Q0(x, a) = V0(x), ∀(x, a) ∈ S ×A.

For k ∈ {1, 2, . . .}, update the(k + 1)th−step
Q−function estimate as follows:

Qk+1(x, a) =
F k+1[Q0](x, a)− αF k[Q0](x, a)

1− α
(17)

for any (x, a) ∈ S ×A.

By using the error bound result for modified value iteration
from the WDVF approximation, we can prove a similar
error bound forWDQVF approximation. This result is
summarized in the following theorem.

Theorem V.1. Let {Qk} be a sequence ofQ-value function
estimates generated by theWDQVF approximation scheme.
Then, the following expression holds for any(x, a) ∈ S×A:

|Qk(x, a)−Q⋆(x, a)| ≤ 2αCD
(αβ)k−2

1− α
= O((αβ)k)

Proof. Based on the definitions ofT [·] and F [·], we
know that maxa∈A F [Q0](x, a) = T [V0](x). By repeat-
ing the above analysis, we can show by induction that
maxa∈A F k[Q0](x, a) = T k[V0](x), ∀k ∈ N. We will
use the error bound result in theWDVF approximation
scheme to show a similar error bound for theWDQVF
approximation scheme. First, let

Q(x, a) = T k[V0](x), ∀(x, a) ∈ S ×A.

By applyingF [·] to the above equation, it implies for any
(x, a) ∈ S ×A,

F [T k[V0]](x, a) = F [Q](x, a)

=
∑

y∈S

Pa(x, y)

(

Ra(x, y) + αmax
b∈A

Q(y, b)

)

=
∑

y∈S

Pa(x, y)
(

Ra(x, y) + αT
k[V0](y)

)

=
∑

y∈S

Pa(x, y)

(

Ra(x, y)+αmax
b∈A

F
k[Q0](y, b)

)

=F
k+1[Q0](x, a).

Now, expression (21) and (22) imply

−
2‖hk − h⋆‖∞

1− α
+ T k[V0](x) ≤ V ⋆(x)

−
T k[V0](x) − T k+1[V0](x)

1− α
≤

2‖hk − h⋆‖∞
1− α

+ T k[V0](x).

By applyingF [·] to the above inequality, and noting that

F [Q+ c](x, a) = F [Q](x, a) + αc,

we know that for any(x, a) ∈ S ×A,

−
2α‖hk − h⋆‖∞

1− α
+ F k+1[Q0](x, a)

≤F

[

V ⋆(x) +
T k[V0](x) − T k+1[V0](x)

1− α

]

≤
2α‖hk − h⋆‖∞

1− α
+ F k+1[Q0](x, a)

(18)

Furthermore, by recallingmaxa∈A Q⋆(x, a) = V ⋆(x), we
obtain the following expressions:

F

[

V
⋆(x) +

T k[V0](x)− T k+1[V0](x)

1− α

]

=
∑

y∈S

Pa(x, y)

(

Ra(x, y) + αmax
a∈A

{

V
⋆(y)

+
T k[V0](y)− T k+1[V0](y)

1− α

})

=Q
⋆(x, a) + α

∑

y∈S

Pa(x, y)
T k[V0](y)− T k+1[V0](y)

1− α

=
1

1− α

(

∑

y∈S

Pa(x, y)

(

Ra(x, y) + αmax
b∈A

F
k[Q0](y, b)

)

−
∑

y∈S

Pa(x, y)

(

Ra(x, y)+αmax
b∈A

F
k+1[Q0](y, b)

)

)

+Q
⋆(x, a)

=Q
⋆(x, a) +

1

1− α

(

F
k+1[Q0](x, a)− F

k+2[Q0](x, a)
)

.

Thus, by combining all arguments, expression (18) implies

−
2α‖hk − h⋆‖∞

1− α

≤Q⋆(x, a) −

(

F k+2[Q0](x, a)

1− α
−

α

1− α
F k+1[Q0](x, a)

)

≤
2α‖hk − h⋆‖∞

1− α

Now, by putting the result:‖hk − h⋆‖∞ ≤ CD(αβ)k to the
above expression, the error bound proof for theWDQVF
approximation scheme is completed.



VI. N UMERICAL EXPERIMENT

Consider100 Monte Carlo samples of randomly gener-
ated 100-state-6-action MDPs withS = {1, 2, . . . , 100},
A = {1, 2, 3, 4, 5, 6}, α = 0.995. The reward functions are
randomly generated withRmax = 1. For simplicity each
reward function is assumed to bey−independent, that is.
Ra(x, y) = Ra(x) alongy ∈ S. The transition probabilities
induced by each actions are randomly generated with ergodic
strength of at least0.1 (ρ = 0.1 and Dρ = 1). This
further implies the improved discount factorβ equals to
0.9.4 We want to compare the performance between the
classical value iteration, Gauss-Seidel value iteration and
the WDVF approximation scheme. Recall that the error
bound for value iteration is given byRmaxα

k/(1− α). From
Theorem III.1, the error bound forWDVF approximation
is given by2CD(αβ)k−1/(1− α). From Proposition 6.3.8
in [1], the error bound of Gauss-Seidel value iteration is
given by Rmax(αβ

GS)k/(1− α), whereβGS < 1 can be
calculated using the matrix regular splitting method depicted
in Theorem 6.3.4 of [1].
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Fig. 1: Mean of‖Vk − V ⋆‖∞ across Monte Carlo runs.

Figure 1 compares the error bound and speed of conver-
gence of theWDVF approximation scheme, Gauss-Seidel
value iteration and the classical value iteration. The stopping
criterion of this experiment is:‖Vk − V ⋆‖∞ ≤ 10−5. On
average, it is observed thatWDVF approximation takes
92 iterations (standard deviation:13 iterations) to converge,
while Gauss-Seidel value iteration and classical value itera-
tion take2936 iterations (standard deviation:197 iterations)
and 3551 iterations (standard deviation:172 iterations) to
converge respectively. As illustrated in Theorem III.1, the
error bound ofWDVF approximation is in the order of
(αβ)k = 0.8996k, while the error bound of the classical
value iteration and Gauss-Seidel value iteration are in the
order of 0.995k (as αβGS ≃ α numerically in our ex-
periment). This numerical example demonstrates that, when
α → 1, both classical value iteration and Gauss Seidel may
encounter slow convergence issues, while the convergence
for theWDVF approximation depends onβ.

4The explicit formulations of the reward functions and transition proba-
bilities can be found in the author’s website.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have proposed a novel weighted differ-
ence value function estimation scheme for discounted reward
MDPs. We have shown that this approximation has an error
bound of order(αβ)k , β ∈ (0, 1), which decays faster
than the error bound of classical value iteration (in order of
αk). We also characterize the improved convergence factor
β and the speed of convergence of this new approximation
using ǫ−mixing time. This characterization explicitly links
the convergence speed of weighted difference value function
estimation to the system behaviors of the MDP. Further-
more, we also extend the above method to find optimal
Q−function. The above theoretical result is verified by a
numerical experiment. Notice that while Assumption II.1 can
be justified via Schweitzer’s transformation [12] in average
reward MDPs, similar transformation does not work under
the discounted reward settings. Eliminating the restrictions
due to the ergodicity assumption will be left as future work.
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APPENDIX

Proof of Theorem III.1. Let V (1) and V (2) be two
arbitrary functions that mapsS to R. We define
V

(1)
k (x) = T k[V (1)](x) and V

(2)
k (x) = T k[V (2)](x)

for any x ∈ S and for k ∈ {0, . . . , Dρ}. We
also define two sequences of optimal policies,
π(j) = {µ

(j)
0 , µ

(j)
1 , . . . , }, for j ∈ {1, 2}, whereµ(j)

k (x) ∈



argmaxa∈A

∑

y∈S Pa(x, y)
(

Ra(x, y) + αV
(j)
k (y)

)

.

For any sequence of state feedback control policies
π = {µ0, µ1, . . . , }, define the following event:
H(x, π) = {x0 = x, ai = µi(xi), ∀i}, where{xj}j∈Z+ is
a Markov chain induced by control policyπ with x0 = x.
By substituting the sequences of optimal policies to value
function V

(j)
Dρ

, one notices that forj ∈ {1, 2}, and for any
x ∈ S,

V
(j)
Dρ

(x)=E
[

∑Dρ−1
i=0 αiRai

(xi, xi+1)+α
DρV (j)(xDρ

)|H(x, π(j))
]

.

By considering the difference betweenV (1)
Dρ

(x) andV (2)
Dρ

(x),
we get

V
(1)
Dρ

(x)− V
(2)
Dρ

(x)

= E

[

∑Dρ−1
i=0 αiRai

(xi, xi+1)+αDρV (1)(xDρ
) | H(x, π(1))

]

− E

[

∑Dρ−1
i=0 αiRai

(xi, xi+1)+αDρV (2)(xDρ
) | H(x, π(2))

]

≥ E

[

∑Dρ−1
i=0 αiRai

(xi, xi+1)+αDρV (1)(xDρ
) | H(x, π(2))

]

− E

[

∑Dρ−1
i=0 αiRai

(xi, xi+1)+αDρV (2)(xDρ
) | H(x, π(2))

]

= E
[

αDρ (V (1)(xDρ
)− V (2)(xDρ

)) | H(x, π(2))
]

.

The first inequality is due to the fact that for anyk ∈

Z
+, µ

(2)
k (x) is a feasible solution to the optimization

problem maxa∈A

∑

y∈S Pa(x, y)
(

Ra(x, y) + αV
(1)
k (y)

)

,

whereµ
(1)
k (x) is an optimal solution of this problem, for

everyx ∈ S. By Assumption II.1, this further implies that
(

V
(1)
Dρ

(x)− V
(2)
Dρ

(x)
)

/αDρ

≥
∑

y∈S

Pπ(2)(x0 = x, xDρ
= y)(V (1)(y)− V (2)(y))

≥[(1− ρ)min
y∈S

{V (1)(y)−V (2)(y)}+ρ(V (1)(y0)−V (2)(y0))],

where y0 ∈ S is the state defined in Assumption II.1.
Similarly, by a symmetric argument, we can also prove that

1

αDρ
max
y∈S

{

TDρ [V (1)](y)− TDρ [V (2)](y)
}

≤[(1− ρ)max
y∈S

{V (1)(y)−V (2)(y)}+ρ(V (1)(y0)−V (2)(y0))].

Thus, by these inequalities and the definitions of
‖TDρ[V (1)] − TDρ [V (2)]‖d, ‖V (1) − V (2)‖d, we can show
that the followingDρ−step contraction property holds:

‖TDρ[V (1)]− TDρ [V (2)]‖d ≤ (αβ)Dρ‖V (1) − V (2)‖d.

By mathematical induction and the definitions ofλ⋆, h⋆,
it can be easily shown that

k−1
∑

i=0

αiλ⋆ + h⋆(x) = T k[h⋆](x), ∀x ∈ S. (19)

Consider the expression:
∥

∥

∥
T k[V0]−

∑k−1
i=0 αiλ⋆ − h⋆

∥

∥

∥

d
. By

writing k = qDρ + ℓ, ℓ = {0, 1, . . . , Dρ − 1}, where the
nonnegative integerq is the greatest common divisor of
k and Dρ, from expression (19), we obtain the following
relationship:

∥

∥T k[V0]−

k−1
∑

i=0

αiλ⋆ − h⋆
∥

∥

d
= ‖T k[V0]− T k[h⋆]‖d

≤ (αβ)qDρ‖T ℓ[V0]− T ℓ[h⋆]‖d ≤ CD(αβ)k.

(20)

Note thatT k[h⋆](x) = T k[V ⋆](x) − αkV ⋆(z) = V ⋆(x) −
αkV ⋆(z). From Section 6.6.1 in [1], one also obtains‖u+
v‖d ≤ ‖u‖d + ‖v‖d, ‖ − u‖d = ‖u‖d, ‖ku‖d = |k|‖u‖d
and‖u+ k‖d = ‖u‖d for any scalark. Therefore, the above
expression implies‖T k[V0]−T k[h⋆]‖d = ‖T k[V0]−V ⋆‖d ≤
CD(αβ)k and

‖Vk+1 − V ⋆‖d =

∥

∥

∥

∥

(T k+1[V0]− V ⋆)− α(T k[V0]− V ⋆)

1− α

∥

∥

∥

∥

d

≤
(

‖T k+1[V0]− V ⋆‖d + α‖T k[V0]− V ⋆‖d
)

/(1− α)

≤(αβ)k ((αβ) + α)CD/(1− α).

This implies that the error bound in expression (7) holds.
Next, we will show the error bound in expression (8).

Define the following quantities that estimate the gain and
bias in thekth step:
hk(x) =T k[V0](x)− T k[V0](z),

λk(x) =T k[V0](x)− T k−1[V0](x) + (1 − α)T k−1[V0](z)

where z ∈ S is an arbitrary reference state. By simple
calculations, the above expressions implyλk+1(x)+hk(x) =
T [hk](x). It can be easily seen thath⋆(z) = V ⋆(z) −
V ⋆(z) = 0 and

|hk(x)− h⋆(x)| = |T k[V0](x)− T k[V0](z)− h⋆(x) + h⋆(z)|

=
∣

∣T k[V0](x)−

k−1
∑

i=0

αiλ⋆−h⋆(x)−
[

T k[V0](z)−

k−1
∑

i=0

αiλ⋆−h⋆(z)
]
∣

∣

≤
∥

∥T k[V0]−
k−1
∑

i=0

αiλ⋆ − h⋆
∥

∥

d
≤ CD(αβ)k.

Thus, the above inequality implies

‖h⋆ − hk‖∞ = max
x∈S

|h⋆(x) − hk(x)| ≤ CD(αβ)k.

Next, we know from the contraction property ofT [·] that
λk+1(x) + hk(x) − (λ⋆ + h⋆(x)) = T [hk](x) − T [h⋆](x)

≤max
b∈A

α
∑

y∈S

Pb(x, y)|hk(y)− h⋆(y)| ≤ α‖hk − h⋆‖∞.

By using the definitions ofλk+1(x), hk(x), λ⋆ andh⋆(x),
the above expression implies
T k+1[V0](x)−T k[V0](x) + (1− α)(T k[V0](z)− V ⋆(z))

+ hk(x)− h⋆(x) ≤ α‖hk − h⋆‖∞,

which further implies
T k+1[V0](x)− T k[V0](x) + (1 − α)(T k[V0](z)− V ⋆(z))

≤(1 + α)‖hk − h⋆‖∞.

By inserting

T k[V0](z)−V ⋆(z) = T k[V0](x)−hk(x)− (V ⋆(x)−h⋆(x))

to the above expression, we get
T k+1[V0](x)− T k[V0](x) + (1 − α)(T k[V0](x) − V ⋆(x))

− (1− α)(hk(x) − h⋆(x)) ≤ (1 + α)‖hk − h⋆‖∞.

This implies
T k+1[V0](x) − T k[V0](x) + (1− α)(T k[V0](x) − V ⋆(x))

≤(1 + α)‖hk − h⋆‖∞ + (1− α)(hk(x)− h⋆(x))

≤2‖hk − h⋆‖∞.

By combining all inequalities, we get
T k+1[V0](x) − αT k[V0](x)

1− α
− V ⋆(x) ≤

2‖hk − h⋆‖∞
1− α

. (21)



Similarly, by noting that
T [hk](x) − T [h⋆](x)

≥− αmax
b∈A

∑

y∈S

Pa(x, y)|hk(y)− h⋆(y)| ≥ −α‖hk − h⋆‖∞

and applying analogous arguments as in the derivation of
inequality (21), we get
T k+1[V0](x)−αT k[V0](x)

1− α
−V ⋆(x)≥−2

‖hk−h⋆‖∞
1− α

. (22)

Now, since ‖hk − h⋆‖∞ ≤ CD(αβ)k , the definition of
Vk+1(x), expression (21) and (22) imply expression (8) holds
for all x ∈ S. This completes the first part of the proof.

Finally, we will show expression (9) holds. For anyk ∈
Z
+, theWDVF approximation can be re-written as

Vk+1(x) =
T k+1[V0](x)− T k[V0](x)

1− α
+ T k[V0](x).

Thus, we know that

Vk+1(x)− Vk(x) =
T k+1[V0](x) + T k−1[V0](x)− 2T k[V0](x)

1− α

+ T
k[V0](x)− T

k−1[V0](x)

≤
α(‖T k[V0]− T k−1[V0]‖∞ + T k−1[V0](x)− T k[V0](x))

1− α
.

The first inequality is implied by the fact thatT [·] is a
α−contraction mapping:
T k+1[V0](x)−T k[V0](x)≤α‖T k[V0]−T k−1[V0]‖∞, ∀x ∈ S.

On the other hand, we can also show that
Vk+1(x)− Vk(x)

≥
α(−‖T k[V0]− T k−1[V0]‖∞ + T k−1[V0](x) − T k[V0](x))

1− α
.

by analogous arguments. This completes the second part of
the proof.
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