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Abstract—High-voltage direct current (HVDC) is a commonly
used technology for long-distance electric power transmis-
sion, mainly due to its low resistive losses. In this paper
a distributed controller for multi-terminal high-voltage direct
current (MTDC) transmission systems is considered. Sufficient
conditions for when the proposed controller renders the closed-
loop system asymptotically stable are provided. Provided that
the closed loop system is asymptotically stable, it is shown that
in steady-state a weighted average of the deviations from the
nominal voltages is zero. Furthermore, a quadratic cost of the
current injections is minimized asymptotically.

I. INTRODUCTION

Transmitting power over long distances while minimizing
losses is one of the greatest challenges in today’s power
transmission systems. Increased distances between power
generation and consumption is a driving factor behind long-
distance power transmission. One such example are large-
scale off-shore wind farms, which often require power to
be transmitted in cables over long distances to the mainland
power grid. High-voltage direct current (HVDC) power trans-
mission is a commonly used technology for long-distance
power transmission. Its higher investment costs compared to
AC transmission lines are compensated by its lower resistive
losses for sufficiently long distances. The break-even point,
i.e., the point where the total costs of overhead HVDC and
AC lines are equal, is typically 500-800 km [10]. However,
for cables, the break-even point is typically lower than 100
km [4]. Increased use of HVDC for electrical power trans-
mission suggests that future HVDC transmission systems are
likely to consist of multiple terminals connected by several
HVDC transmission lines. Such systems are referred to as
Multi-terminal HVDC (MTDC) systems in the literature [12].

Maintaining an adequate DC voltage is one of the most
important control problems for HVDC transmission systems.
Firstly, the voltage levels at the DC buses govern the current
flows by Ohm’s law and Kirchhoff’s circuit laws. Secondly, if
the DC voltage deviates too far from a nominal operational
voltage, equipment could be damaged, resulting in loss of
power transmission capability [12].
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Different voltage control methods for HVDC systems
have been proposed in the literature. Among them, the
voltage margin method (VMM) and the voltage droop method
(VDM) are the most well-known methods [7]. These voltage
control methods change the active injected power to maintain
active power balance in the DC grid and as a consequence,
control the DC voltage. A decreasing DC voltage requires
increased injected currents through the DC buses in order to
restore the voltage.

The VDM controller is designed so that several DC buses
participate to control the DC voltage through proportional
control [8]. All participating terminals change their injected
active power to a level proportional to the deviation from the
nominal voltage [7], [13]. These decentralized proportional
controllers induce static errors in the voltage, which is the
main disadvantage of VDM.

The VMM controller on the other hand, is designed so that
one terminal is responsible to control the DC voltage, by e.g.,
a PI controller. The other terminals keep their injected active
power constant. The terminal controlling the DC voltage is
called a slack terminal. When the slack terminal is no longer
able to supply or extract the power necessary to maintain its
DC bus voltage within a certain threshold, a new terminal will
operate as the slack terminal [6]. The transition between the
slack terminals can cause conflicts between the controllers,
and requires one or a few terminals to inject all the current
needed to maintain an adequate voltage [6].

Distributed control has been successfully applied to both
primary and secondary frequency control of AC transmission
systems [1], [11], [9], [2]. Recently, distributed controllers
have been applied also to secondary frequency control of
asynchronous AC transmission systems connected through an
MTDC system [5]. In [3], a distributed controller for voltage
control of MTDC systems was proposed. It was shown that
the controller can regulate the voltages of the terminals,
while the injected power is shared fairly among the DC
buses. However, this controller possesses the disadvantage of
requiring a terminal dedicated to measuring and controlling
the voltage. In this paper, we propose a fully distributed
voltage controller for MTDC transmission systems, which
possesses the property of fair power sharing, asymptotically
minimizing the cost of the power injections.

The remainder of this paper is organized as follows. In
Section II, the mathematical notation is defined. In Section
III, the system model and the control objectives are defined.
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In Section IV, a distributed averaging controller is presented,
and its stability and steady-state properties are analyzed.
In Section V, simulations of the distributed controller on a
four-terminal MTDC test system are provided, showing the
effectiveness of the proposed controller. The paper ends with
a discussion and concluding remarks in Section VI.

II. NOTATION

Let G be a graph. Denote by V = {1, . . . , n} the vertex
set of G, and by E = {1, . . . ,m} the edge set of G. Let Ni
be the set of neighboring vertices to i ∈ V . In this paper we
will only consider static, undirected and connected graphs.
For the application of control of MTDC power transmission
systems, this is a reasonable assumption as long as there
are no power line failures. Denote by B the vertex-edge
adjacency matrix of a graph, and let LW = BWBT be
its weighted Laplacian matrix, with edge-weights given by
the elements of the positive definite diagonal matrix W . Let
C− denote the open left half complex plane, and C̄− its
closure. We denote by cn×m a matrix of dimension n ×m
whose elements are all equal to c, and by cn a column vector
whose elements are all equal to c. For a symmetric matrix
A, A > 0 (A ≥ 0) is used to denote that A is positive (semi)
definite. In denotes the identity matrix of dimension n. For
simplicity, we will often drop the notion of time dependence
of variables, i.e., x(t) will be denoted x for simplicity.

III. MODEL AND PROBLEM SETUP

Consider a MTDC transmission system consisting of n
DC buses, denoted by the vertex set V = {1, . . . , n}, see
Figure 1 for an example of an MTDC topology. The DC buses
are modelled as ideal current sources which are connected
by m HVDC transmission lines, denoted by the edge set
E = {1, . . . ,m}. The dynamics of any system (e.g., an AC
transmission system) connected through the DC buses, or
any dynamics of the DC buses (e.g., AC-DC converters)
are neglected. The HVDC lines are assumed to be purely
resistive, implying that

Iij =
1

Rij
(Vi − Vj),

due to Ohm’s law, where Vi is the voltage of bus i, Rij is
the resistance and Iij is current of the HVDC line from bus
i to j. The voltage dynamics of an arbitrary DC bus i are
thus given by

CiV̇i = −
∑
j∈Ni

Iij + I inj
i + ui

= −
∑
j∈Ni

1

Rij
(Vi − Vj) + I inj

i + ui,
(1)

where Ci is the total capacity of bus i, including shunt
capacities and the capacitance of the HVDC line, I inj

i is the
nominal injected current, which is assumed to be unknown
but constant over time, and ui is the controlled injected
current. Equation (1) may be written in vector-form as

V̇ = −CLRV + CI inj + Cu, (2)

1 2

3 4

e1

e4

e2 e3

Figure 1. Example of a graph topology of an MTDC system.

where V = [V1, . . . , Vn]T , C = diag([C−11 , . . . , C−1n ]),
I inj = [I inj

1 , . . . , I
inj
n ]T , u = [u1, . . . , un]T and LR is the

weighted Laplacian matrix of the graph representing the
transmission lines, whose edge-weights are given by the
conductances 1

Rij
. The control objectives considered in this

paper are twofold.

Objective 1. The voltages of any DC bus, Vi, should con-
verge to a value close to the nominal voltage for bus i (V nom

i ),
after a disturbance has occurred. More precisely, a weighted
average of the steady-state errors should be zero:

lim
t→∞

n∑
i=1

KV
i

(
V (t)− V nom

i

)
= 0,

for some KV
i > 0, i = 1, . . . , n. Furthermore, the asymptotic

voltage differences between the DC buses should be bounded,
i.e., limt→∞ |Vi(t)− Vi(t)| ≤ V ∗ ∀i, j ∈ V , for some V ∗ >
0.

Remark 1. It is in general not possible to have
limt→∞ Vi(t) = V nom

i for all i ∈ V , since this by Ohm’s
law would imply that the HVDC line currents are always
unchanged, not allowing for time-varying demand.

Objective 2. The cost of the current injections should be
minimized asymptotically. More precisely, we require

lim
t→∞

u(t) = u∗,

where u∗ is defined by

[u∗, V ∗] = argmin
[u,V ]

∑
i∈V

1

2
fiu

2
i s.t. LRV = I inj + u, (3)

and where fi > 0, i = 1, . . . , n are positive constants.

Remark 2. Objective 2 is analogous to the quadratic op-
timization of AC power generation costs considered in [1],
[11].

IV. DISTRIBUTED MTDC CONTROL

It was shown in [3] that a decentralized proportional droop
controller cannot satisfy Objective 1 and 2 simultaneously.
Furthermore, a proportional controller can only satisfy Ob-
jective 1 or 2 if the proportional gains tend to infinity or 0, re-
spectively. A distributed controller was proposed, which was
shown to satisfy Objective 1 and 2 simultaneously. However,
this controller requires one specific DC bus to measure and
control the voltage. This controller thus has the disadvantage
of being sensitive to failure of this specific terminal. In this
section we propose a novel, fully distributed controller for



MTDC networks which allows for communication between
the buses. This controller does not rely on a single leader,
but the voltage regulation is distributed among all buses.
The proposed controller takes inspiration from the control
algorithms given in [1], [3], [11], and is given by

ui = −KP
i (Vi − V̂i − V̄i)

˙̂
Vi = −γ

∑
j∈Ni

cij

(
(V̂i + V̄i − Vi)−(V̂j + V̄j − Vj)

)
˙̄Vi = −KV

i (Vi − V nom
i )− δ

∑
j∈Ni

cij(V̄i − V̄j).
(4)

The first line of the controller (4) can be interpreted as a
proportional controller, whose reference value is controlled
by the remaining two lines. The second line ensures that
the weighted current injections converge to the identical
optimal value through a consensus-filter. The third line is a
distributed secondary voltage controller, where each terminal
measures the voltage and updates the reference value through
a consensus-filter. In vector-form, (4) can be written as

u = −KP (V − V̂ − V̄ )

˙̂
V = −γLc(V̂ + V̄ − V )

˙̄V = −KV (V − V nom)− δLcV̄ ,
(5)

where KP = diag([KP
1 , . . . ,K

P
n ]), KV =

diag([KV
1 , . . . ,K

V
n ]), V nom = [V nom

1 , . . . , V nom
n ]T and LC is

the weighted Laplacian matrix of the graph representing the
communication topology, denoted Gc, whose edge-weights
are given by cij , and which is assumed to be connected.
Substituting the controller (5) in the system dynamics (2),
yields

˙̄V
˙̂
V

V̇

 =

−δLC 0n×n −KV

−γLC −γLC γLC
CKP CKP −C(LR +KP )


V̄V̂
V


︸ ︷︷ ︸

,A

+

KV V nom

0n
CI inj


︸ ︷︷ ︸

,b

.

(6)

The following theorem characterizes when the controller (4)
stabilizes the system (1), and shows that it has some desirable
properties.

Theorem 1. Consider an MTDC network described by
(1), where the control input ui is given by (4) and the
injected currents I inj are constant. Let KP = F−1, where
F = diag([f1, . . . , fn]). It is easily shown that A as defined
in (6), has one eigenvalue equal to 0. If all other eigenvalues
lie in the open complex left half plane, then:

1) limt→∞
∑n
i=1K

V
i

(
V (t)− V nom

i

)
= 0

2) limt→∞ u(t) = u∗, where u∗ is defined as in Objective
2.

The relative voltage differences are also bounded and satisfy
limt→∞ |Vi(t) − Vi(t)| ≤ 2Imax∑n

i=2
1
λi
∀i, j ∈ V , where

Imax = maxi |I tot| and I tot = I inj + limt→∞ u(t), and λi
denotes the i’th eigenvalue of LR.

Proof: It is easily verified that the right-eigenvector
of A corresponding to the zero eigenvalue is v1 =
1/
√

2n[1Tn ,−1Tn , 0
T
n ]T . Since b as defined in (6), is not

parallel to v1, limt→∞[V̄ (t), V̂ (t), V (t)] exists and is finite,
by the assumption that all other eigenvalues lie in the open
complex left half plane. Hence, we consider any stationary
solution of (6)0n

0n
0n

 =

−δLC 0n×n −KV

−γLC −γLC γLC
CKP CKP −C(LR +KP )


V̄V̂
V


+

KV V nom

0n
CI inj

.
(7)

Premultiplying (7) with [1Tn , 0
T
n , 0

T
n ] yields

1TnK
V (V nom − V ) = −

n∑
i=1

KV
i V (t) +

n∑
i=1

KV
i V

nom
i .

The n+ 1:th to 2n:th lines of (7) imply

LC(V̄ + V̂ − V ) = 0n ⇒
(V̄ + V̂ − V ) = k11n ⇒

u = KP (V̄ + V̂ − V ) = k1K
P 1n

Now finally, premultiplying (7) with [0Tn , 0
T
n , 1

T
nC
−1] yields

1Tn

(
KP (V̄ + V̂ − V ) + I inj

)
= 1Tn

(
k1K

P 1n + I inj
)

= k1

n∑
i=1

KP
i +

n∑
i=1

I inj
i = 0n,

which implies k1 = −
(∑n

i=1 I
inj
i

)
/
(∑n

i=1K
P
i

)
. The

bound on limt→∞ |Vi(t) − Vi(t)| follows from the proof of
Theorem 3 in [3]. Since KP = F−1, any stationary solution
of (6) satisfies u = k1F

−11n. On the other hand, the KKT
condition for the optimization problem (3) is Fu = λ1n.
Since (3) is convex, the KKT condition is necessary and
sufficient. This implies that any stationary solution of (6)
solves (3).

While Theorem 1 establishes an exact condition when the
distributed controller (4) stabilizes the MTDC system (1), it
does not give any insight in how to choose the controller
parameters to achieve a stable closed loop system. The
following theorem gives a sufficient stability condition for
a special case.

Theorem 2. The matrix A as defined in (6), always has
one eigenvalue equal to 0. Assume that LC = LR, i.e. that
the topology of the communication network is identical to
the topology of the MTDC system. Assume furthermore that
KP = kP In, i.e. the controller gains are equal. Then the
remaining eigenvalues lie in the open complex left half plane



if
γ + δ

2kP
λmin

(
LRC−1 + C−1LR

)
+ 1 > 0 (8)

γδ

2kP
λmin

(
L2
RC
−1 + C−1L2

R

)
+ min

i
KV
i > 0 (9)

λmax

(
L3
R

) γδ

kP 2

≤
(
γ + δ

2kP
λmin

(
LRC−1 + C−1LR

)
+ 1

)
(
γδ

2kP
λmin

(
L2
RC
−1 + C−1L2

R

)
+ min

i
KV
i

) (10)

Remark 3. By choosing γ and δ sufficiently small, and
choosing kP and miniK

V
i sufficiently large, the inequalities

(8)–(10) can always be satisfied. Intuitively, this implies that
the consensus dynamics in the network should be sufficiently
slow compared to the voltage dynamics.

Proof of Theorem 2: The characteristic equation of A is
given by equation (11). Clearly, this equation has a solution
only if xTQ(s)x = 0 has a solution for some x : ‖x‖ =
1. Substituting KP = kP In and LC = LR, this equation
becomes

0 = xTQ(s)x =
γδ

kP
xTL3

Rx︸ ︷︷ ︸
a0

+ s xT
[
δ + γ

kP
L2
R + δLR +

γδ

kP
L2
RC
−1 +KV

]
x︸ ︷︷ ︸

a1

+ s2 xT
[

1

kP
LR + In +

γ + δ

kP
LRC−1

]
x︸ ︷︷ ︸

a2

+ s3
1

kP
xTC−1x︸ ︷︷ ︸
a3

.

(12)

Clearly (12) has one solution s = 0 for x = a√
n

[1, . . . , 1]T ,
since this implies that a0 = 0. The remaining solutions are
stable if and only if the polynomial a1 + sa2 + s2a3 = 0 is
Hurwitz, which is equivalent to ai > 0 for i = 1, 2, 3 by the
Routh-Hurwitz stability criterion. For x 6= a√

n
[1, . . . , 1]T , we

have that a0 > 0, and thus s = 0 cannot be a solution of
(12). By the Routh-Hurwitz stability criterion, (12) has only
stable solutions if and only if ai > 0 for i = 0, 1, 2, 3 and
a0a3 < a1a2. Since this condition implies that ai > 0 for
i = 1, 2, 3, there is no need to check this second condition
explicitly. Clearly a3 > 0 since KP−1

and C−1 are diagonal
with positive elements. It is easily verified that a2 > 0 if (8)
holds, since LR ≥ 0. Similarly, a1 > 0 if (9) holds, since
also L2

R ≥ 0 and xTKV x ≥ miniK
V
i . In order to assure

that a0a3 < a1a2, we need furthermore to upper bound a0a3.
The following bound is easily verified

a0a3 < λmax

(
L3
R

) γδ

kP 2 max
i
Ci.

The previously obtained lower bounds on a1 and a2 give
a lower bound a1a2. Thus (10) is a sufficient condition for
when a0a3 < a1a2.

V. SIMULATIONS

Simulations of an MTDC system were conducted using
MATLAB. The MTDC was modelled by (1), with ui given
by the distributed controller (4). The topology of the MTDC
system is given by Figure 1. The capacities are assumed to be
Ci = 123.79 µF for i = 1, 2, 3, 4, while the resistances are
assumed to be R12 = Ω, R13 = Ω, R24Ω, R340.0065 Ω.
The controller parameters were set to KP

i = 1 Ω−1 for
i = 1, 2, 3, 4, γ = 0.005 and cij = R−1ij Ω−1 for all
(i, j) ∈ E . Due to the long geographical distances between
the DC buses, communication between neighboring nodes
is assumed to be delayed with delay τ . While the nominal
system without time-delays is verified to be stable according
to Theorem 1, time-delays might destabilize the system. It is
thus of importance to study the effects of time-delays further.
The dynamics of the controller (4) with time delays thus
become

ui = KP (V̂i(t)− Vi(t))
˙̂
Vi = KV

i (V nom − Vi(t))
−γ

∑
j∈Ni

cij

(
(V̂i(t

′)− Vi(t′))−(V̂j(t
′)−Vj(t′))

)
˙̄Vi = −KV

i (Vi(t)− V nom
i )− δ

∑
j∈Ni

cij(V̄i(t
′)− V̄j(t′)),

(13)

where t′ = t − τ . The injected currents are assumed to be
initially given by I inj = [300, 200,−100,−400]T A, and the
system is allowed to converge to the stationary solution. Since
the injected currents satisfy I inj

i = 0, ui = 0 for i = 1, 2, 3, 4
by Theorem 1. Then, at time t = 0, the injected currents
are changed due to changed power loads. The new injected
currents are given by I inj = [300, 200,−300,−400]T A. The
step response of the voltages Vi and the controlled injected
currents ui are shown in Figure 2. The conservative voltage
bounds guaranteed by Theorem, are indicated by Vmin and
Vmax. For the delay-free case, i.e., τ = 0 s, the voltages
Vi are restored close to their new stationary values within
2 seconds. The controlled injected currents ui converge to
their stationary values within 8 seconds. The simulation with
time delays τ = 0.4 s, show that the controller is robust to
moderate time-delays. For a time delay of τ = 0.5 s, the
system becomes unstable.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have proposed a fully distributed con-
troller for voltage and current control in MTDC networks.
We show that under certain conditions, there exist controller
parameters such that the closed-loop system is stabilized. We
have shown that the proposed controller is able to maintain
the voltage levels of the DC buses close to the nominal
voltages, while at the same time, the global cost of the
injected currents is asymptotically minimized.

This paper lays the foundation for distributed control
strategies for systems of interconnected AC and MTDC
systems. Future work will in addition to the voltage dynamics



0 = det(sI3n −A) =

∣∣∣∣∣∣∣
sIn + δLC 0n×n KV

γLC sIn + γLC −γLC
−CKP −CKP SIn + C(LR+KP )

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
sIn + δLC 0n×n KV

−sIn sIn + γLC −γLC
0n×n −CKP SIn + C(LR+KP )

∣∣∣∣∣∣∣
= sn

∣∣∣∣∣∣∣
sIn + δLC 0n×n KV

−In In + γ
sLC −γsLC

0n×n −CKP SIn + C(LR+KP )

∣∣∣∣∣∣∣
= sn |sI + δLC |−1

∣∣∣∣∣∣∣
sIn + δLC 0n×n KV

−sI − δLC sIn + γLC + δLC + γδ
s L2

C −γLC + γδ
s L2

C

0n×n −CKP SIn + C(LR+KP )

∣∣∣∣∣∣∣
= sn |sI + δLC |−1

∣∣∣∣∣∣∣
sIn + δLC 0n×n KV

0n×n sIn + γLC + δLC + γδ
s L2

C −γLC − γδ
s L2

C +KV

0n×n −CKP SIn + C(LR+KP )

∣∣∣∣∣∣∣
= sn

∣∣∣∣∣sIn + γLC + δLC + γδ
s L2

C −γLC − γδ
s L2

C +KV

−CKP SIn + C(LR+KP )

∣∣∣∣∣
= sn

∣∣∣SIn + C(LR+KP
∣∣∣ ∣∣∣CKP

∣∣∣
∣∣∣∣∣∣∣∣
(
sIn + γLC + δLC + γδ

s L2
C

)
·

KP−1

C−1
(
sIn + C(LR+KP )

) −γLC − γδ
s L2

C +KV

−SIn − C(LR+KP ) SIn + C(LR+KP )

∣∣∣∣∣∣∣∣
=
∣∣∣CKP

∣∣∣ ∣∣∣∣[γδL2
CK

P−1LR
]

+ s
[
(δ + γ)LCKP−1LR + δLC + γδL2

CK
P−1

C−1 +KV
]

+s2
[
KP−1LR + In + (γ + δ)LCKP−1

C−1
]

+ s3
[
KP−1

C−1
]∣∣∣∣ , ∣∣∣CKP

∣∣∣det
(
Q(s)

)
(11)

of the MTDC system, also consider the dynamics of the con-
nected AC systems. Interconnecting multiple asynchronous
AC systems also enables novel control applications, for ex-
ample automatic sharing of primary and secondary frequency
control reserves.
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Figure 2. The figure shows the voltages Vi and the controlled injected currents ui of the DC buses for different time-delays τ on the communication
links. The system model is given by (1), and ui is given by the distributed controller (13).
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