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Abstract— This paper presents a consensus algorithm for
a multi-agent system where each agent has access to its
imperfect own state and neighboring state measurements. The
measurements are subject to deterministic disturbances and the
proposed algorithm provides a minimum-energy estimate of the
measured states which is instrumental in achieving consensus
by the nodes. It is shown that the proposed consensus algorithm
converges exponentially in the absence of disturbances, and its
performance under bounded continuous disturbances is inves-
tigated as well. The convergence performance of the proposed
method is further studied using simulations where we show that
consensus is achieved despite using large measurement errors.

I. INTRODUCTION

While there is a vast body of literature studying consensus
in interconnected systems (e.g. see [5], [9], [11] and the
references there-in), the problem of reaching consensus in
the presence of disturbances is not fully addressed. Here,
the word disturbance is used as a catch all phrase for noise,
system parameter uncertainties, and computation errors. The
existing results predominantly make assumptions on the
nature of the disturbances (also called noise or uncertainty in
the system). For example, [6] assumes that the noise signal
are random, with a probability distribution, [8] assumes that
model uncertainties are bounded by a known function, and
[4] assumes that the disturbances are continuous over time.
In the derivation of the algorithm in this paper we make no
use of any knowledge about the nature or properties of the
disturbances.

In this paper, we consider the problem of achieving
consensus in a multi-agent network where the measurements
of each agent from its own state and the states of the
neighboring agents are subject to deterministic disturbances.
We invoke a least squares deterministic filtering approach,
namely the minimum-energy filtering that was pioneered
by Mortensen [15] and later extended by Hijab [10]. This
method, requires no stochastic assumptions on the distur-
bance signals and has proven to be instrumental in non-
standard filtering problems such as nonlinear filtering, cf. [1],
and geometric filtering, cf. [18], due to its systematic least
squares nature. In this work, a minimum-energy filter is
proposed for each node that provides distributed estimates
of the states of that node and the nodes in the neighborhood
by taking into account various errors of the model and the
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measurements. These errors include the state measurement
disturbances, the initialization error of the node and the actu-
ation (or quantization) error of the consensus algorithm. An
important design innovation of the paper lies in calculating
estimates of the neighboring states at each node that are
not necessarily equal to the estimates that those nodes have
calculated for their own state. Therefore, design conditions
are provided that yield decoupled filter equations that are
straightforward to implement in a distributed fashion and are
scalable to large networks. The convergence of the proposed
overall algorithm for the disturbance-free case is shown using
appropriate conditions for the proposed algorithm. Also, we
establish performance of the algorithm in the presence of
disturbances, namely under bounded and continuous dis-
turbances. The convergence performance of the proposed
algorithm is also demonstrated via simulations which further
support the aforementioned qualities of the proposed method.

The remainder of the paper is organized as follows.
The formal definition of the consensus problem considered
is provided in Section II. The proposed decoupled design
methodology is introduced in Section III. In Section IV we
describe the filtering part of the problem that we tackle using
the method of minimum-energy filtering. The proposed filter
and the details of its derivation are given in Section V. In
Section VI we summarize the overall proposed consensus
algorithm and study its convergence properties in the case
of scalar agent states. Section VII contains a numerical ex-
ample that demonstrates the convergence performance of the
proposed algorithm using simulations. Finally, Section VIII
concludes the paper.

II. DISTRIBUTED CONSENSUS FORMULATION

Consider a network of N agents with a directed graph
topology G = (V,E) where V and E are the set of vertices
and the set of edges, respectively. An edge directing node j
of the graph G towards node i where i, j ∈ {1, · · · , N} is
denoted by (i, j). The network G is assumed to have no self-
loops, i.e., (i, i) /∈ E. The neighborhood of node i, i.e., the
nodes that node i can obtain information from are denoted by
Ni = {j : (i, j) ∈ E}. The Laplacian matrix of the network
is defined as

L , [Lij ], Lii = −di = −
∑
j∈Ni

aij

Lij = aij if (i, j) ∈ E, Lij = 0 if (i, j) /∈ E,

(1)

where aij > 0 is the weight of edge (i, j). The degree matrix
is defined as

∆ , Diag[d1, · · · , dN ]. (2)
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The associated adjacency matrix of the network is then
defined as

A , L+ ∆. (3)

We consider a problem where all the agents of G are to
reach consensus by utilizing imperfect measurements of their
own states along with state measurements of the agents in
their respective local neighborhoods Ni. Consider the local
dynamics

ẋi = ui +Biδi, xi(0) = xi0, (4)

where xi ∈ R is the state of agent i initialized at xi0. The
signal ui ∈ R is the driving input that has to be designed
so that agent i reaches consensus with all other agents. The
signal δi ∈ R is a disturbance caused by numerical and/or
actuation errors in the control input ui. The coefficient Bi ∈
R is known a priori. A measurement of the local state, yii ∈
R is obtained according to the model

yii = xi +Diiεii, (5)

while measurements of the neighbouring states yij , j ∈ Ni
are obtained according to

yij = xj +Dijεij , (6)

where the coefficients Dij ∈ R are known from the model,
Dij 6= 0. The disturbances εij ∈ R are due to the errors
of the measurement instruments. Note that in the networked
environment the errors {εij} are sometimes attributed to the
communications errors between the agents.

Consensus using disturbance free state measurements is
well studied, cf. [12]. The control signal in that case is
often given by u∗ =

∑
j∈Ni

(xj − xi) where Ni indicates
the set of agents that are in the neighborhood of agent i.
This allows agents to asymptotically reach consensus. In this
paper however, we consider a case where one cannot use
perfect state measurements but perturbed measurements of
type (5) and (6). Therefore, the consensus objective must
be revisited to account for disturbances. Namely, in the
absence of perturbations, we aim to achieve a standard state
of average consensus, but under disturbances we will aim
to achieve an approximate average consensus where the
trajectories converge to a bounded neighbourhood of the
average consensus state.

To achieve the consensus objective described above, we
propose using the following local consensus method:

ẋi = ui +Biδi, xi(0) = xi0,

ui =
∑
j∈Ni

(x̂ij − x̂i). (7)

In equation (7), xi is the true state of agent i and the input
ui is designed using the estimated state of agent i, x̂i, and
using the estimated states x̂ij ∈ R of the neighbours of agent
i, j ∈ Ni. The method to obtain these estimated signals will
be provided later in Sections IV and V.

In the following we provide a distributed filtering algo-
rithm to obtain the required local estimates x̂i and {x̂ij}.
The aim is to obtain these estimates, including estimates of

the neighbouring agents {x̂ij} locally at node i, as opposed
to receiving them from the respective agents.

III. DECOUPLED FILTERING DESIGN

Here, decoupled filtering design refers to a network of
filters that have decoupled dynamics. The consensus algo-
rithm (7) involves the estimates x̂i and x̂ij , j ∈ Ni. Our
decoupled design requires that node i should calculate these
estimates by measuring its own state along with measuring
the states of its neighbours. In contrast, in a coupled design
node i must receive the estimates x̂ij from their respective
neighboring agents, instead of calculating them locally. Our
interest in a decoupled design owes to the fact that receiving
x̂ij with no communication errors is unrealistic and hence
node i will need to use a filter to account for the communi-
cation errors of the received information.

A key idea of this paper in order to circumvent these prob-
lems is to take advantage of the fact that all the agents of the
network are to implement similar strategies with the shared
goal of reaching consensus. We propose to approximate the
neighboring state xj at node i by

xij = xi + ηij , (8)

where ηij is the approximation error. This formulation is
motivated by the fact that the neighboring node j is running
a similar consensus algorithm and therefore it makes sense
for node i to approximate the current state xj of its neighbour
j by its own state xi plus approximation error. This allows us
to obtain a consensus algorithm at node i that is decoupled
and independent of the knowledge of the actual neighboring
state xj . This will be done in the next section where we
will derive a distributed filtering algorithm using a minimum-
energy filtering approach and by using the notions we have
introduced so far.

Remark 1: A similar idea has been employed in [19] by
the authors, where the H∞ distributed filtering in a network
of filters subject to disturbances is studied. In that work,
a network of filters are required to provide local estimates
of the state of a reference plant by sharing information
regarding their estimates subject to disturbances. Apart from
the difference between the two problems, the difference to
the idea employed here is that in this paper each agent
approximates the state of the neighboring agents with its
own state plus an approximation error term; i.e. there is no
reference for the agents to follow.

IV. MINIMUM-ENERGY FILTERING

In the following a minimum-energy filtering problem
is formulated that will yield the estimated states, x̂i and
x̂ij , j ∈ Ni, that are needed to drive the dynamics (7) of
agent i.

Minimum-energy filtering [10], [15] is a deterministic
filtering approach that for linear systems results in the same
Kalman filter [14] equations, cf. [7]. Several arguments have
been suggested in favor of minimum-energy filtering [7]. In
this work, since we face a non-standard distributed filtering
problem, we utilize minimum-energy filtering due its proven



applications in complicated filtering problems such as non-
linear filtering, cf. [1], and geometric filtering, cf. [18].

In minimum-energy filtering, the error signals of the model
are considered as unknown functions of time that are square
integrable over any finite time interval [0, t]. A cost on the
sum of square norms of these error signals is considered,

Ji,t(xi(0), δi, εii, {εij}, {ηij}) =
Ξi
2

(xi(0)− xi0)2

+
1

2

∫ t

0

[δ2i + ε2ii +
∑
j∈Ni

(ε2ij +
η2ij
Gij

)]dτ.
(9)

Here, the variable xi0 ∈ R is an a priori candidate for the
unknown initial state xi(0) and the scalar coefficient Ξi ∈ R
is a weighting for measuring the energy of the initialization
error |xi(0) − xi0|. Similarly, the positive constant Gij is
a weighting for the energy of the approximation error ηij .
The cost (9) is interpreted as the energy contained in the
unknowns of the model (7), (5), (6) and (8) that is defined as
the sum of the squared unknowns, the initial error xi(0)−xi0,
the model error δi, the measurement errors εii and εij and
the approximation errors ηij .

The concept behind minimum-energy filtering [15]
amounts to seeking a set of the unknowns
(xi(0), δi, εii, {εij}, {ηij}) consistent with the measurements
yii and yij during the time period [0, t] i.e., such that the
model equations (7), (5), (6) and (8) are satisfied. A
particular set (x∗i (0), δ∗i , ε

∗
ii, {ε∗ij}, {η∗ij}) that minimizes the

cost (9) is selected since it has the least energy content.
Using this optimal set an optimal state trajectory x∗i and
optimal approximate neighbor states x∗ij , j ∈ Ni are
calculated for the period under consideration [0, t]. The last
point of the optimal trajectory x∗i (t) and the instantaneous
optimal approximate neighbor states x∗ij are then assigned
as the minimum-energy estimates x̂i(t) , x∗i (t) and
x̂ij(t) , x∗ij(t). As t varies this process is potentially a
repetitive optimization process that needs to be redone
for every period [0, t] to yield the estimates at time t. In
the following section however it is shown how to avoid
the repetition by deriving a recursive filter that updates
the estimates x̂i(t) and x̂ij(t) as time evolves and new
measurements become available.

V. FILTER DERIVATION

In the following we proceed by substituting the measure-
ments and approximation models into the cost. Substituting
equations (5), (6) and (8) into the cost (9) yields

Ji,t(xi(0), δi, {ηij}) =
Ξi
2

(xi(0)− xi0)2

+
1

2

∫ t

0

[δ2i +
(yii − xi)2

Rii

+
∑
j∈Ni

(
(yij − xi − ηij)2

Rij
+
η2ij
Gij

)]dτ,

(10)

where the weightings are denoted by Rii := D2
ii and Rij :=

D2
ij .

Therefore, in order to solve the minimum-energy filtering
problem we need to solve the following two step optimiza-
tion problem,

inf
xi(0)

( inf
δi, {ηij}

Ji,t(xi(0), δi, {ηij})). (11)

We solve the inner problem by minimizing the cost (10)
over the approximation errors {ηij} as if they are control sig-
nals similar an optimal control problem [2]. The minimizing
values are

η∗ij =
Gij

(Gij +Rij)
(yij − xi). (12)

Replacing (12) into the cost and using the matrix inversion
lemma yields

Ji,t(xi(0), δi, {ηij}) =
Ξi
2

(xi(0)− xi0)2

+
1

2

∫ t

0

[δ2i +
(yii − xi)2

Rii
+
∑
j∈Ni

(yij − xi)2

Sij
]dτ,

(13)

where Sij is defined as

Sij := Rij +Gij . (14)

Using the cost functional (13) and applying minimum-
energy filtering [10], [15] to solve problem (11) yields
the following local minimium-energy filter. The observer
equation of the filter at node i is

˙̂xi =
∑
j∈Ni

(x̂ij − x̂i) +Qi[
yii − x̂i
Rii

+
∑
j∈Ni

yij − x̂i
Sij

], (15)

where x̂i(0) = xi0. The neighboring estimates at node i, x̂ij ,
are computed statically

x̂ij = x̂i +
Gij
Sij

(yij − x̂i). (16)

The observer gain Qi is required for the observer (15) and
is obtained from the Riccati equation:

Q̇i = B2
i −Q2

i (
1

Rii
+
∑
j∈Ni

1

Sij
), Qi(0) =

1

Ξi
. (17)

VI. CONVERGENCE RESULTS

In this section we focus on convergence properties of
the proposed consensus algorithm that was derived in the
previous section.

Before continuing any further we consider how Qi evolves
in Equation (17). The evolution of Qi is independent of the
rest of the algorithm and it can be seen that it converges to
Q∗i = B2

i ( 1
R +

∑
j∈Ni

1
S )−

1
2 , i = 1, . . . , N for any choice

of Ξi. Thus one can simply pick

Ξi = (Q∗i )
−1. (18)

This makes Qi = Q∗i independent of time and renders
our consensus algorithm time-invariant. The corresponding



consensus algorithm under this initialisation is summarized
as follows.

ẋi =
∑
j∈Ni

(x̂ij − x̂i) +Biδi,

˙̂xi =
∑
j∈Ni

(x̂ij − x̂i) +Q∗i [
yii − x̂i
Rii

+
∑
j∈Ni

yij − x̂i
Sij

], x̂i(0) = xi0

x̂ij = x̂i +
Gij
Sij

(yij − x̂i),

(19)

For ease of notation and computation we assume that all the
agents have equal tuning parameters

Rii = R, Sij = S, Gij = 1. (20)

This assumption is the case for instance in a network where
all the nodes utilize the same kind of sensors and have access
to same quality communication links.

First, convergence of the disturbance-free algorithm is
analyzed. Consider the local estimation error at node i
defined as ei , x̂i − xi. Hence and by using (19), (5),
(6) and (20), the local error system in the absence of the
disturbances εii, δi, and {εij} can be written as

ẋi =
1

S

∑
j∈Ni

(xj − xi − ei),

ėi = Q∗i [−
ei
R

+
1

S

∑
j∈Ni

(xj − xi − ei)],
(21)

Consider the following notations regarding the parameters of
the overall network, that are going to be used in our analysis.

Q∗ , Diag(Q∗i ), L̃ ,
1

S
L, ∆̃ ,

1

S
∆. (22)

The Laplacian L and the degree matrix ∆ are as defined in
Section II.

Denote the global estimation error by e , [e1, · · · , eN ]>

and denote the global state by x , [x1, · · · , xN ]>. The
global system satisfies the following dynamics.[

ẋ
ė

]
= F

[
x
e

]
, F ,

[
L̃ −∆̃

Q∗L̃ −Q∗( 1
RI + ∆̃)

]
.

(23)
Next we will state the stability properties of (23).

Theorem 1: Suppose that the assumptions (18) and (20)
hold and the network is strongly connected. Then, the global
system (23) converges to x1 = x2 = · · · = xN = x∗ and
e∗ = 0 exponentially fast, where

x∗ =
ω>(I +R∆̃)x(0)− ω>(RΞ∆̃)e(0)

ω>(I +R∆̃)1
, (24)

here ω is the left eigenvector of L̃ corresponding to its zero
eigenvalue, i.e., ω>L̃ = 0, and Ξ , Diag(Ξi).

The proof of Theorem 1 is based on the spectral properties
of F established in Lemma 1 below.

Lemma 1: Let q be the geometric multiplicity of the zero
eigenvalue of L. The matrix F has 2N − q eigenvalues with
negative real parts, and the geometric multiplicity of the zero
eigenvalue of F is equal to q.
The proof is a practice in algebra but nevertheless standard
in spectral analysis of networked systems.

Remark 2: If the network is balanced, i.e., the in-degree
and out-degree of each node are equal, then ω = 1 (e.g., see
Theorem 6 of [13]) and

x∗ =
(1 +R∆̃1)>x(0)− (RΞ∆̃1)>e(0)

N + (R/S)
∑N
i=1 di

,

where di is the degree of node i as introduced in Section II.
Theorem 1 demonstrated that the algorithm converges to

[x∗1> 0>]> in the absence of any disturbance exponentially
fast and there exists a > 0, b > 0 such that for all 0 < t <∞∥∥∥∥[x(t)

e(t)

]∥∥∥∥ ≤ b∥∥∥∥[x(0)
e(0)

]∥∥∥∥ e−at. (25)

In what follows, we demonstrate the performance of the
algorithm in the presence of bounded and continuous dis-
turbances. We have the following assumption for the distur-
bances:

Assumption 1: Let δi(t), i = 1, . . . , N and εij(t), (i, j) ∈
E be bounded and continuous on [0,∞) such that |δi(t)| ≤
δmax and |εij(t)| ≤ εmax.

In the presence of disturbances, the system and the error
dynamics (21) becomes

ẋi =
1

S

∑
j∈Ni

(xj − xi − ei) + ϑi,

ėi = Q∗i [−
ei
R

+
1

S

∑
j∈Ni

(xj − xi − ei)] + ζi,
(26)

where

ϑi =
1

S

∑
j∈Ni

εij +Biδi,

ζi = Q∗i [
εii
R

+
1

S

∑
j∈Ni

εij ].
(27)

We have the following theorem.
Theorem 2: Consider Assumption 1, (18), (20) and the

system described in (26) for a strongly connected network.
Then for 0 < t <∞ and a and b defined in (25) we have∥∥∥∥[x(t)

e(t)

]∥∥∥∥ ≤ b∥∥∥∥[x(0)
e(0)

]∥∥∥∥ e−at +
bϕmax
a

(
1− e−at

)
, (28)

where

ϕmax = εmax

∑N
i=1Ni
S

+ δmax

N∑
i=1

Bi

+Qmax[
Nεmax
R

+
εmax
S

N∑
i=1

Ni],

(29)

where Q∗i ≤ Qmax, for all i = 1, . . . , N , and Ni = |Ni|.



Remark 3: The upper bound on the magnitude of the
disturbance ϕ given in (29) is not unique and other bounds
can be proposed.
Theorem 2 immediately establishes an ISS property of the
trajectories of the system under continuous and bounded
disturbances.

We conclude this section by commenting briefly on the
impact of values of R and Bi on the proposed algorithm.
First, we study the impact of R. From (24) it can be seen
that as R → 0, x∗ → ω>x(0)/(ω>1) which is the solution
to the classical consensus problem without disturbances.
However, for very small values of R the upper bound ϕmax
becomes very large which shows that achieving accuracy and
robustness are at odds. Next, we consider the impact of Bi.
Large values of Bi makes Ξ very small and reduces the
impact of the initial errors of the filters on x∗, however, as
in the case of R it has an adverse impact on ϕmax.

It is interesting to point out that the dichotomy of achiev-
ing accuracy and robustness in reaching consensus has been
encountered in some other existing results, even though the
nature of the proposed algorithms are very different, e.g. see
[16].

VII. NUMERICAL EXAMPLES

In this section, we consider the problem of coherence in
networks. To this aim consider a network governed by

ẋ = −Lx+ δ (30)

where x ∈ RN and δ ∈ RN is a zero-mean mutually
independent white stochastic process. It is known that the
sum of expected deviation of the nodes’ states from the
average, Dave, for the network satisfies:

Dave = lim
t→∞

N∑
i=1

E
[(
xi −

1

n

N∑
j=1

xj
)2]

=
1

2

N∑
i=2

1

λi(L)

(31)

where E[·] is the expectation of its argument and 0 =
λ1(L) < λ2(L) ≤ · · · ≤ λN (L) are the eigenvalues of
L. For more information the reader may refer to [3] and
[17]. It is immediate that the sum of expected deviation
of the nodes’ states from the average for a fixed number
of nodes is minimised if the network is isomorphic to a
complete graph as its nonzero eigenvalues take the maximum
possible value, i.e., λi(L) = N , i = 2, . . . , N . As a best case
scenario we consider such a network. We depict the state
values for a complete graph of N = 100 nodes in Fig. 1. On
the other hand the proposed algorithm (19) is implemented
for the same network with R = 1, S = 1, and Bi = 1
for all i = 1, . . . , N under the same disturbance levels and
initial conditions as Fig. 1. The trajectories of the systems for
(19) are presented in Fig. 2. The proposed algorithm clearly
outperforms the consensus algorithm (30) even in the most
favourable interconnection for (30).

Fig. 1. The trajectories of 100 systems under the consensus algorithm (30)
in the presence of stochastic disturbances.

Fig. 2. The trajectories of 100 systems under minimum energy filtering
based algorithm (19) in the presence of stochastic disturbances.

VIII. CONCLUSIONS

In this paper we considered the problem of reaching con-
sensus in the presence of disturbances in measurements and
inputs. We proposed an algorithm based on minimum energy
filtering without making an assumption on the properties of
the disturbances. We showed that the proposed algorithm
converges to the solution of the traditional consensus algo-
rithm in the disturbance free case. Moreover, we studied
the algorithm under a class of bounded and continuous
disturbances. Furthermore, the performance of the proposed
algorithm was demonstrated via a numerical example. An
immediate future research direction is to explicitly show
how the performance of the algorithm varies for other types
of disturbances, and thoroughly study the impact of the
algorithm parameters on its performance in the terms of
accuracy, robustness, and the converge rate and propose
a systematic way of choosing the parameters for different
requirements.
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