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Abstract— Recent developments in linear system identifi-
cation have proposed the use of non-parameteric methods,
relying on regularization strategies, to handle the so-céd
bias/variance trade-off. This paper introduces an impulsere-
sponse estimator which relies on an/s-type regularization
including a rank-penalty derived using the log-det heurisic
as a smooth approximation to the rank function. This allows
to account for different properties of the estimated impule
response (e.g. smoothness and stability) while also perzitig
high-complexity models. This also allows to account and eafce
coupling between different input-output channels in MIMO
systems. According to the Bayesian paradigm, the parameter
defining the relative weight of the two regularization terms as
well as the structure of the rank penalty are estimated optiniz-
ing the marginal likelihood. Once these hyperameters haveden
estimated, the impulse response estimate is available inosled
form. Experiments show that the proposed method is superior
to the estimator relying on the “classic” />-regularization alone
as well as those based in atomic and nuclear norm.

I. INTRODUCTION

penalties for system complexity derived from the Hankel
matrix built with the impulse response coefficients.

The structure of the paper is as follows: Secfidn Il states
the problem and SectidnlIl describes the classic parametri
approach. In Section ]V we lie the basics of regularization
which are then further developed[id V. Algorithmic details
are provided in Sectiof VI while numerical results are
provided in Section VII.

Il. PROBLEM FORMULATION
We consider the following linear, causal and time-invatrian
(LTI) Output-Error (OE) system:
y(t) = G(z)u(t) + e(t) 1)

wherey(t) = [y1(t),..,y,(t)]T € RP is the p-dimensional
output signal,u(t) = [uy(t),..,un(t)]T € R™ is the m-
dimensional input signale(t) is the innovation process
and G(z) := Z]g](z) is the system transfer function. For

Linear system identification has been developed, by arfimplicity, we will assume the presence of a delaydx),

large, following the so-called “parametric approach” [[7].

i.e. G(oo) = 0. In addition, we assume(t) ~ N(0,,%),

Candidate models within a prespecified model class (e.§ = diag(o1,...,op), With N'(n,0) being the Gaussian
ARMAX/Box-Jenkins/State-space etc.) are parametrized u§listribution with meanu and variances; 0, denotes the

ing a finite dimensional parameter (séye ©). The most

zero-vector of sizey.

“adequate” parameter vector can be selected my minimizing The objective is to estimate the impulse response coef-
a suitable cost function, most often the average squared pf&ients {g(k)},c,+ from a finite set of input-output data
diction error resulting from the model (PEM). This approaci{y(t)a U(t)}te[l,zv]-

heavily depends on the chosen model class and, in particular

on its complexity which will be called thesystem order
hereafter.
An alternative approach which has been put forward

the recent years [3], [4], [5], [6], [7], [8], [9] is based on

the theory of regularization and Bayesian statistics;didict
out minor differences, the regularization and Bayesiawsie

just provide two alternative languages to describe the sam

approach. The basic idea is to choose a large enough

principle infinite dimensional) model class so as to de—9:argg1€1]in}L Jp (),
scribe ‘any’ possible system and then introduce a penalty

term (regularization view) or equivalently a prior proli

I1l. CLASSICAL METHODS
Classical parametric approaches assumedfiaj belongs

.to a certain parametric class and can be completely describe

%y a parameter vectat € R", with n denoting the model

complexity; in this case we can adopt the notat@n(z).

According to the prediction error methods (PEM), is

egtimated by minimizing the following function:

(in N

Tp(0) = ly()—=ge(tlt=1)|* (2)
t=1

wheregy(t|t — 1) = Go(z)u(t) denotes the one-step ahead

(Bayesian view) which is in charge of controlling the systenpredictor. An implicit assumption in the described proaedu

complexity, thus facing the so calldidias-variancedilemma.
In this paper we shall discuss,

is that the number of available dafé is much larger than

admittedly withthe model complexity:: in particular, many interesting prop-

a biased perspective due to our recent work, sonwsties have been derived fov tending to infinity. However,
Bayesian/regularization approaches which include eitplicPEM approaches are affected by some significant drawbacks.

This work has been partially supported by the FIRB projeatdining
meets time” (RBFR12M3AC) funded by MIUR and by the EuropeamE
munity’s Seventh Framework Programme [FP7/2007-2013kuagreement
n. 257462 HYCON2 Network of excellence.

First, the optimization problem iriJ2) becomes non-convex
when certain model classes are chosen, giving rise to local
minima issues. Second, the selection of the model compglexit
n IS a non-trivial step: for this purpose, many well-known
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tools exist, such as cross-validation or information cidte and the regressors matrixe < RNPxXTmr ¢ =
(AIC/FPE,BIC/MDL,etc.) [1], [2] but all of them require blockdiade,--- , ), with

the estimation of many models with different complexities, _
thus significantly increasing the computational burderstLa pr(l) o em(1) ' ui(j —2)
and most importantly, information criteria are derivednfro - : : > i) ' ©)
asymptotic arguments, whose validity is of course limited erN) e em(N)

when dealing with a finite numbeN of data. At last, the for;=1,...m, j=1,..,N.

statistical properties of the obtained estimatoeze difficult The cost function[]Z) can now be formulated as

to study [10] and experimental evidence [4], [5], [6] also N

shows unreliable results. Jp(0) = IY = Y[5 = ||Y — @6]3 (7)

with Yy = @6 being the vectorized one-step ahead predictor.

ui(J - T)

IV. REGULARIZATION APPROACH

Recent developments in system identification have adoptéd Regularization for smoothness and stability

regularization techniques, partly imported from the maehi  This kind of regularization is derived in [4], [5] by
learning and signal processing communities, in order to- -OVeassuming thafgs(k)},c,+ is a realization of a zero-mean
come the described issues. In particular, regularizatiows.  Gaussian process with autocovarianee(ge (i), go (7)) =
to jointly perform estimation and model selection, by mayin i (;. j). SinceK represents a Mercer Kerner, it is associated
from families of rigid, finite parametric model classes tao a unique Reproducing Kernel Hilbert Space (RKH®),
flexible, infinite dimensional models directly described byg which go is assumed to belong. When a finite impulse
the impulse responsigys (k) } .5+ - In this case, the estimator response{ gy (k )}ke 0] is considered, the nornfigyl.»
9 is obtained as the solution of the following optimizationdefined in2# can be expressed through a quadratic form:
problem Toe
9= arg yuin Jp(0) + Jn(0) 3) lgollse =67 K6 (®)
with K € RTmpxTmp (K], = cov(gg(i), go(j)). Hence,
whereJp(0) is the output data fit defined inl(2), whilt:(0)  the so-called¢s-type regularization is obtained by setting
is a regularization term which penalizes certain pararsetey, g) — lgoll2, = 6T K~'6. The structure ofK can ac-
vectors 6 which describe "unlikely” systems. Among the count for several properties, such as the fact that the isepul
different forms of regularization/(¢) which have been yesponse of a linear system is an exponentially decaying
proposed in the literature, two main classes can be idethtifiefynction, or that it should be “smooth”. See for instance
regularization for smoothness (aka Tikhonov regularizati [5], [6], [7] for several choices, such as “stable-spline”,
or Ridge regression) and regularization for selection. Thgiagonal, diagonal/correlated, tuned/correlated kerrighe
first one gives rise td;-norm penalties, while the secondspecific structure of< is defined through some hyperparam-
one arises from convex relaxations of the quasi-norm eterso which can be estimated by cross-validation or by
(such asfy norm or its variations like the nuclear norm) ormarginal-likelihood maximization (following the Empigt

other non-convex sparsity inducing penalties. Inspirethiey Bayes approach) [5], [12].
approach in [11], we propose an estimator which combines

these two main types of regularization by exploiting both af. Regularization for complexity
{> norm penalty and a rank-penalty on the Hankel matrix of | et us define the block Hankel matrix built with the im-
the estimated model. They are described in detail in Sectigjuise response coefficients of systém @)) € RP"*™e:

[V-Aland [V-BI

To simplify the derivation we consider a truncated g9o(1)  9e(2) - ge(c)
impulse response{ge(k)} ;. Of length T, Go(z) = g _ 960(2)  9e(3) -+ gelc+1) ©
Zle ge(k)zF, whereT can always be taken large enough : : :
to catch the system dynamics. Herme, € R7™? is the go(r) go(r+1) -+ go(r+c—1)

parameter vector containing all the impulse response eoefg
cients{go(k)}c1 77> 90(k) € RP*™, with theij-th element
[90(k)];; being thek-th impulse response coefficient from
input j to outputi:

classical result from realization theory [13] shows tha t
rank of the block Hankel matriXf (6) equals the McMillan
degree (i.e. the complexity) of the system, ifr andc are
large enough. In this worl: and ¢ are chosen such that

0 = [91T1 0 - 0] | - | 9;1 ng]T 4 rtc-1=T an_d the matrixH (¢) is as close as possible
T to a square matrix.
Oij = lloo(lij l90(2)]ig -~ [90(T)]sj] Hence, from the identification point of view, the com-

fori=1,..,p, j=1,..,m. | is the transpose operator. plexity of the estimated model can be controlled by in-

We also introduce a vector notation by defining the vectc#Od“C'ng a penalty on the rank d(¢), i.e. by defining
of output observations; € RV?, Jr(0) = rank H(0)). However, this choice ofiz(¢) makes
the optimization problem{3) non-smooth and non-convex.

Y=[pnl) - tu(N) | -+ | yp(1) -+ yp(N)]T (5) To overcome this issue, in many previous works ([3], [14])



the rank penalty has been replaced by a penalty on igtually to be estimated, since it is not known a priori. In
convex relaxation, i.e. the nuclear norm, by definihgd) = the simulations that follows its value has been set equal to
||[H(6)]|«. Recall that for a matrixX the nuclear norm is the sample variance of the model obtained using only’the
defined by || X||. = tr(vXTX). However, in this paper type regularization (described in Section IV-A).

we adopt a non-convex approximation of the rank function, Also, recall that the kerneK depends on some hyper-
following what suggested in [11] and [15]. Recall that peparametersy which we consider fixed in this setting; for
nalizing the rank of the Hankel matrii{ (¢) is equivalent to instance, they can be determined by cross-validation or by
favoring the sparsity of its singular values. A direct measu marginal likelihood maximization, as detailed in [4],[5hc

of sparsity in the components of a vectoris given by its [6]. The simulations we performed here exploit the latter
¢y norm, ||z||o, which is equal to the number of non-zeroprocedure.

components ofc. Observing that We now show how the optimization problefm 13) can be

1 solved by a sort of block-coordinate descent algorithm.
> loglai| = lim = (Jasf” = 1) o [lz]o (10) - N
2 p=0p = A. Variational approximation to the log-det term

we can approximate th&y norm ofz by its Gaussian entropy ~ As a first step to formulate the block-coordinate descent
measure)_, log |z;|. Hence, in order to achieve sparsity inalgorithm, we need to determine a closed-form solution for
the singular values off (¢), we define the penaltyz(9) = the minimizer of the objective function if_{I3). In this
log|HO)H(0)T| = 3, logn;, with {ni}i—p1..p) DEINg the regard, observe that the concave tdug|H (0)H (0) " | can
singular values off (6) H (¢) T . This type of penalty has been be expressed as the minimum of a set of upper-bounding
chosen since it can be reformulated in terms of a quadrafiges [11]:

form in the vector (see Section V-A): in a Bayesian setting log |f[(9)ﬁ(9)T| = min tr f[(g)ﬁ(g)w—l} +log |W|—rp

this fact is exploited to define a Gaussian prior thras V-0 (14)

will be shown in Sectiof V-B. As in [16] and [14], we alsO i ¢ ¢

. , 5 . R"P*TP being a positive definite matrix of so-
consider a weighted version &f(9), i.e.

called variational parameters. In addition, observe that t
H(0) =W, HO)W, (11) term [H(0)H (0)T ¥~1] can be rewritten as a quadratic form
. _ N in 6. Indeed, lettingl ~* = Q = LL”, we have

with W, andW, chosen so that the singular valuesrto)

are conditional canonical correlation coefficients. Refer tr [H(@)H(@)TQ} =tr {LTH(O)H(G)TL} (15)
[14] for a complete derivation off’; and Wa. In particular, ~ T\
we adopted the second weighting scheme described in [14]. = [lved H ()" L)Il3

= [(LTWy @ Wi)ved H(6) )13

_ T T 2
COMPLEXITY = |[(L" Wy @ Wy)Po|;

_ T pT T T
The estimator we propose is based on the combination of =0 P (W2QW, @ W, Wi)Po (16)
the two regularization types described in Sections 1V-A angjhere P ¢ RrremxTmp s the matrix which vectorizes

V. REGULARIZATION FOR BOTH SMOOTHNESS AND

V-Bl We define H(9)", i.e. vec(H(0)") = Po.
Tr(6) = M log [HO)H ()| + Ae0T K16 (12) Frodmf_(ﬂ) and[(16) we can upper bound the coskin (13) and
re-define

where \; and )y are non-negative scalar regularization . - — .
parameters which control the relative weight of the two ? = argeerngI;pllY— O3 + X260 K70
regularization terms. Details on how their value can be ToT T T
deq[ermined will be given in Sectidn VB. A0 P (WQW, @ W WA)PO - (17)
Remark: Observe that in[{12) we have considered theyith Y = (2—1/2 ®Iy)Y and® = (2—1/2 @ In)®.
weighted Hankel matridf (9) = W,' H(9)W,". The follow-  For fixed A1, X\» and Q, the objective function in[{17) is
ing description will only refer to this more general casacsi  minimized in closed form by
the non-weighted case can be easily recovered by setting .
Wy = I, and Wy = I,,. Here, I,, denotes the identity 9 — 5T5+A(Q7)\1,/\2)} 3V (18)
matrix of sizen x n. T T T .
The impulse response coefficients contained are then A(Q A1, A2) = M P (WoQWy @ Wy WP + Ao K
estimated by solving the following optimization problem: Next section will introduce a Bayesian perspective which
~ allows to treatA;, A2 and @ as hyper-parameters and to

_ ~ T et
0= arg peRTmp (Y —@0) (@ Iy) (Y - 20) estimate them by marginal likelihood maximization.

+ Mlog[H(O)H(0)"| + X0 K16 (13)  B. Hyper-parameters estimation

whereY and® have been defined inl(5) arid (6), respectively. From a Bayesian point of view, the minimizer [n118) can
In (I3) the available observations are also explicitly viaedgl be viewed as the MAP estimate 6fonce defined the data
by the inverse of the output noise variance, whose value hdstribution and prior:



Y0~ N(®0,201Iy), 0~N (OTmp, [A(Q, 1, Ag)}*l) can be seen as an hyper regularizer which limits the degrees
of freedom due to hyperparameter estimation [17].

Observe that, exploiting the approximation to the log-de .

term described i_.(14) and to its reformulation as a quadraﬁz\' Update of the_ matrix) ) ~

form, it is possible to define a Gaussian prior fcas in [16). et us consider equation[ (15) and let/(0) =
Within this Bayesian setting, the regularization coeffitge U(HlS(H)V(-e)T denote the singular value dpcqmposmon

A1, A2 and the matrix of variational parametefs can be Of H(0), with S(0) = diag(s, ..., s,r). To simplify the

treated as hyper-parameters; thus, following the Empiric&0tation, in the following we WI|| omit the dependence of

Bayes Paradigm, they can be estimated by maximizing tHé& S andV on 6. We can rewrite[(15) as follows:

marginal likelihood: tr [ﬁ(@)ﬁ(@f@} —tr [US*U" Q] (22)
Q, A1, A = argming ooy, 2, >0L (@ A1, A2) (19) et = UqSqV, be the singular value decomposition of
L(QA1,00) = YTAT'Y +log Al (20) @, with Sg = diag(sy,...,sS); if we setUqg = Vg = U,

With A = X & Iy + ® [A(Q, A, Aa)] &7 from (22) we have (LH(H)H(H_)T_Q] = tr[S_QSQ]. Recalling
Hence, once estimate@, N and X through (D), their t_hat the tgrm t[d{(G)H(G)TQ] is mcludeql in the regulariza-
values can be plugged in infa {18) to find the desired estimafi@n functionJx(#), from this last equation we can see that

of 6. Section[\V) will explain in detail how the estimation 1€ Singular values ap act as penalties on the squares of the
algorithm has been actually implemented singular values off (6): the larger the first ones, the smaller

will be the estimated latter ones.
VI. ALGORITHM IMPLEMENTATION If the Hankel matrix H(6,) of the true system was

As previously cited, the final estimate 6fis determined kgown, a natural choice fo@ would be Ug = U, and
through a block-coordinate descent algorithm which atern s;° = 1/s3;, whereso; denotes the-th singular value of
tively optimizes¢ using [I8) (which can be done in closedH (¢y). However, since at each iteration of the algorithm
form for fixed @, A1, A2) and updates), A;, A\> through described in Section VI an impulse response estinélte
(19). Our algorithmic implementation exploits the followi is aAvaiIabIe, we can exploit it to buil@*). Namely, letting
variant of [19) to optimize\; and \,: H@O®) = g gk y® T with §*) = digg&s(g;c), ...,sﬁf,))

~ ~ . N being the singular value decomposition Bi{6*)), we set:
A1, A2 = argminy, 5oL (Q, A1, /\2) (22) g 9 P ™)

~ . . k) — 7(k) g5 (k)y2 (k)2 (k)T
afterQ has been fixed based on the current impulse response®? = = U diag (1/(‘91 )% 1 (52) ) v (23)

estimate (the details will be given in Section VI-A). By means of the simulations we performed, we observed that
The iterations are stopped when the negative log likelihoahe singular values of)*) as defined in[{23) may become
does not decrease. Note that no guarantees of achievingexy large, probably providing excessive prior along darta
local minimum can be given. directions (the columns df (*) which, we recall, is estimated
Let 6*) denote the estimate @fat thek-th iteration; the and thus subject to uncertainty). Thus we found that a less
notationsQ®), A* | A{¥ will have analogue meaning. The committing prior, which just gives the same weight to all
algorithm can be summarized as follows: small singular values below a certain threshold, is to be
1) SetK to be the kernel estimated using marginal likepreferred. In order to identify this threshold we recalitttiee
lihood optimization when no rank penalty is includedmatrix H(6*)) has been formed using sample covariances

as done in [4]. (see Sectiofi IV-B). Thus we recall a result on the uniform
2) Setf® equal to the estimate obtained using only the&onvergence of sample covariances (see e.g. Theorem 5.3.2
{5 type regularization. in [18]), which shows that, under mild assumptions, the dif-

3) Define@(o) using the procedure in Section VIFA. ference between the true and the estimated sample covarianc
4) Determine\\” and Xy solving [23) with@ = Q© . is (uniformly in the lag) of the order ap roelogll)) ),
5) At the (k + 1)-th iteration

_ S i~ P whereN is the number of available observations. Therefore,
o Computeg®+)=[FTF+a(Q™ 3V 3V)] 7Y

the first “noise” singular value of (6))H(H*)T (i.e.

« DetermineQ**") as in Sectiof VI-A. N that corresponding to the noise subspace, orthogonal to the
UpdateX* ™ and \**V solving [21) withQ = 00Ty i :

. AF()kJrl) i 2 ving with@ image of H(0y)H (6,)T), is expected to be of the size
Q ' 0] w . Thusiitis to be expected that singular values

. i it £(Ok+1) Y(E+1) Y(k+1) ) i
Stop to_iterate if£(Q Al A ) 2 above that threshold are due to “signal” components while

A(k) (k) ¥ (k) o (k ;
L(QM, A", 1;”) and choos@™ as the finall e smaller ones may be corrupted by noise. Hence, we re-

i . . (k) ~
estlmat.e. . . define the singular value§® Y of O™ as
Remark Experimental evidence shows that, when optimiz-

ing w.r.t. \; and )., it is convenient to set a lower bound on o (S(_k))f2 if s*) > ./ logllog(V))
the value of\,. As a result, for instance, stability of the es- s? = ! Zk) - 1 1N < (24)
timator is preserved. The constraints on the hyperparamete v(N) if SE < 6%



where ¢ is a constant which, in the simulation results, we and C is determined to guarantee unit norm. We
have taken equal to the number of rows of the Hankel rely on theglmnet package [19] for the numerical

matrix. The saturation value(V) is defined as/(N) := implementation. This algorithm is tested only on the
%. Thus, we replace the update [n]23) by SISO scenario S3.
. _ ~ ) ) . 2) PEM: The classical PEM approach, as implemented in
QW =U® diag (S(i’? e 81 ) u® (25) the pem.m function of the MATLAB System Identifi-

cation toolbox.

VII. NUMERICAL EXPERIMENTS 3) SS: The stable-spline estimator developed in [4] and

We now test and compare the proposed estimator on some [6], applied independently on each output channel.
Monte Carlo studies, generated under three scenarios,2S1, S First order stable splines are used in scenario S1 and
and S3, described below. In all cases the innovation process g3 \hile second order stable splines are adopted in S2.
e(t) is a zero-mean white noise with standard deviation For both scenarios an “OE” model class is assumed.
chosen randomly at each run in order to guarantee that the4) SSNN: The estimator proposed in [14] which com-
signal to noise ratio on each output channel is a uniform bines thel»-type penalty of Sectiol IVIA (with kernel

random variable in the interval, 4] for S1 and S2 andl,, 10] estimated by the SS algorithm in 2) with a nuclear
for S3. norm penalty on the weighted Hankel mattX().
S1) We consider a fixed fourth order system with transfer The weightsi¥; and W, are computed as illustrated
functionG(z) = C(2I — A)~' B where in [14]. The regularization parameteis and \, are
. 8 5 2 9 estimated through cross-validation on a predefined grid
A= bIockdlag<[ _5 8 } | 9 9 } with 10 values for each hyperparameter; the “location”
171 1 1 of the grid is chosen to optimize performance.
B=[1 OQO]T C = o 1 0 .1 5) SSR: The estimator _(IL3) obtained through the al-
20 0 25 0 gorithm described in SectionVI. Both the Hankel

S?9

S3

We

matrix H(6) in (@) and its weighted versiofl (4) are
considered and compared.

The complexity of the models estimated through PEM is
the default one provided by MATLAB, while for the other
algorithms the lengtli” of the estimated impulse response
was set to 80 for S1, 50 for S2 and 60 for S3. All the
considered estimators are obtained usiig= 500 pairs of
input-output data for scenarios S1 and S2, while= 1000
ata are used for S3. Their performances are compared by

evaluating theAverage Impulse Response,Stich defined:

The input is generated, for each Monte Carlo run, as a
low pass filtered white noise with normalized bgag(]
where ¢ is a uniform random variable in the interval
[0.8,1]. Nase1 = 200 Monte Carlo runs are considered.
For each Monte Carlo ruF(z) is generated randomly
using the Matlab functiordrmodel with 3 outputs
and 1 input while guaranteeing that all the poles of
G(z) are inside the disc of radius5 of the complex
plane. System orders are randomly chosen from 1
10. The inputu(t) is zero-mean unit variance white
noise (similar behavior is obtained with low pass noise,. ~ 1 1102, — 04, 0 _ 1T

not reported here for reasons of spad¥);c. = 200 F(O0) = 2,5 100 <1 B 9?j—9?j|) 2 0 = 1 2p 935 (K)
Monte Carlo runs are considered. (26)
For each Monte Carlo run a SISO continuous-timavhered;; has been defined ifil(4), whig; contains the true
system is generated using the Matlab functioss. coefficients{gy; (k)}e—1...r of the impulse response from
System order is randomly chosen from 1 to 30. EacHputj to outputs.

continuous-time system is sampled at 3 times the band- ragyits

with in order to derive the corresponding discrete-time he boxplots in Fi he effecti f th
system. The input(t) is zero-mean unit variance white The boxplots in Figurél1 prove the effectiveness of the

noise filtered through a randomly generated secon‘HOposed estimator: in the three experimental setups here
order filter. Nycs = 120 Monte Carlo runs are con- considered, it outperforms the other pre-existing methods

sidered even if SS gives comparable performances on S3. In par-
now con.sider the following algorithms: ticular, its implementation with the weighted version oé th
g9 ’ Hankel matrix,H (9), seems preferable to the non-weighted

1) ATOM: The estimator proposed in [8] which adopts &ne

regularization based on the atomic norm of the transfer The tests performed on S3 also show how the regulariza-
function to be estimated. The algorithm run on a set Otﬁon based on the atomic norm may lead to unreliable results,

h xk=32x29 =928 atoms_ built from the impulse compared to the other approaches here evaluated.
responses of second order linear systems

z VIIl. CONCLUSION AND FUTURE WORK
th(z) = C

= pne’® o
(2 = pur) (2 — D)) Phk = Ph We have presented a novel regularization-based approach

where € [0.41: 0.02 : 0.99 0.995 0.999] € R for linear system identification. T penalty combines two
Ph oo ' 2 types of regularization, thus jointly enforcing "smootks&
Or € [(m/30) : (w/30) : (m — m/30)] € R through a “stable-spline” penalty as well as“low-comptgXi




TABLE |

S1
100 MEDIANS OF 7 () IN SCENARIOSS1, S2AND S3.
+ . I = —_ —
g0l = =5 - - | PEM SS  SSNN SSRH(f) SSR @H(0))
- i S1 2488 8090 79.89 89.34 85.46
601 . B S2 8340 87.15 80.20 91.40 91.20
S3 48,94 6893 54.88 71.53 -
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Fig. 1. Boxplot of the Average Impulse Response Fit for theegh
experimental scenarios S1, S2 and S3. [15]

through a relaxation of a rank penalty on the Hankel matrix16]
The reformulation of the rank penalty as é&ncost provides
a Bayesian interpretation of the proposed estimator, which7]
in turn, can be used to perform hyperparameter selection via
Marginal Likelihood maximization. 18]

Simulation results show the performance improvemen{s
achievable through this novel method w.r.t. to other prdi9]
existing approaches

In our future work we plan to further investigate the
properties of the kernell(Q, A\, \2) ! which characterizes [20]
the new/s penalty derived in this paper as well as to study
the relation with other identification algorithms based on
complexity penalties. In addition, different ways to upeat [21]
the matrix@ will be explored and compared to the one her(fzz]
proposed.
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