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On Three Generalizations of Contraction

Eduardo D. Sontag and Michael Margaliot and Tamir Tuller

Abstract— We introduce three forms of generalized contrac- II. CONTRACTION THEORY

tion (GC). Roughly speaking, these are motivated by allowig We begin with a brief review of some ideas from con-
contraction to take place after small transients in time andor . . . . - .
amplitude. Indeed, contraction is usually used to prove agyp-  traction theory. For more details, including the historic

totic properties, like convergence to an attractor or entranment ~ development of contraction theory, and the relation to othe
to a periodic excitation, and allowing initial transients does not  notions, see e.g. [12], [13], [14].

affect this asymptotic behavior. Consider the time-varying system
We provide sufficient conditions for GC, and demonstrate
their usefulness using examples of systems that are not con- T = f(t,;(;)7 Q)

tractive, with respect to any norm, yet are GC. )
evolving on a convex set) <C R". We assume

. INTRODUCTION that f(t,z) is differentiable with respect ta;, and that

A dynamical system is called contractive if any twoboth f(¢,z) andJ(¢,z) := %(t,x) are continuous irt, x).
trajectories converge to one other at an exponential rdiis. T Let z(¢, ¢y, zo) denote the solution of{1) at time > ¢,
implies many desirable properties including convergenosith z(ty) = z¢ (for the sake of simplicity, we assume from
to an attractor (if it exists), and entrainment to periodihere on that(¢, ¢, zo) exists and is unique for afl> ¢, > 0
excitations [1], [2]. and allzy € Q).

Contraction theory is a powerful tool for analyzing non- Recall that[(ll) is calledontractive[1] on Q with respect
linear dynamical systems, with applications in control-theto a norm| - | : R* — R if there existsc > 0 such that
ory [3], observer design [4], synchronization of coupled
oscillators [5], and more. Recent extensions include: the
notion of partial contraction [6], analyzing a network offor all t, > ¢; > 0 and alla,b € Q.
interacting contractive elements [7], a Lyapunov-like reha In other words, any two trajectories contract to one another
acterization of incremental stability [8], and a LaSallpe at an exponential rate. This implies in particular that the
principle for contractive systems [9]. A contractive syste initial condition is “forgotten”.
with added diffusion terms or random noise still satisfies Recall that a vector norm | : R™ — R induces a matrix
certain asymptotic properties [10], [11]. In this respectmeasures : R"*" — R defined byu(A4) := lim¢ o %(||I +
contraction is a robust property. eAll — 1), where]| - || : R"*"™ — R, is the matrix norm

In this paper, we introduce three forms of generalized corinduced by| - |. A standard approach for proving contraction
traction (GC). These are motivated by requiring contractiois based on bounding some matrix measure of the Jacobian
to take place only after arbitrarily small transients in gim (This is in fact a particular case of using a Lyapunov-Finsle
and/or amplitude. Indeed, contraction is usually usedéwgr function to prove contraction [9]).
asymptoticproperties, and thus allowing (arbitrarily small)
transients seems reasonable. We demonstrate the ussfulndieorem 1 [2] If there exists a vector norm- | and ¢ >
of these generalizations by showing several examples @fsuch that the induced matrix measyre: R**" — R
systems that areot contractive with respect to any norm, satisfies
yet are a GC. p(J(tz)) < —c, 3)

Th_e remaind_er of thi_s paper is organized as followse,, 41 ts >t >0 and all z € Q then (@) holds.

Section[I) provides a brief overview of contraction theory.

SectionIll describes our main results. The proofs of these One important implication of contraction sntrainment
results are detailed in Secti@n]VI. Sectionl IV demonstratd® a periodic excitation. Recall that : R, x @ — R is
the results using a simple model of a biochemical contraialled 7-periodic if

system. ft, )= ft+T,x)

forall ¢t >0 and allz € Q.

|x(te, t1,a) — x(te, t1,0)| < exp(—(t2 — t1)c)la —b| (2)
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In other words, every trajectory(t, 0, a) converges to the that SO implies SOST and we will see below that under a
unique periodic solution. Entrainment is important in eas  mild technical condition of{1) SO and SOST are equivalent.
applications ranging from biological systems [15], [2] beet The next example shows that STriet equivalent to con-
stability of the power grid [16]. traction. Recall that therror functionis defined asrf(z) :=

The next section presents our main results. All the proof% fo‘z exp(—s?)ds.

are placed in Sectidn VI.
Example 1 Consider the scalar time-varying system

@(t) = (exp(—t*) — 1) (t) (@)

volving on(2 := (—1,1). It is straightforward to show that
this system is not contractive with respectioy norm (note
that the Jacobian/(t) = exp(—t?) — 1 satisfiesJ(0) = 0).
Definition 1 The time-varying systeifd)) is said to be: Yet, (@) is ST. To show this, pick > 0. Note that for allt >
« a contraction after a small overshoot and short trant,, x(¢,t1,a) = f(t,t1)a, where
sient(SOST) oM with respect to a norm| : R™ — R

IIl. MAIN RESULTS

We begin by defining three generalizations of contractione.

if for eache > 0 and eachr > 0 there exists! = ft,t1) = exp (9(t) — g(t1)) (8)
£(1,€) > 0 such that with
(2(ta + 7t1,0) — 2(ta + 7 1, b) o) = T ext(t) 1. ©)
< (+e)exp(=(tz =t1)0)la—bl  (4)  Thys, for any nom - | : R — Ry,
forall t; >t >0 andalla,b < Q. l2(ta, 1, a) — (ta, t1,b)| = f(ta, t1)|a — b,

« a contraction after a small oversho(@O) on{) with
respect to a normj - | : R — R if for eache > 0 We need to show that there exigis= ¢;(7) > 0 such that

there existd = ¢(¢) > 0 such that
|x(ta,t1,a) — x(ta, t1,b)]
< (1+e)exp(—(t2 — t1)f)la—b|  (5)

forall to >t; >0 and alla,b € Q.
« a contraction after a short transie@®T) onQ with ~Wherez := to—ty, anda(z, 1) := g(t1+7+2) —g(t1)+ 241

f(tQ + 7, tl) < exp(—(t2 — tl)él), for all to >t > O,
or, equivalently, that

a(z,t1) <0, forall t;,2z >0, (10)

respect to a normj - | : R® — R if for each7 > 0 Since
there existg = £(7) > 0 such that g(t) = exp(=t?) — 1, (11)
|zt + Tt1, a) — x(ts + 7, 11,b))| we have
< exp(—(t2 — t1){)|a — b| (6) Ea(z, t1) =exp(—(t1 +7+2)}) —1+ 6
for all ¢ > ¢, >0 and all a,b € Q. <exp(—72) — 1+ 4.

It is clear that every contractive system is SOST, SOTaking/; := (1 — exp(—72))/2 > 0, yields La(z,¢;) <0
and ST. Thus, all these notions are generalizations of cofer all ¢,z > 0, so

traction.

The motivation for these definitions stems from the fact a(z, ) < a(0, 1)
that important applications of contraction are in proving =g(t1+7)—g(t1)
asymptoticproperties. For example, proving that an equi- <0,

orum portis el ivecing e St ves e h s neualy ol D) e condde
: hat (I0) indeed holds, sd7) is ST.

what happens as— oo, and so it seems natural to generalize

contraction in a way that allows initial transients in time For time-invariantsystems evolving on a compact set it

and/or amplitude. is possible to give a simple sufficient condition for ST.
In particular, the definition of SOST is motivated byLet Int(S) denote the interior of a sef. We require the

requiring contraction at an exponential rate, but only raftefollowing definitions.

an (arbitrarily small) timer, and with an (arbitrarily small)

overshoot(1 + ). However, as we will see below when Definition 2 We say that(l)) is non expansivgNE) with

the convergence ratémay depend om a somewhat richer respect to the norm| if for all a,b € Q and all sy > s1 > 0

behavior may occur. The definition of SO is similar to that

of SOST, yet now the convergence rétdepends only os, [2(s2, 81, ) = (52, 51, B)| < o = ] (12)

and there is no time transient (i.e., 7 = 0). In other We say that{) is weakly contractive(WC) if (I2) holds

words, SO is a uniform (i) version of SOST. It is clear with < replaced by<.



Definition 3 The time-invariant system To provide a sufficient condition for generalized contrac-
) tion of thetime-varyingsystem|[(lL), we require the following
t = f(2), (13) " gefinition.

evolving on a compact and convex §etC R", is said to be

interior contractive|C) if it satisfies the following properties: Definition 4 Systen{T) is said to benested contractivéNC)

(a) for everyzy € 99, z(t,z) ¢ OQ for all ¢t > 0. on 2 with respect to a nornt| if there exist convex sef C
(b) there exists a matrix measute: R"*" —s R such that % and norms| - [¢ : R — R, where¢ € (0,1/2], such
that the following conditions hold.
u(J(z)) <0, forall zeInt(9). (14) e Uceoa/2Q% = Q, and
Note that conditions (a) and (b) do not necessarily imply Qc, € Q,, forall ¢ > G (17)

contraction on(2, as it is possible thau(J(z)) = 0 for )
somer € 99. Yet, (I2) does imply thaE{13) is non-expansive * For everyr > 0 there exists¢ = ¢(7) € (0,1/2],

on Q. with ((7) — 0 as7 — 0, such that for every: € Q
and everyt; > 0
Theorem 3 If the systen{d3) is IC then it is ST. a(t,ty,a) € Qe, forall t >t +1, (18)
As noted above, the introduction of the GC forms is moti-  and () is contractive orf); with respect tq - |..
vated by the idea that contraction is used to prove asyneptoti , The norms| - |- converge to| - | as¢ — 0, i.e., for
results, so allowing initial transients should increasedlass every( > 0 there existss = s(¢) > 0, with 5(¢) — 0

of systems that can be analyzed while still allowing to prove a5 ¢ — 0, such that

asymptotic results. The next result demonstrates this.
(1 =9yl <lylc < (1 +s)ly[, forall y e

Corollary 1 Suppose thafI3) is IC. Then(L3) admits a « Systen(d) is non-expanding with respect to | on Q.
unique equilibrium point € Int(Q2), andlim;_, o z(¢,a) =
e for all a € Q. Eg. (I8) means that after an arbitrarily short time every

_ trajectory enters and remains in a suli3ebf the state space
One may perhaps expect that we can generalize Thédrerg3 which we have contraction with respect|ta..
to the time-varying case as well, that is, that if the time-

varying system [{1), evolving in a compact and conveXnheorem 4 If the systen(d) is NC then it is SOST.
set) C R", satisfies:

(a) for everyz, € 69 and everyt; > 0, The next example demonstrates the usefulness of Theo-
rem[4 by using it to prove that the system in Exanigle 1
z(t,t1,x0) ¢ 0N, forall t > 1y, (15)  is SOSTwithout using the explicit solutior({8).

(b) there exists a matrix measuie R"*" — R such that ] ] ] ]
Example 3 Consider again the scalar time-varying sys-

p(J(t,x)) <0, forall z € Int(Q2), and allt > ¢, >0, tem (7). Fix arbitrary t; > 0, a; € (—1,1), and rewrite (7)

(16) as
then [1) is ST orf). However, the next example shows that . 9 -
this is not so. = (exp(—a3) — L)z, z1(t1) = a,
To =1, z2(t1) = t1, (19)
Example 2 Consider the scalar system evolving onQ := {z € R? : 2, € (—1,1),25 > t;}. Note
x(t) that any two feasible initial conditions,b € 2 for this
&(t) = T4 1 systems satisfy, = b, = t;. The Jacobian of(19) is
evolving inQ := [—1,1]. The Jacobian is/(t,z) = —(t + () = —1+exp(—z3) —2x129exp(—23)
1)1, and properties(I5) and (I6) hold. Yet, this system o 0 0 '

is not SOST on2 (and, therefore, it is clearly not ST

on ). Indeed, assume otherwise. Picke > 0. Then there For any ¢ € (0,1/2], let

exists¢ = {(r,e) > 0 such that(@) holds. Sincer(t) = Qe:={zxeQ: € (-1,1), o > t1 +(},
(t + 1)7'z(0), Eq. @) with the particular choicet; = 0 .
implies that and let| - | := |- |1, that is, theL; norm. Note that{18)

holds with¢(7) := min{r, 1/2}, and that for every: € Q,

. N1 <1 —lty), forall to > 0,
(t2+7+1)7" < (1+ ) exp(—£t2) 22 Jin(a) = =1+ exp(~a3)

e, < —14exp(—(t; +¢)?)
exp(étg) < (1 =+ E)(tQ + 7+ 1), for all to > O, < =1+ exp(—cz)

but this clearly cannot hold fot, > 0 sufficiently large. <0. (20)



Let d;(to,t1,a,b) := |z;(t2, t1,a) — x;(t2,t1,b)|, ¢ = 1,2. is an invariant set of the dynamics for al> 1. Combining

Then this with Prop[ll implies thal{(21), with — 1 < ak?, admits
a unique equilibrium point € 2, and that
[#(ta, tr, @) = 2(ts, 11, D)l = di(ta, 11, 0,b) + da(ta, 11,0, D) e P :
= di(ta,t1,a,b) + [to — o tlggo z(t,a) =e, forallacR}.
= [z1(t2,t1,a) — z1(t2,t1,0).  This property also follows from a more general result [17,

Combining this with(20) implies that all the conditions in Prop. 4.2.1] that is proved using the theory of irreducible

Theorem% hold, so we conclude th@d) is SOST with cooperative dynamical systems. Yet the contraction ammproa
respect to thel, }lorm. leads to new insights. For example, it implies that the

distance between trajectories can only decrease, and can
The next section describes, using a specific mathemaso be used to prove entrainment to suitable generalitio
ical model, one possible mechanism for ST. Namely, a&f (21) that include periodically-varying inputs.
we change the parameters in a contractive system, it mayln the next section, we describe several more related
become ST when it hits the “verge” of contraction. For twonotions and explore the relations between them.

vectorsa, b € R™, we writea > bif a; > b; fori=1,...,n.
A matrix M € R™*" is called Metzler if m;; > 0 for
all i # j. V. ADDITIONAL NOTIONS AND RELATIONS

IV. AN APPLICATION: A BIOCHEMICAL

It is straightforward to show that each of the three gen-
CONTROL CIRCUIT

eralizations of contraction in Definition 1 implies thaf (1)

Consider the system is NE. One may perhaps expect that any of the three gen-
eralizations of contraction in Definitidd 1 also implies WC.
& = g(In) — Q1d7, By taklng th =81, T = (52 — 51)/2 >0, andty = 51 + 71
To = 21 — Qalo, in (6) it follows that ST does imply WC. However, the next

i3 = Ty — (33, example shows that SO does not imply WC.

Fn = Tno1 — Onn, (21) Example 4 Consider the scalar time-varying system
, , 0, 0<t<1,
whereq; > 0, and i(t) = (24)
14w ith e > 1 —2z(t), 1<t
g(u) . Wi .

evolving onQ) := (—1,1). Clearly, the trajectories of this
As explained in [17, Ch. 4] this may model a simplesystem are not contracting fare [0, 1]. Yet, we claim that
biochemical control circuit for protein synthesis in thdl.ce this system is SO. To show this, pick 0. Let

Thez;s represent concentrations of various macro-molecules .

in the cell and therefore must be non-negative. It is sttaigh ¢:= min{log(1 +¢), 1}. (25)

forward to verify thatz(0) € R’} implies thatz(t) € R} for  Note that! = {(g) > 0. To show thai() holds, we consider

all ¢t > 0. two cases.
Case 1.Suppose that; € [0,1]. In this case, the solution
Proposition 1 Let o := ], a;. If of @29)is
E—1<ak? 22 tp<t<1
22 z(t,t1,a) = {a’ ST (28)
then (1) is a contraction onR’:. If k — 1 = ak? then (21) exp(=2(t —1))a, 1<t

is not a contraction, with respect to any norm, &%, yet Thus

it is SO onR}.
d = |x(t2,t1,a) — I(t2,t1,b)|
Note that for allz € R}, _ {|a—b|, t <ty <1,
y@»=wﬁJy§kél=y@- (23) exp(=2(tz = D)la—bl, 1<te.
Tn

Letr:=(1+ —l(ty—1t —bl. It follows from
Thus [22) implies that contraction holds if and only if thethatr (1+€) exp(=(tz —tr))la — bl 3

“total dissipation”« is strictly larger tharny’(0). -
Using the fact thatg(u) < 1 for all w > 0 it is r>(1+e) 7 a b,

straightforward to show that the set S0 if t, < 1 then clearlyd < r.

Q. = r([0,a7"] x [0, (@1a0) 7Y x -+ x [0, 1)) Now suppose thab > 1. If 1+¢ > exp(1) then it follows



from (28) that £ = 1, so Proposition 2 Suppose thafT)) is WE. Then(d) is SOST if

and only if it is SO.

r=(14e¢)exp(—(ta — t1))|a — b y
2 exp(1) exp(~tz)|a — b| Remark 1 Suppose thaf in (@) is Lipschitz globally in{
> exp(2) exp(—2t2)a — b| uniformly int, i.e. there existd, > 0 such that

= |f(t,$)—f(t,y)|§L|I—y|, for all xvyeﬂa tztO-

If 1+ < exp(1) then it follows from(23) that £ = log(1-+<), Then by Gronwall's Lemma (see, e.g. [18, Appendix CJ)

o)
r= (1 + 5)1—t2+t1|a _ b| |x(t7t0a a) - I(ta Lo, b)| < exp(L(t - t0)>|a - b|a
> (14¢)2|a— 0| for all ¢ > to, and this implies_tha@) holds for =
> exp(1 — ta)]a — bl %log(l +6) > 0. In particular, if Q is compact andf is
= &P 2Jla periodic in ¢t then WE holds under rather weak continuity
> exp(2) exp(—2t2)|a — b| arguments ory'.
=d.
S Fig.[d summarizes the relations between the various con-
Summarizing, in Case 1 we always hal& r. traction notions.
Case 2Suppose that; > 1. In this case, the solution dP4)
is x(t,t1,a) = exp(—2(t — t1))a, S0 d = exp(—2(ts — VI. PROOFsS

t1))|a—b|. Sincel < 1,d < (1+¢) exp(—L(ta—t1))|a—b| =

r. Thus, in Case 2 we also have< r, and this proves SO. Proof of Theorerfs.

We require the following result.

Summarizing,[(24) is SO although its trajectories do not
contract fort € [0, 1]. Clearly, for every fixedl' > 0 we Lemma 2 If system(13) is IC then for eachr > 0 there is
can build a system that is SO although its trajectories do natd > 0 such that

contract fort € [0, T7. dist(x(t, 20), 9Q) > d

A. contraction after a small overshoot and short transient
forall zo e Qandallt > 7.

The next result presents two conditions that are equivalent

to SOST. Proof of LemmdP.Pick = > 0 and zg € Q. The
assumption thaf? is invariant implies thatnt(f2) is also

Lemma 1 The following conditions are equivalent. an invariant set of [((13) (see, e.g., [19, Lemma IIl.6]).
1) System(@) is SOST or2 with respect to some vector Combining this with (a) implies that(t,zo) ¢ 0Q for
norm|- |, : R™ — R. all zp € Q and allt > 0, so ey, := dist(x(7, z9), 0Q) > 0.
2) For eachr > 0 there existy = /(7) > 0 such that Thus, there exists a neighborhodd,, of zy, such that
dist(z(7,y),00Q) > ez, /2 for all y € U,,. CoverQ by
|z(t2 + 7t1,a) — x(tz + 7,11, 0)[o suchU,, sets. By compactness 6f, we can pick a finite

< (1+7)exp(—(t2 — t1)l)|a — bly, (27) subcover. Pick smallest in this subcover, and denote this
by d. Thend > 0 and we have thadist(z(7, zo),0) > d
for all zp € Q. Now, pick¢t > 7 and zp € €. Let
x1 :=x(t — 1,20). Then:

dist(z(t, zo), 0Q) = dist(z(, z1),0Q) > d,

forall to > t; > 0and alla,b € .
3) For eache > 0 and eachr > 0 there exists/; =
¢1(7,€) > 0 such that

|z(t, t1, a)—x(t, t1,b)]y < (1+€) exp(—(t—t1)l1)|a—bl.,
(28) and this completes the proof of Lemina(2.

forall t >¢; +7>7and alla,b e Q. To prove Theorerl]3, pick > 0. Let S; := {x(¢, zo) :

t > 1,x9 € Q}. Lemmal2 implies that there exists a closed

and convex seD such that

A natural question is under what conditions SO and SOST

are equivalent. To address this issue, we introduce the Sr C D C Int(Q).

following definition. (Note that sincef2 is convex so isInt(Q)). Let ¢, :=
mingep p(J(z)). Thene, < 0. Thus, the system is con-

Definition 5 We say that(l) is weakly expansivWE) if  tractive onD, and for alla,b € Q and allt > 0
for eachd > 0 there existsy > 0 such that for alla,b € Q2
and alltg >0 |$C(T +ta) —z(1 +4, b)' < exp(cTt)|a - bl?

B. contraction after a small overshoot

l2(t, to, a) — 2(t, to, b)| < (14 8)|a — b], (29) Where| - | is the vector norm corresponding to the matrix
B measure:. This establishes ST, and thus completes the proof
fOI‘ a.” t e [to, tO + 7'0]. of Theoren‘i:B_D
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Fig. 1. Relations between various contraction notions. &kova denotes implication; a crossed out arrow denotes ttrplication is in general false;
and a dashed arrow denotes an implication that holds undadditional condition. Some of the relations are immedi@thers follow from the results
marked near the arrows.

Proof of Corollary 1. for all a,b € Q and allt > t;. Now pick 7 > 7,,. For
Since 2 is convex, compact, and invariant, it includes aranyt > t;, lets:=¢+ 7 — 7,,,. Then

equilibrium pointe of (I3). By Theorem13, the system is ST.
Pick € Q and~ > 0. Applying (8) with b = e yields j@(t + 7 t1,0) — 2t + 7,11, b)]
= |x(s + T, t1,a) — (s + T, t1,b)|
< (1+¢e)exp(—cc(s — t1))la— bl
forall to > t; > 0, wherel > 0. This completes the prodf] < (14 ¢e)exp(—ce(t —t1))]a — bl

|z(t2 + 7,t1,a) — e| < exp(—(t2 —t1){)]a — €],

and this completes the prodfl

Proof of Propositiohl1.

Proof of Theorerfild. We require the following result from [15].

Fix arbitrarye > 0 andt; > 0. The function{ = {(7) €
(0,1/2] is as in the statement of the Theorem. For each
0, let ¢ > 0 be a contraction constant dn¢, where we
write ¢ = {(7) here and in what follows. Take amyb € €.
By (I8), 2(t,t1,a),z(t, t1,b) € Q¢ forall t > ¢, + 7, SO Lemma 3 Consider a time-varying system

|zt 1, a) — z(t, t1,b)|c < exp(—ce(t —t, — 7)) &= f(t,x) (32)

X |o(ty +7,t1,a) —x(tr + 7,11,0)lc  evolving on a subset ok := I, x I x ... x I, C R,

for all t > t; + 7. From the convergence property of normgvhere eachl; is an interval of the formi0, a), a > 0, or

in the Theorem statement, there existw: > 0 such that [0, 00). Sup/pose that the .t|me-dependent vector figld-
[f1,.-.,fn] has the followingboundary-repellingroperty:
lyl < velyle < wevelyl, forally e, (30)
_ (BR) For eaché > 0 and each sufficiently smalh > 0,
a there existsK' = K (9, A) > 0 such that, for each =
1,...,n and eacht > 0, the condition

andve — 1, we - 1last — 0. Fort > t; +7 letp:
t—t; — 7. Then

|I(tat17 CL) - I(ta t1, b)|

rr <Aandx; >4, foreveryl<i<k-—1 (33)
< weexp(—cep)|x(ts + 7, t1,a) — x(t1 + 7,11, 0)|¢

(for k£ = 1, the condition is simply; < A)

< wewe exp(—cep)|e(ty + 7,11, a) — x(ty + 7,11, 0) implies that

< wewe exp(—cep)la — bl,
. ) fe(t,x) > K, forallt>0. (34)
where the last inequality follows from the fact that the

system is non-expanding with respect|td. Sincev, — 1,  Thengivenany > 0 there exists = £(7) > 0, withe(r) —
we — 1 ast — 0, vewe < 14 ¢ for 7 > 0 small enough. 0as7 — 0, such that, for every solutian(t), t > 0, it holds
Summarizing, there exists,, = 7,,(¢) > 0 such that for thatz(t) >e forall ¢t > 7.

all 7 € [0, 7]

In other words, the conclusion is that after an arbitrarily

|x(t + 7, t1,a) — x(t + 7,t1,b)]
< (1+e)exp(—ce(t —t1))|a — b, (31)  short time everyr;(t) is separated away from zero.



To prove Propositiof]1, note that the Jacobian[of (21) is We now use Theorem 4 to prove thafl(21) is SOST. Note
that sincey’(u) = 5> andk > 1,

—a; 0 0 ... 0 ¢g'(zn)
Lo—a2 0. 0 0 g(xzn) > g(0) =1/k, forall zeRY.
|1 0 1 —a3 ... 0 0
J(@) = : ’ - (35) For ¢ € (0,1/2], let
0 0 0 ... 1 —ap Qe :={r eR} :x>(}.

Thus, J(:Z?) is a Metzler matrix, 50[121) is a monotoneu is straightforward to verify that[:(?l) satisfies condi-
dynamical system [17]. It is well-known [20, Ch. 3] thattion (BR) in Lemma[B. Hence, for every > 0 there
the induced matrix measure corresponding to fhevector ~ €Xistse(r) > 0 such thate(t) € Q. for all ¢ > 7. Then

norm is p11(A) = max{cy(4),...,cn(A4)}, where (o) kE—1 E—1 k-1
g (xy) = 5 < 5 < 5 =
¢(A) = A5+ D7 Ayl (36) it m)? = (ke &
1<i<n We already showed that this implies that there exisissa0

73 and a norm - |; p, such that[(21) is contractive dn. with

i.e., the sum of the entries in columhof A, with non respect to this norm. Wheh= 0, (37) yieldsy; p, (J(z)) =

diagonal elements replaced by their absolute values. Qfax{o g'(wn)—c }, and sincey (z,,) < o, p1.p, (J(2)) =
1 :

Py —1...002Q -

course, ifA is Metzler then one can také;; instead of A;;| (. Thus, {Z1) is NE with respect tb- |1 p,. Summarizing,

in (38). If P is an invertible matrix, angt[, p : R™ — Ry IS g the conditions in Theoreffl 4 hold, and thus the system
the vector norm defined by|, p := |Pz|1, then the induced g gOsT. By Remarkl1, this implies SOl

matrix measure ig; p(A) := pu1 (PAP™1). Let

n—1
D, :=diag | 1,01 — ¢, (a1 — &)(a2 — €),..., a;—¢) |, Proof of Lemmall.
: ( ! (o1 = €)@z —e) ilj[l( )> If (@) is SOST then[(Z7) holds for the particular case: 7
in Definition[d. To prove the converse implication, assume

with e > 0 sufficiently small. Then that [2T) holds. Pick, 2 0. Let

-1
DeJ(@)D- , 7 := min{7, £}, (38)
—a1 0 0 ... g (En) _
i=1(@i=e) | and let/ = ¢(1) > 0. Pickt > t; > 0, and lett, :=
m-e —op 0 .. 0 0 t+7—7 >t Then
= 0 as—e 0 0 0 ,
|z(te + 7)t1,a) — z(ta + 7,t1,0)|0

0 0 0 . 1 —€ —a, < (1+7)exp(—(ta — t1)f)|a — bl,

so < (1 +&)exp(—(t —t1)f)|a — bly,

"z, where the last inequality follows fro 8). Thus,

.0, (J(2)) = max{—e, LT _ o1 qualty LE8)
[Tiz (@i —¢) 1 lo(t + 7.t1,a) — 2t + 7,11, b)|o
/ n— L R
~ max{—e, $@) —anllisy (@i = 2)y < (14 &) exp(~(t — t1)0)]a — bl

n—1
Iz i —¢) 37) and recalling that, £ > 0 were arbitrary, we conclude that
Condition 2) in Lemmall implies SOST.
Suppose that — 1 < ak?. Then for allz € R7,
g (xzn) = k-1 5 < b _21 < a. To prove that Condition 3) is equivalent to SOST, suppose
(k +an) k that [28) holds. Then for angs > t4,
Combining this with [(3I7) implies that there exists a suf-
ficiently smalle > 0 such thatu; p_(J(x)) < —e/2 for otz + 711, 0)—a(t2 + 7, 41, b)f
all z € R, so the system is contractive @f.. < (L4e)exp(—(t2 + 7 — t1)l1)|a — by
< (1 + E) exp(—(tg — t1)€1)|a — blv,

so we have SOST. Conversely, suppose that (1) is SOST.
Now assume that — 1 = ak2. By (35), Pick anyr,e > 0. Then there existg = ¢(7,£/2) > 0 such
that for anyt > ¢, + 7
det(J(x)) = (=1)"(a — g'(2n)),

so for everyr € R with z,, = 0, we havedet(J(z)) =
(=1)"(ar — ¢’(0)) = 0. This implies that the system is not
contractive, with respect to any norm, & . < (L+e/2)exp(=(t — 7 — t1)l)]|a — bl

| (¢, t1, a)—x(t, t1, D)y
=zt — 74+ 71,t1,a) —x(t — 7+ 7,t1,0)|s



Thus, for anyc € (0,1) [2]

|x(t, t1,a)—x(t, t1,b)|s
< (14 ¢/2)exp(rel) exp(—(t — t1)cl)|a — bly.

Taking ¢ > 0 sufficiently small such that(l +
e/2)exp(rel) < 1+ e implies that[[28) holds fof; := /.
This completes the proof thdi (28) is equivalent to SOST.
Proof of Propositiohl2.

Suppose that[{1) is SOST with respect to some norm
|,. Picke > 0. Since the system is WE, there exists=
To(¢) > 0 such that

(4]

(5]
(6]

[7]
|I(tat07a) - x(t,to,b”v < (1 + 8/2)|a - b|vv

for all ¢ € [to, to + 7o]. Letting £ := - log(75y) vields (8]
|x(t, to, a) — x(t, to,b)|» < (14¢)exp(—(t —to)l2)|a —bly, [9]
for all ¢ € [to,to + 70]. By item[3 in Lemmalll (ti?e)re [10]
exists/; = ¢1(79,€) > 0 such that
|z(t, to,a) — x(t, o, b)|w < (1+€)exp(—(t —to)l1)|a—bl,, [l
for all ¢t > ty + 179. Combining this with[(3B) yields (2]
|z (t, to, a) — x(t,to,b)|s < (1 +¢)exp(—(t —to)l)|a — bly, [13]
for all ¢ > tog, wheref := min{¢;,¢5} > 0. This proves
SO.0O [14]
VII. CONCLUSIONS [15]

Contraction theory has proved useful for studying numer-
ous dynamical systems. Contraction implies several dasira [16]
asymptotic properties such as convergence to a unique at-
tractor (if it exists) and entrainment to periodic excibati
However, proving contraction is in many cases non-trivial.

In this paper, we introduced three generalizations of
contraction. These are motivated by allowing contractimn t[18]
take place after an arbitrarily small transient in time and/
amplitude. We provided conditions guaranteeing that these
forms of GC hold, and demonstrated their usefulness 6}9]
using them to analyze systems that are not contractive, wify;
respect to any norm, yet are a GC.

We note in passing that our original motivation for
generalizating contraction was to prove entrainment in a
model for translation-elongation called thidosome flow [22]
model (RFM) [21] (see also [22], [23], [24], [25]). The
state-variablesc;(t), i = 1,...,n, in the RFM represent [23)
occupancy levels on a coarse-grained model of the mRNA,
normalized so that:;(t) € [0,1] for all ¢. The state-space 124
of the RFM is thusC™ := [0,1]™. It is straightforward to
show, using the results presented here, that the RFM is ri@%]
contractive with respect to any norm 6ft, yet is ST onC™.

AcknowledgementsWe thank Zvi Artstein for helpful
comments.
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