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On Three Generalizations of Contraction

Eduardo D. Sontag and Michael Margaliot and Tamir Tuller

Abstract— We introduce three forms of generalized contrac-
tion (GC). Roughly speaking, these are motivated by allowing
contraction to take place after small transients in time and/or
amplitude. Indeed, contraction is usually used to prove asymp-
totic properties, like convergence to an attractor or entrainment
to a periodic excitation, and allowing initial transients does not
affect this asymptotic behavior.

We provide sufficient conditions for GC, and demonstrate
their usefulness using examples of systems that are not con-
tractive, with respect to any norm, yet are GC.

I. I NTRODUCTION

A dynamical system is called contractive if any two
trajectories converge to one other at an exponential rate. This
implies many desirable properties including convergence
to an attractor (if it exists), and entrainment to periodic
excitations [1], [2].

Contraction theory is a powerful tool for analyzing non-
linear dynamical systems, with applications in control the-
ory [3], observer design [4], synchronization of coupled
oscillators [5], and more. Recent extensions include: the
notion of partial contraction [6], analyzing a network of
interacting contractive elements [7], a Lyapunov-like char-
acterization of incremental stability [8], and a LaSalle-type
principle for contractive systems [9]. A contractive system
with added diffusion terms or random noise still satisfies
certain asymptotic properties [10], [11]. In this respect,
contraction is a robust property.

In this paper, we introduce three forms of generalized con-
traction (GC). These are motivated by requiring contraction
to take place only after arbitrarily small transients in time
and/or amplitude. Indeed, contraction is usually used to prove
asymptoticproperties, and thus allowing (arbitrarily small)
transients seems reasonable. We demonstrate the usefulness
of these generalizations by showing several examples of
systems that arenot contractive with respect to any norm,
yet are a GC.

The remainder of this paper is organized as follows.
Section II provides a brief overview of contraction theory.
Section III describes our main results. The proofs of these
results are detailed in Section VI. Section IV demonstrates
the results using a simple model of a biochemical control
system.

EDS (sontag@math.rutgers.edu) is with the Dept. of Mathematics and
the Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ
08854, USA; MM (michaelm@eng.tau.ac.il) is with the Schoolof Electrical
Engineering-Systems and the Sagol School of Neuroscience,Tel Aviv
University, Israel 69978; TT (tamirtul@post.tau.ac.il) is with the Dept. of
Biomedical Engineering and the Sagol School of Neuroscience, Tel-Aviv
University, Tel-Aviv 69978, Israel. EDS’s work is supported in part by
grants NIH 1R01GM086881 and 1R01GM100473, and AFOSR FA9550-
11-1-0247. The research of MM is partly supported by the ISF.

II. CONTRACTION THEORY

We begin with a brief review of some ideas from con-
traction theory. For more details, including the historic
development of contraction theory, and the relation to other
notions, see e.g. [12], [13], [14].

Consider the time-varying system

ẋ = f(t, x), (1)

evolving on a convex setΩ ⊂ R
n. We assume

that f(t, x) is differentiable with respect tox, and that
bothf(t, x) andJ(t, x) := ∂f

∂x (t, x) are continuous in(t, x).
Let x(t, t0, x0) denote the solution of (1) at timet ≥ t0
with x(t0) = x0 (for the sake of simplicity, we assume from
here on thatx(t, t0, x0) exists and is unique for allt ≥ t0 ≥ 0
and allx0 ∈ Ω).

Recall that (1) is calledcontractive[1] on Ω with respect
to a norm| · | : Rn → R+ if there existsc > 0 such that

|x(t2, t1, a)− x(t2, t1, b)| ≤ exp(−(t2 − t1)c)|a− b| (2)

for all t2 ≥ t1 ≥ 0 and alla, b ∈ Ω.
In other words, any two trajectories contract to one another

at an exponential rate. This implies in particular that the
initial condition is “forgotten”.

Recall that a vector norm| · | : Rn → R+ induces a matrix
measureµ : Rn×n → R defined byµ(A) := limǫ↓0

1
ǫ (||I +

ǫA|| − 1), where || · || : Rn×n → R+ is the matrix norm
induced by| · |. A standard approach for proving contraction
is based on bounding some matrix measure of the JacobianJ .
(This is in fact a particular case of using a Lyapunov-Finsler
function to prove contraction [9]).

Theorem 1 [2] If there exists a vector norm| · | and c >
0 such that the induced matrix measureµ : R

n×n → R

satisfies
µ(J(t, x)) ≤ −c, (3)

for all t2 ≥ t1 ≥ 0 and all x ∈ Ω then (2) holds.

One important implication of contraction isentrainment
to a periodic excitation. Recall thatf : R+ × Ω → R is
calledT -periodic if

f(t, x) = f(t+ T, x)

for all t ≥ 0 and allx ∈ Ω.

Theorem 2 [2] If (1) is contractive andf is T -periodic
then there exists a unique periodic solutionα : [0,∞] → Ω
of (1), of periodT , and

lim
t→∞

|x(t, 0, a)− α(t)| = 0, for all a ∈ Ω.
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In other words, every trajectoryx(t, 0, a) converges to the
unique periodic solution. Entrainment is important in various
applications ranging from biological systems [15], [2] to the
stability of the power grid [16].

The next section presents our main results. All the proofs
are placed in Section VI.

III. M AIN RESULTS

We begin by defining three generalizations of contraction.

Definition 1 The time-varying system(1) is said to be:

• a contraction after a small overshoot and short tran-
sient(SOST) onΩ with respect to a norm|·| : Rn → R+

if for each ε > 0 and eachτ > 0 there existsℓ =
ℓ(τ, ε) > 0 such that

|x(t2 + τ,t1, a)− x(t2 + τ, t1, b)|
≤ (1 + ε) exp(−(t2 − t1)ℓ)|a− b| (4)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ Ω.
• a contraction after a small overshoot(SO) onΩ with

respect to a norm| · | : Rn → R+ if for each ε > 0
there existsℓ = ℓ(ε) > 0 such that

|x(t2,t1, a)− x(t2, t1, b)|
≤ (1 + ε) exp(−(t2 − t1)ℓ)|a− b| (5)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ Ω.
• a contraction after a short transient(ST) onΩ with

respect to a norm| · | : Rn → R+ if for each τ > 0
there existsℓ = ℓ(τ) > 0 such that

|x(t2 + τ,t1, a)− x(t2 + τ, t1, b)|
≤ exp(−(t2 − t1)ℓ)|a− b| (6)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ Ω.

It is clear that every contractive system is SOST, SO,
and ST. Thus, all these notions are generalizations of con-
traction.

The motivation for these definitions stems from the fact
that important applications of contraction are in proving
asymptoticproperties. For example, proving that an equi-
librium point is globally attracting or that the state-variables
entrain to a periodic excitation. These properties describe
what happens ast → ∞, and so it seems natural to generalize
contraction in a way that allows initial transients in time
and/or amplitude.

In particular, the definition of SOST is motivated by
requiring contraction at an exponential rate, but only after
an (arbitrarily small) timeτ , and with an (arbitrarily small)
overshoot(1 + ε). However, as we will see below when
the convergence rateℓ may depend onε a somewhat richer
behavior may occur. The definition of SO is similar to that
of SOST, yet now the convergence rateℓ depends only onε,
and there is no time transientτ (i.e., τ = 0). In other
words, SO is a uniform (inτ ) version of SOST. It is clear

that SO implies SOST and we will see below that under a
mild technical condition on (1) SO and SOST are equivalent.

The next example shows that ST isnot equivalent to con-
traction. Recall that theerror functionis defined aserf(z) :=
2√
π

∫ z

0
exp(−s2)ds.

Example 1 Consider the scalar time-varying system

ẋ(t) = (exp(−t2)− 1)x(t) (7)

evolving onΩ := (−1, 1). It is straightforward to show that
this system is not contractive with respect toanynorm (note
that the JacobianJ(t) = exp(−t2)− 1 satisfiesJ(0) = 0).
Yet,(7) is ST. To show this, pickτ > 0. Note that for allt ≥
t1, x(t, t1, a) = f(t, t1)a, where

f(t, t1) := exp (g(t)− g(t1)) , (8)

with

g(t) :=

√
π

2
erf(t)− t. (9)

Thus, for any norm| · | : R → R+,

|x(t2, t1, a)− x(t2, t1, b)| = f(t2, t1)|a− b|,

We need to show that there existsℓ1 = ℓ1(τ) > 0 such that

f(t2 + τ, t1) ≤ exp(−(t2 − t1)ℓ1), for all t2 ≥ t1 ≥ 0,

or, equivalently, that

a(z, t1) ≤ 0, for all t1, z ≥ 0, (10)

wherez := t2−t1, anda(z, t1) := g(t1+τ+z)−g(t1)+zℓ1.
Since

ġ(t) = exp(−t2)− 1, (11)

we have

d

dz
a(z, t1) = exp(−(t1 + τ + z)2)− 1 + ℓ1

≤ exp(−τ2)− 1 + ℓ1.

Taking ℓ1 := (1 − exp(−τ2))/2 > 0, yields d
dza(z, t1) < 0

for all t1, z ≥ 0, so

a(z, t1) ≤ a(0, t1)

= g(t1 + τ)− g(t1)

≤ 0,

where the last inequality follows from(11). We conclude
that (10) indeed holds, so(7) is ST.

For time-invariantsystems evolving on a compact set it
is possible to give a simple sufficient condition for ST.
Let Int(S) denote the interior of a setS. We require the
following definitions.

Definition 2 We say that(1) is non expansive(NE) with
respect to the norm|·| if for all a, b ∈ Ω and all s2 > s1 ≥ 0

|x(s2, s1, a)− x(s2, s1, b)| ≤ |a− b|. (12)

We say that(1) is weakly contractive(WC) if (12) holds
with ≤ replaced by<.



Definition 3 The time-invariant system

ẋ = f(x), (13)

evolving on a compact and convex setΩ ⊂ R
n, is said to be

interior contractive(IC) if it satisfies the following properties:

(a) for everyx0 ∈ ∂Ω, x(t, x0) 6∈ ∂Ω for all t > 0.
(b) there exists a matrix measureµ : Rn×n → R such that

µ(J(x)) < 0, for all x ∈ Int(Ω). (14)

Note that conditions (a) and (b) do not necessarily imply
contraction onΩ, as it is possible thatµ(J(x)) = 0 for
somex ∈ ∂Ω. Yet, (14) does imply that (13) is non-expansive
on Ω.

Theorem 3 If the system(13) is IC then it is ST.

As noted above, the introduction of the GC forms is moti-
vated by the idea that contraction is used to prove asymptotic
results, so allowing initial transients should increase the class
of systems that can be analyzed while still allowing to prove
asymptotic results. The next result demonstrates this.

Corollary 1 Suppose that(13) is IC. Then(13) admits a
unique equilibrium pointe ∈ Int(Ω), and limt→∞ x(t, a) =
e for all a ∈ Ω.

One may perhaps expect that we can generalize Theorem 3
to the time-varying case as well, that is, that if the time-
varying system (1), evolving in a compact and convex
setΩ ⊂ R

n, satisfies:

(a) for everyx0 ∈ ∂Ω and everyt1 ≥ 0,

x(t, t1, x0) 6∈ ∂Ω, for all t > t1, (15)

(b) there exists a matrix measureµ : Rn×n → R such that

µ(J(t, x)) < 0, for all x ∈ Int(Ω), and all t ≥ t1 ≥ 0,
(16)

then (1) is ST onΩ. However, the next example shows that
this is not so.

Example 2 Consider the scalar system

ẋ(t) = − x(t)

t+ 1
,

evolving inΩ := [−1, 1]. The Jacobian isJ(t, x) = −(t +
1)−1, and properties(15) and (16) hold. Yet, this system
is not SOST onΩ (and, therefore, it is clearly not ST
on Ω). Indeed, assume otherwise. Pickτ, ε > 0. Then there
exists ℓ = ℓ(τ, ε) > 0 such that(4) holds. Sincex(t) =
(t + 1)−1x(0), Eq. (4) with the particular choicet1 = 0
implies that

(t2 + τ + 1)−1 ≤ (1 + ε) exp(−ℓt2), for all t2 ≥ 0,

i.e.,

exp(ℓt2) ≤ (1 + ε)(t2 + τ + 1), for all t2 ≥ 0,

but this clearly cannot hold fort2 > 0 sufficiently large.

To provide a sufficient condition for generalized contrac-
tion of thetime-varyingsystem (1), we require the following
definition.

Definition 4 System(1) is said to benested contractive(NC)
onΩ with respect to a norm|·| if there exist convex setsΩζ ⊆
Ω, and norms| · |ζ : Rn → R+, whereζ ∈ (0, 1/2], such
that the following conditions hold.

• ∪ζ∈(0,1/2]Ωζ = Ω, and

Ωζ1 ⊆ Ωζ2 , for all ζ1 ≥ ζ2. (17)

• For every τ > 0 there existsζ = ζ(τ) ∈ (0, 1/2],
with ζ(τ) → 0 as τ → 0, such that for everya ∈ Ω
and everyt1 ≥ 0

x(t, t1, a) ∈ Ωζ , for all t ≥ t1 + τ, (18)

and (1) is contractive onΩζ with respect to| · |ζ .
• The norms| · |ζ converge to| · | as ζ → 0, i.e., for

everyζ > 0 there existss = s(ζ) > 0, with s(ζ) → 0
as ζ → 0, such that

(1− s)|y| ≤ |y|ζ ≤ (1 + s)|y|, for all y ∈ Ω.

• System(1) is non-expanding with respect to| · | on Ω.

Eq. (18) means that after an arbitrarily short time every
trajectory enters and remains in a subsetΩζ of the state space
on which we have contraction with respect to| · |ζ .

Theorem 4 If the system(1) is NC then it is SOST.

The next example demonstrates the usefulness of Theo-
rem 4 by using it to prove that the system in Example 1
is SOSTwithout using the explicit solution (8).

Example 3 Consider again the scalar time-varying sys-
tem (7). Fix arbitrary t1 ≥ 0, a1 ∈ (−1, 1), and rewrite(7)
as

ẋ1 = (exp(−x2
2)− 1)x1, x1(t1) = a1,

ẋ2 = 1, x2(t1) = t1, (19)

evolving onΩ := {x ∈ R
2 : x1 ∈ (−1, 1), x2 ≥ t1}. Note

that any two feasible initial conditionsa, b ∈ Ω for this
systems satisfya2 = b2 = t1. The Jacobian of(19) is

J(x) =

[

−1 + exp(−x2
2) −2x1x2 exp(−x2

2)
0 0

]

.

For any ζ ∈ (0, 1/2], let

Ωζ := {x ∈ Ω : x1 ∈ (−1, 1), x2 ≥ t1 + ζ},
and let | · |ζ := | · |1, that is, theL1 norm. Note that(18)
holds withζ(τ) := min{τ, 1/2}, and that for everyx ∈ Ωζ ,

J11(x) = −1 + exp(−x2
2)

≤ −1 + exp(−(t1 + ζ)2)

< −1 + exp(−ζ2)

< 0. (20)



Let di(t2, t1, a, b) := |xi(t2, t1, a) − xi(t2, t1, b)|, i = 1, 2.
Then

|x(t2, t1, a)− x(t2, t1, b)|1 = d1(t2, t1, a, b) + d2(t2, t1, a, b)

= d1(t2, t1, a, b) + |t2 − t2|
= |x1(t2, t1, a)− x1(t2, t1, b)|.

Combining this with(20) implies that all the conditions in
Theorem 4 hold, so we conclude that(19) is SOST with
respect to theL1 norm.

The next section describes, using a specific mathemat-
ical model, one possible mechanism for ST. Namely, as
we change the parameters in a contractive system, it may
become ST when it hits the “verge” of contraction. For two
vectorsa, b ∈ R

n, we writea ≥ b if ai ≥ bi for i = 1, . . . , n.
A matrix M ∈ R

n×n is called Metzler if mij ≥ 0 for
all i 6= j.

IV. A N APPLICATION: A BIOCHEMICAL

CONTROL CIRCUIT

Consider the system

ẋ1 = g(xn)− α1x1,

ẋ2 = x1 − α2x2,

ẋ3 = x2 − α3x3,

...

ẋn = xn−1 − αnxn, (21)

whereαi > 0, and

g(u) :=
1 + u

k + u
, with k > 1.

As explained in [17, Ch. 4] this may model a simple
biochemical control circuit for protein synthesis in the cell.
Thexis represent concentrations of various macro-molecules
in the cell and therefore must be non-negative. It is straight-
forward to verify thatx(0) ∈ R

n
+ implies thatx(t) ∈ R

n
+ for

all t ≥ 0.

Proposition 1 Let α :=
∏n

i=1 αi. If

k − 1 < αk2 (22)

then (21) is a contraction onRn
+. If k − 1 = αk2 then (21)

is not a contraction, with respect to any norm, onRn
+, yet

it is SO onRn
+.

Note that for allx ∈ R
n
+,

g′(xn) =
k − 1

(k + xn)2
≤ k − 1

k2
= g′(0). (23)

Thus (22) implies that contraction holds if and only if the
“total dissipation”α is strictly larger thang′(0).

Using the fact thatg(u) < 1 for all u ≥ 0 it is
straightforward to show that the set

Ωr := r([0, α−1
1 ]× [0, (α1α2)

−1]× · · · × [0, α−1])

is an invariant set of the dynamics for allr ≥ 1. Combining
this with Prop. 1 implies that (21), withk − 1 ≤ αk2, admits
a unique equilibrium pointe ∈ Ω1 and that

lim
t→∞

x(t, a) = e, for all a ∈ R
n
+.

This property also follows from a more general result [17,
Prop. 4.2.1] that is proved using the theory of irreducible
cooperative dynamical systems. Yet the contraction approach
leads to new insights. For example, it implies that the
distance between trajectories can only decrease, and can
also be used to prove entrainment to suitable generalizations
of (21) that include periodically-varying inputs.

In the next section, we describe several more related
notions and explore the relations between them.

V. A DDITIONAL NOTIONS AND RELATIONS

It is straightforward to show that each of the three gen-
eralizations of contraction in Definition 1 implies that (1)
is NE. One may perhaps expect that any of the three gen-
eralizations of contraction in Definition 1 also implies WC.
By taking t1 = s1, τ = (s2 − s1)/2 > 0, and t2 = s1 + τ
in (6) it follows that ST does imply WC. However, the next
example shows that SO does not imply WC.

Example 4 Consider the scalar time-varying system

ẋ(t) =

{

0, 0 ≤ t ≤ 1,

−2x(t), 1 < t,
(24)

evolving onΩ := (−1, 1). Clearly, the trajectories of this
system are not contracting fort ∈ [0, 1]. Yet, we claim that
this system is SO. To show this, pickε > 0. Let

ℓ := min{log(1 + ε), 1}. (25)

Note thatℓ = ℓ(ε) > 0. To show that(5) holds, we consider
two cases.

Case 1.Suppose thatt1 ∈ [0, 1]. In this case, the solution
of (24) is

x(t, t1, a) =

{

a, t1 ≤ t ≤ 1,

exp(−2(t− 1))a, 1 ≤ t.
(26)

Thus,

d : = |x(t2, t1, a)− x(t2, t1, b)|

=

{

|a− b|, t1 ≤ t2 ≤ 1,

exp(−2(t2 − 1))|a− b|, 1 ≤ t2.

Let r := (1+ε) exp(−ℓ(t2− t1))|a− b|. It follows from(25)
that

r ≥ (1 + ε)1−t2+t1 |a− b|,

so if t2 ≤ 1 then clearlyd ≤ r.

Now suppose thatt2 > 1. If 1+ε ≥ exp(1) then it follows



from (25) that ℓ = 1, so

r = (1 + ε) exp(−(t2 − t1))|a− b|
≥ exp(1) exp(−t2)|a− b|
≥ exp(2) exp(−2t2)|a− b|
= d.

If 1+ε < exp(1) then it follows from(25) that ℓ = log(1+ε),
so

r = (1 + ε)1−t2+t1 |a− b|
≥ (1 + ε)1−t2 |a− b|
≥ exp(1− t2)|a− b|
≥ exp(2) exp(−2t2)|a− b|
= d.

Summarizing, in Case 1 we always haved ≤ r.
Case 2.Suppose thatt1 > 1. In this case, the solution of(24)
is x(t, t1, a) = exp(−2(t − t1))a, so d = exp(−2(t2 −
t1))|a−b|. Sinceℓ ≤ 1, d ≤ (1+ε) exp(−ℓ(t2−t1))|a−b| =
r. Thus, in Case 2 we also haved ≤ r, and this proves SO.

Summarizing, (24) is SO although its trajectories do not
contract fort ∈ [0, 1]. Clearly, for every fixedT > 0 we
can build a system that is SO although its trajectories do not
contract fort ∈ [0, T ].

A. contraction after a small overshoot and short transient

The next result presents two conditions that are equivalent
to SOST.

Lemma 1 The following conditions are equivalent.

1) System(1) is SOST onΩ with respect to some vector
norm | · |v : Rn → R+.

2) For eachτ > 0 there existsℓ = ℓ(τ) > 0 such that

|x(t2 + τ,t1, a)− x(t2 + τ, t1, b)|v
≤ (1 + τ) exp(−(t2 − t1)ℓ)|a− b|v, (27)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ Ω.
3) For eachε > 0 and eachτ > 0 there existsℓ1 =

ℓ1(τ, ε) > 0 such that

|x(t, t1, a)−x(t, t1, b)|v ≤ (1+ε) exp(−(t−t1)ℓ1)|a−b|v,
(28)

for all t ≥ t1 + τ ≥ τ and all a, b ∈ Ω.

B. contraction after a small overshoot

A natural question is under what conditions SO and SOST
are equivalent. To address this issue, we introduce the
following definition.

Definition 5 We say that(1) is weakly expansive(WE) if
for eachδ > 0 there existsτ0 > 0 such that for alla, b ∈ Ω
and all t0 ≥ 0

|x(t, t0, a)− x(t, t0, b)| ≤ (1 + δ)|a− b|, (29)

for all t ∈ [t0, t0 + τ0].

Proposition 2 Suppose that(1) is WE. Then(1) is SOST if
and only if it is SO.

Remark 1 Suppose thatf in (1) is Lipschitz globally inΩ
uniformly in t, i.e. there existsL > 0 such that

|f(t, x)− f(t, y)| ≤ L|x− y|, for all x, y ∈ Ω, t ≥ t0.

Then by Gronwall’s Lemma (see, e.g. [18, Appendix C])

|x(t, t0, a)− x(t, t0, b)| ≤ exp(L(t− t0))|a− b|,
for all t ≥ t0, and this implies that(29) holds for τ0 :=
1
L log(1 + δ) > 0. In particular, if Ω is compact andf is
periodic in t then WE holds under rather weak continuity
arguments onf .

Fig. 1 summarizes the relations between the various con-
traction notions.

VI. PROOFS

Proof of Theorem 3.
We require the following result.

Lemma 2 If system(13) is IC then for eachτ > 0 there is
a d > 0 such that

dist(x(t, x0), ∂Ω) ≥ d,

for all x0 ∈ Ω and all t ≥ τ .

Proof of Lemma 2.Pick τ > 0 and x0 ∈ Ω. The
assumption thatΩ is invariant implies thatInt(Ω) is also
an invariant set of (13) (see, e.g., [19, Lemma III.6]).
Combining this with (a) implies thatx(t, x0) 6∈ ∂Ω for
all x0 ∈ Ω and all t > 0, so ex0

:= dist(x(τ, x0), ∂Ω) > 0.
Thus, there exists a neighborhoodUx0

of x0, such that
dist(x(τ, y), ∂Ω) ≥ ex0

/2 for all y ∈ Ux0
. Cover Ω by

suchUx0
sets. By compactness ofΩ, we can pick a finite

subcover. Pick smalleste in this subcover, and denote this
by d. Thend > 0 and we have thatdist(x(τ, x0), ∂Ω) ≥ d
for all x0 ∈ Ω. Now, pick t ≥ τ and x0 ∈ Ω. Let
x1 := x(t − τ, x0). Then:

dist(x(t, x0), ∂Ω) = dist(x(τ, x1), ∂Ω) ≥ d,

and this completes the proof of Lemma 2.�

To prove Theorem 3, pickτ > 0. Let Sτ := {x(t, x0) :
t ≥ τ, x0 ∈ Ω}. Lemma 2 implies that there exists a closed
and convex setD such that

Sτ ⊆ D ⊂ Int(Ω).

(Note that sinceΩ is convex so isInt(Ω)). Let cτ :=
minx∈D µ(J(x)). Then cτ < 0. Thus, the system is con-
tractive onD, and for alla, b ∈ Ω and all t ≥ 0

|x(τ + t, a)− x(τ + t, b)| ≤ exp(cτ t)|a− b|,

where | · | is the vector norm corresponding to the matrix
measureµ. This establishes ST, and thus completes the proof
of Theorem 3.�
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Fig. 1. Relations between various contraction notions. An arrow denotes implication; a crossed out arrow denotes that the implication is in general false;
and a dashed arrow denotes an implication that holds under anadditional condition. Some of the relations are immediate.Others follow from the results
marked near the arrows.

Proof of Corollary 1.
SinceΩ is convex, compact, and invariant, it includes an
equilibrium pointe of (13). By Theorem 3, the system is ST.
Pick a ∈ Ω andτ > 0. Applying (6) with b = e yields

|x(t2 + τ,t1, a)− e| ≤ exp(−(t2 − t1)ℓ)|a− e|,

for all t2 ≥ t1 ≥ 0, whereℓ > 0. This completes the proof.�

Proof of Theorem 4.
Fix arbitrary ε > 0 and t1 ≥ 0. The functionζ = ζ(τ) ∈
(0, 1/2] is as in the statement of the Theorem. For eachτ >
0, let cζ > 0 be a contraction constant onΩζ , where we
write ζ = ζ(τ) here and in what follows. Take anya, b ∈ Ω.
By (18), x(t, t1, a), x(t, t1, b) ∈ Ωζ for all t ≥ t1 + τ , so

|x(t, t1, a)− x(t, t1,b)|ζ ≤ exp(−cζ(t− t1 − τ))

× |x(t1 + τ, t1, a)− x(t1 + τ, t1, b)|ζ
for all t ≥ t1 + τ . From the convergence property of norms
in the Theorem statement, there existvζ , wζ > 0 such that

|y| ≤ vζ |y|ζ ≤ wζvζ |y|, for all y ∈ Ω, (30)

and vζ → 1, wζ → 1 as τ → 0. For t ≥ t1 + τ let p :=
t− t1 − τ . Then

|x(t,t1, a)− x(t, t1, b)|
≤ vζ exp(−cζp)|x(t1 + τ, t1, a)− x(t1 + τ, t1, b)|ζ
≤ vζwζ exp(−cζp)|x(t1 + τ, t1, a)− x(t1 + τ, t1, b)|
≤ vζwζ exp(−cζp)|a− b|,

where the last inequality follows from the fact that the
system is non-expanding with respect to| · |. Sincevζ → 1,
wζ → 1 as τ → 0, vζwζ ≤ 1 + ε for τ > 0 small enough.
Summarizing, there existsτm = τm(ε) > 0 such that for
all τ ∈ [0, τm]

|x(t + τ, t1, a)− x(t+ τ, t1, b)|
≤ (1 + ε) exp(−cζ(t− t1))|a− b|, (31)

for all a, b ∈ Ω and all t ≥ t1. Now pick τ > τm. For
any t ≥ t1, let s := t+ τ − τm. Then

|x(t+ τ, t1,a)− x(t+ τ, t1, b)|
= |x(s+ τm, t1, a)− x(s + τm, t1, b)|
≤ (1 + ε) exp(−cζ(s− t1))|a− b|
≤ (1 + ε) exp(−cζ(t− t1))|a− b|,

and this completes the proof.�

Proof of Proposition 1.
We require the following result from [15].

Lemma 3 Consider a time-varying system

ẋ = f(t, x) (32)

evolving on a subset ofX := I1 × I2 × . . . × In ⊆ R
n
+,

where eachIj is an interval of the form[0, a], a > 0, or
[0,∞). Suppose that the time-dependent vector fieldf =
[

f1, . . . , fn
]′

has the followingboundary-repellingproperty:

(BR) For each δ > 0 and each sufficiently small∆ > 0,
there existsK = K(δ,∆) > 0 such that, for eachk =
1, . . . , n and eacht ≥ 0, the condition

xk ≤ ∆ andxi ≥ δ, for every1 ≤ i ≤ k − 1 (33)

(for k = 1, the condition is simplyx1 ≤ ∆)
implies that

fk(t, x) ≥ K, for all t ≥ 0. (34)

Then given anyτ > 0 there existsε = ε(τ) > 0, with ε(τ) →
0 asτ → 0, such that, for every solutionx(t), t ≥ 0, it holds
that x(t) ≥ ε for all t ≥ τ .

In other words, the conclusion is that after an arbitrarily
short time everyxi(t) is separated away from zero.



To prove Proposition 1, note that the Jacobian of (21) is

J(x) =















−α1 0 0 . . . 0 g′(xn)
1 −α2 0 . . . 0 0
0 1 −α3 . . . 0 0

...
0 0 0 . . . 1 −αn















. (35)

Thus, J(x) is a Metzler matrix, so (21) is a monotone
dynamical system [17]. It is well-known [20, Ch. 3] that
the induced matrix measure corresponding to theL1 vector
norm isµ1(A) = max{c1(A), . . . , cn(A)}, where

cj(A) := Ajj +
∑

1≤i≤n
i6=j

|Aij |, (36)

i.e., the sum of the entries in columnj of A, with non
diagonal elements replaced by their absolute values. Of
course, ifA is Metzler then one can takeAij instead of|Aij |
in (36). If P is an invertible matrix, and| · |1,P : Rn → R+ is
the vector norm defined by|z|1,P := |Pz|1, then the induced
matrix measure isµ1,P (A) := µ1(PAP−1). Let

Dε := diag

(

1, α1 − ε, (α1 − ε)(α2 − ε), . . . ,

n−1
∏

i=1

(αi − ε)

)

,

with ε > 0 sufficiently small. Then

DεJ(x)D
−1
ε

=

















−α1 0 0 . . . 0 g′(xn)∏n−1

i=1
(αi−ε)

α1 − ε −α2 0 . . . 0 0
0 α2 − ε 0 . . . 0 0

...
0 0 0 . . . αn−1 − ε −αn

















,

so

µ1,Dε
(J(x)) = max{−ε,

g′(xn)
∏n−1

i=1 (αi − ε)
− αn}

= max{−ε,
g′(xn)− αn

∏n−1
i=1 (αi − ε)

∏n−1
i=1 (αi − ε)

}.

(37)

Suppose thatk − 1 < αk2. Then for allx ∈ R
n
+,

g′(xn) =
k − 1

(k + xn)2
≤ k − 1

k2
< α.

Combining this with (37) implies that there exists a suf-
ficiently small ε > 0 such thatµ1,Dε

(J(x)) < −ε/2 for
all x ∈ R

n
+, so the system is contractive onRn

+.

Now assume thatk − 1 = αk2. By (35),

det(J(x)) = (−1)n(α − g′(xn)),

so for everyx ∈ R
n
+ with xn = 0, we havedet(J(x)) =

(−1)n(α − g′(0)) = 0. This implies that the system is not
contractive, with respect to any norm, onRn

+.

We now use Theorem 4 to prove that (21) is SOST. Note
that sinceg′(u) = k−1

(k+u)2 andk > 1,

g(xn) ≥ g(0) = 1/k, for all x ∈ R
n
+.

For ζ ∈ (0, 1/2], let

Ωζ := {x ∈ R
n
+ : x ≥ ζ}.

It is straightforward to verify that (21) satisfies condi-
tion (BR) in Lemma 3. Hence, for everyτ > 0 there
existsε(τ) > 0 such thatx(t) ∈ Ωε for all t ≥ τ . Then

g′(xn) =
k − 1

(k + xn)2
≤ k − 1

(k + ε)2
<

k − 1

k2
= α.

We already showed that this implies that there exists aζ > 0
and a norm| · |1,Dζ

such that (21) is contractive onΩε with
respect to this norm. Whenζ = 0, (37) yieldsµ1,D0

(J(x)) =

max{0, g′(xn)−α
αn−1...α2α1

}, and sinceg′(xn) < α, µ1,D0
(J(x)) ≡

0. Thus, (21) is NE with respect to| · |1,D0
. Summarizing,

all the conditions in Theorem 4 hold, and thus the system
is SOST. By Remark 1, this implies SO.�

Proof of Lemma 1.
If (1) is SOST then (27) holds for the particular caseε = τ
in Definition 1. To prove the converse implication, assume
that (27) holds. Pick̂τ , ε̂ > 0. Let

τ := min{τ̂ , ε̂}, (38)

and let ℓ = ℓ(τ) > 0. Pick t ≥ t1 ≥ 0, and let t2 :=
t+ τ̂ − τ ≥ t1. Then

|x(t2 + τ,t1, a)− x(t2 + τ, t1, b)|v
≤ (1 + τ) exp(−(t2 − t1)ℓ)|a− b|v
≤ (1 + ε̂) exp(−(t− t1)ℓ)|a− b|v,

where the last inequality follows from (38). Thus,

|x(t + τ̂ ,t1, a)− x(t+ τ̂ , t1, b)|v
≤ (1 + ε̂) exp(−(t− t1)ℓ)|a− b|v,

and recalling that̂τ , ε̂ > 0 were arbitrary, we conclude that
Condition 2) in Lemma 1 implies SOST.

To prove that Condition 3) is equivalent to SOST, suppose
that (28) holds. Then for anyt2 ≥ t1,

|x(t2 + τ, t1, a)−x(t2 + τ, t1, b)|v
≤ (1 + ε) exp(−(t2 + τ − t1)ℓ1)|a− b|v
≤ (1 + ε) exp(−(t2 − t1)ℓ1)|a− b|v,

so we have SOST. Conversely, suppose that (1) is SOST.
Pick anyτ, ε > 0. Then there existsℓ = ℓ(τ, ε/2) > 0 such
that for anyt ≥ t1 + τ

|x(t, t1, a)−x(t, t1, b)|v
= |x(t− τ + τ, t1, a)− x(t− τ + τ, t1, b)|v
≤ (1 + ε/2) exp(−(t− τ − t1)ℓ)|a− b|v.



Thus, for anyc ∈ (0, 1)

|x(t, t1, a)−x(t, t1, b)|v
≤ (1 + ε/2) exp(τcℓ) exp(−(t− t1)cℓ)|a− b|v.

Taking c > 0 sufficiently small such that(1 +
ε/2) exp(τcℓ) ≤ 1 + ε implies that (28) holds forℓ1 := cℓ.
This completes the proof that (28) is equivalent to SOST.�

Proof of Proposition 2.
Suppose that (1) is SOST with respect to some norm| ·
|v. Pick ε > 0. Since the system is WE, there existsτ0 =
τ0(ε) > 0 such that

|x(t, t0, a)− x(t, t0, b)|v ≤ (1 + ε/2)|a− b|v,

for all t ∈ [t0, t0 + τ0]. Letting ℓ2 :=
1
τ0

log( 1+ε
1+(ε/2) ) yields

|x(t, t0, a)−x(t, t0, b)|v ≤ (1+ ε) exp(−(t− t0)ℓ2)|a− b|v,
(39)

for all t ∈ [t0, t0 + τ0]. By item 3 in Lemma 1 there
existsℓ1 = ℓ1(τ0, ε) > 0 such that

|x(t, t0, a)−x(t, t0, b)|v ≤ (1+ ε) exp(−(t− t0)ℓ1)|a− b|v,
for all t ≥ t0 + τ0. Combining this with (39) yields

|x(t, t0, a)− x(t, t0, b)|v ≤ (1 + ε) exp(−(t− t0)ℓ)|a− b|v,

for all t ≥ t0, where ℓ := min{ℓ1, ℓ2} > 0. This proves
SO.�

VII. C ONCLUSIONS

Contraction theory has proved useful for studying numer-
ous dynamical systems. Contraction implies several desirable
asymptotic properties such as convergence to a unique at-
tractor (if it exists) and entrainment to periodic excitation.
However, proving contraction is in many cases non-trivial.

In this paper, we introduced three generalizations of
contraction. These are motivated by allowing contraction to
take place after an arbitrarily small transient in time and/or
amplitude. We provided conditions guaranteeing that these
forms of GC hold, and demonstrated their usefulness by
using them to analyze systems that are not contractive, with
respect to any norm, yet are a GC.

We note in passing that our original motivation for
generalizating contraction was to prove entrainment in a
model for translation-elongation called theribosome flow
model (RFM) [21] (see also [22], [23], [24], [25]). The
state-variablesxi(t), i = 1, . . . , n, in the RFM represent
occupancy levels on a coarse-grained model of the mRNA,
normalized so thatxi(t) ∈ [0, 1] for all t. The state-space
of the RFM is thusCn := [0, 1]n. It is straightforward to
show, using the results presented here, that the RFM is not
contractive with respect to any norm onCn, yet is ST onCn.

Acknowledgements:We thank Zvi Artstein for helpful
comments.
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