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a b s t r a c t

We study sequences of optimal walks of a growing length in weighted digraphs, or equiva-
lently, sequences of entries of max-algebraic matrix powers with growing exponents. It
is known that these sequences are eventually periodic when the digraphs are strongly
connected. The transient of such periodicity depends, in general, both on the size of di-
graph and on the magnitude of the weights. In this paper, we show that some bounds on
the indices of periodicity of (unweighted) digraphs, such as the bounds of Wielandt, Dul-
mage–Mendelsohn, Schwarz, Kim and Gregory–Kirkland–Pullman, apply to the weights of
optimal walks when one of their ends is a critical node.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

We show that six known bounds for the index of convergence (transient of periodicity) of an unweighted digraph also
apply to weighted digraphs, namely, to transients of rows and columns with critical indices.

The origin of the first of these known bounds lies in Wielandt’s well-known paper [25] where an upper bound for the
transient of a primitive nonnegative matrix was asserted without proof.1 Dulmage and Mendelsohn [10] provided a proof
of this result by interpreting it in terms of digraphs and they sharpened the result by using as additional information in
the hypotheses the length of the smallest cycle of the digraph.2 Schwarz [18] generalized Wielandt’s result to apply to all
strongly connected digraphs by using Wielandt’s bound for the cyclicity classes of the digraph, see also Shao and Li [23].
Kim’s [14] bound encompasses the first three and can be proved using Dulmage and Mendelsohn’s bound in the cyclicity
classes.

We also generalize another bound byKim [14], and a bound byGregory–Kirkland–Pullman [12]which depend onBoolean
rank.
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E-mail addresses: glenn.merlet@univ-amu.fr (G. Merlet), nowak@lix.polytechnique.fr (T. Nowak), hans@math.wisc.edu (H. Schneider),

sergiej@gmail.com (S. Sergeev).
1 Wielandt’s proof was published later in [17].
2 Denardo [9] later rediscovered their result.
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The six boundsmentioned above are stated in Theorems 2.11 and 2.14 after the requisite definitions. Our generalizations
to weighted digraphs are stated in Main Theorems 1 and 2, and subsequently proved in Sections 3–7.

We exploit the natural connection between weighted digraphs and nonnegative matrices in the max (-times) algebra
just as the bounds that we take for our starting points connect unweighted digraphs and Boolean matrices.

2. Preliminaries and statement of results

2.1. Digraphs, walks, and transients

Let us start with some definitions.

Definition 2.1 (Digraphs). A digraph is a pair G = (N, E) where N is a set of nodes and E ⊆ N × N is a set of edges.

Definition 2.2 (Walks and Cycles). A walk in G is a finite sequence W = (i0, i1, . . . , it) of nodes such that each pair (i0, i1),
(i1, i2), . . . , (it−1, it) is an edge of G (that is, belongs to E). Here, the nodes i0, resp. it are the start resp. the end nodes of the
walk.

The number t is the length of the walk, and we denote it by ℓ(W ).
When i0 = it , the walk is closed. If, in a closed walk, none of the nodes except for the start and the end appear more than

once, the walk is called a cycle. If no node appears more than once, then the walk is called a path. A walk is empty if its length
is 0.

To a digraph G = (N, E) with N = {1, . . . , n}, we can associate a Boolean matrix A = (ai,j) ∈ Bn×n defined by

ai,j =


0 if (i, j) ∉ E
1 if (i, j) ∈ E.

(2.1)

Conversely, one can associate a digraph to every square Booleanmatrix. The connectivity inG is closely related to the Boolean
matrix powers of A. By the Boolean algebrawe mean the set B = {0, 1} equipped with the logical operations of conjunction
a · b and disjunction a ⊕ b = max(a, b), for a, b ∈ B. The Boolean multiplication of two matrices A ∈ Bm×n and B ∈ Bn×q

is defined by (A ⊗ B)i,j :=
n

k=1(ai,k · bk,j), and then we also have Boolean matrix powers A⊗t
:= A ⊗ · · · ⊗ A  

t times

. The (i, j)th

entry of A⊗t is denoted by a(t)
i,j .

The relation between Boolean powers of A and connectivity in G is based on the following fact: a(t)
i,j = 1 if and only if G

contains a walk of length t from i to j.
Let G be a digraph with associated matrix A ∈ Bn×n. The sequence of Boolean matrix powers A⊗t is eventually periodic,

that is, there exists a positive p such that

A⊗(t+p)
= A⊗t (2.2)

for all t large enough.

Definition 2.3 (Eventual Period). Each p satisfying (2.2) is called an eventual period of A.

The set of nonnegative t satisfying (2.2) is the same for all eventual periods p.

Definition 2.4 (Transient of Digraphs). The least nonnegative number t satisfying (2.2) for some (and hence for all) p is called
the transient (of periodicity) of G; we denote it by T (G).

See [4] for general introduction to the theory of digraphs and [15] for a survey on their transients. In the literature, T (G)
is often called the index of convergence, or the exponent of G.

Definition 2.5 (Powers of Digraphs). The digraph associated with A⊗t is denoted by Gt . Such graphs will be further referred
to as the powers of G.

Definition 2.6 (Cyclicity and Primitivity). For a strongly connected digraph G, its cyclicity is the greatest common divisor of
the lengths of all cycles of G. If d = 1, then G is called primitive, otherwise it is called imprimitive.

The cyclicity d of G can be equivalently defined as the least eventual period p in (2.2). If G is strongly connected, then its
cyclicity is the smallest eventual period of its sequence of powers. Let us recall the following basic observation from [4].

Theorem 2.7 ([4, Theorem 3.4.5]). Let G be a strongly connected graph with cyclicity d. For each k ≥ 1, graph Gk consists of
gcd(k, d) isolated strongly connected components, and every component has cyclicity d/ gcd(k, d).

We have an important special case when k = d.
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Definition 2.8 (Cyclicity Classes). According to Theorem 2.7, Gd has exactly d strongly connected components, each of
cyclicity 1. The node sets of these components are called the cyclicity classes of G.

In terms of walks, nodes i and j belong to the same cyclicity class if and only if there is a walk from i to j whose length
is a multiple of d. More generally, for each i and j there is an integer s with 0 ≤ s ≤ d − 1 such that the length of every
walk connecting i to j is congruent to smodulo d. This observation defines the circuit of cyclicity classes, being crucial for the
description of Gt in the periodic regime.

Let us introduce the following two definitions. The first of them is given in honor of the first paper on the subject by
Wielandt [25].

Definition 2.9 (Wielandt Number). ByWielandt number we mean the following function:

Wi(k) :=


0 if k = 1,
(k − 1)2 + 1 if k > 1. (2.3)

Definition 2.10 (Girth). The girth of G, denoted by g(G), is the smallest length of a nonempty cycle in G.

We will be interested in the following bounds on T (G).

Theorem 2.11. Let G be a strongly connected digraph with n nodes, cyclicity d, and girth g. The following upper bounds on the
transient of G hold:

(i) (Wielandt [25,17]) If d = 1, then T (G) ≤ Wi(n);
(ii) (Dulmage–Mendelsohn [10]) If d = 1, then T (G) ≤ (n − 2) · g + n;
(iii) (Schwarz [18,23]) T (G) ≤ d · Wi

 n
d


+ (n mod d);

(iv) (Kim [14]) T (G) ≤
 n

d


− 2


· g + n.

Remark 2.12. Clearly, the bound of Schwarz is tighter than the bound ofWielandt in the imprimitive case (d > 1), while in
the primitive case (d = 1) they are equal to each other. The bound of Kim is in the same relation with the bound of Dulmage
and Mendelsohn. Further, the bound of Dulmage and Mendelsohn is tighter than that of Wielandt when g < n − 1 and
both bounds are equal when g = n − 1. In the remaining case g = n, the graph consists of a single Hamiltonian cycle and
periodicity starts from the very beginning, i.e., T (G) = 1.

Let us show that the bound of Schwarz can be deduced from the bound of Kim. First, it can be seen that by substituting
g = d(

 n
d


− 1) in Kim’s bound and using the identity n = d

 n
d


+ (n mod d) we obtain the bound of Schwarz. Hence the

bound of Kim is tighter when g
d <

 n
d


− 1, and the bounds are equal when g

d =
 n

d


− 1.

Consider the remaining case g
d =

 n
d


. By definitions of g and d, the length of any cycle on G equals to g + td for some

t ≥ 0. Since g
d =

 n
d


, all cycles are of length g , thus g = d and

 n
d


= 1. Therefore, both bounds equal to (n mod d) = n−g .

We are also interested in the improvements of Theorem 2.11 in terms of the factor rank of a matrix A ∈ Bn×n (also known
as the Boolean rank or Schein rank).

Definition 2.13 (Factor Rank in Boolean Algebra). The Factor rank of A is the least number r such that

A =

r
α=1

vα ⊗ wT
α (2.4)

with Boolean vectors v1, w1, . . . , vr , wr ∈ Bn.

The factor rank of A is at most n since (2.4) holds when choosing r = n and the wα to be the unit vectors and the vα to be
the columns of A.

The following bounds involving the factor rank were established:

Theorem 2.14. Let G be a strongly connected primitive digraph with girth g, and let the associated matrix of G have factor rank
r. The following upper bounds on the transient of G hold:

(i) (Gregory–Kirkland–Pullman [12]) T (G) ≤ Wi(r) + 1;
(ii) (Kim [14]) T (G) ≤ (r − 2) · g + r + 1.

In fact, we will show that the bounds in Theorem 2.14 also hold for non-primitive matrices and that the analogous
stronger bounds of Schwarz and Kim with the factor rank instead of n are true. See Main Theorem 2.
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2.2. Weighted digraphs and max algebra

In aweighted digraphG, every edge (i, j) ∈ E is weighted by someweight ai,j.We consider the case of nonnegativeweights
ai,j ∈ R+ and

Definition 2.15 (Weight of a Walk). The weight of a walkW = (i0, i1, . . . , it) is the product

p(W ) := ai0,i1 · ai1,i2 · · · ait−1,it . (2.5)

Recall that the length of a walkW = (i0, i1, . . . , it) is ℓ(W ) = t .
Another common definition is letting edge weights be arbitrary reals and the weight of walks be the sum of the weights

of its edges. One can navigate between these two definitions by taking the logarithm and the exponential.
Bymax algebrawe understand the set of nonnegative real numbers R+ equippedwith the usual multiplication ab := a ·b

and tropical addition a ⊕ b := max(a, b). This arithmetic is extended to matrices and vectors in the usual way, which leads
to max-linear algebra, i.e. the theory of max-linear systems [1,5]. The product of two matrices A ∈ Rm×n

+ and B ∈ Rn×q
+ is

defined by (A ⊗ B)i,j := max1≤k≤n ai,k · bk,j, which defines the max-algebraic matrix powers A⊗t
:= A ⊗ · · · ⊗ A  

t times

. The (i, j)th

entry of A⊗t will be denoted by a(t)
i,j . Boolean matrices are a special case of max-algebraic matrices.

The walks of maximum weight in G are closely related with the entries of max-algebraic powers of the associated
nonnegative matrix of weights A = (ai,j). Conversely, one can associate a weighted digraph G(A) to every square max-
algebraic matrix A. The connection between max-algebraic powers and weights of walks is based on the following fact
called the optimal walk interpretation of max-algebraic matrix powers: a(t)

i,j is the maximum weight of all walks of length t
from i to j, or 0 if no such walk exists.

Definition 2.16 (Maximum Cycle Geometric Mean). If G(A) has at least one nonempty cycle, then the maximum geometric
cycle mean of A ∈ Rn×n

+ is equal to

λ(A) := max

p(C)1/ℓ(C)

| C is a nonempty cycle in G(A)

. (2.6)

Set λ(A) = 0 if no nonempty cycle in G(A) exists.

Definition 2.17 (Critical Graph). Let A ∈ Rn×n
+ . The cycles of G(A) at which the maximum geometric cycle mean is attained

are called critical, and so are all nodes and edges that belong to them. The set of all critical nodes is denoted by Nc(A) and the
set of all critical edges is denoted by Ec(A). The critical graph, denoted by Gc(A), consists of all critical nodes and all critical
edges.

As we have λ(α · A) = α · λ(A) for all α ∈ R+ and A ∈ Rn×n
+ , we also have λ


A/λ(A)


= 1 whenever λ(A) ≠ 0. It is

λ(A) ≠ 0 if and only if G(A) contains a nonempty cycle. In this case, the equality A⊗t
= λ(A)t ·


A/λ(A)

⊗t
implies that we

can indeed assume λ(A) = 1 without loss of generality when studying the sequence of max-algebraic matrix powers. We
will indeed assume λ(A) = 1 in the rest of the paper. It means that we avoid the case when λ(A) = 0. This case is trivial
because there are no critical nodes. Moreover, since there are no closed walks on G(A), there are no walks with length more
than n − 1, so A⊗n

= 0.
The following definition is standard.

Definition 2.18 (Irreducibility). A matrix A ∈ Rn×n
+ is called irreducible if G(A) is strongly connected, i.e., if for each i, j ∈ N

there exists a walk of nonzero weight whose starting node is i and end node is j.
A ∈ Rn×n

+ is called reducible if it is not irreducible.

Cohen et al. [8] first proved that the sequence of max-algebraic matrix powers of an irreducible matrix A with λ(A) = 1
is eventually periodic.

Definition 2.19 (Transient of Matrices). The least nonnegative t satisfying A⊗(p+t)
= λ(A)p · A⊗t for some p > 0 is called the

transient of A and denoted by T (A).

The transient of A depends not only on the nodes and edges in G(A), but also on the specific weights in A. It was studied
by several authors, including Hartmann and Arguelles [13], Bouillard and Gaujal [3], Soto y Koelemeijer [24], Akian et al.
[2, Section 7], and Charron-Bost et al. [7]. However, none of the upper bounds on the transient were generalizations of any
of the Boolean bounds of Theorem 2.11 (in the sense that the bounds of that theoremwould be immediately recoveredwhen
specializing these results to Boolean matrices). To see that T (A) depends also on the weights of A, consider

A =


1 ϵ
ϵ 1/e


,

and observe that the transient of (a(t)
2,2)t≥1 is equal to ⌈−2 log ϵ⌉ if ϵ < 1.
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In the present paper, we generalize all the bounds in Theorem 2.11 to the weighted case. We do this not by giving
bounds on the transient of A, but by giving bounds on the transients of the critical rows and columns of A. Let us give
the corresponding definition.

Definition 2.20 (Row and Column Transients). Let A ∈ Rn×n
+ . The least nonnegative t satisfying a(p+t)

k,i = λ(A)p ·a(t)
k,i for a fixed

k ∈ N , all i ∈ N and some p > 0 is called the transient of the kth row of A and denoted by Tk(A), or just Tk if the matrix is
clear from the context.

Similarly, the least nonnegative t satisfying a(p+t)
i,k = λ(A)p · a(t)

i,k for a fixed k ∈ N , all i ∈ N and some p > 0 is called the
transient of the kth column of A.

Remark 2.21. This definition makes sense also when A is reducible. However, in that case the transient is defined only for
some rows and columns. Below we are interested only in the case of critical rows and columns, for which the transients
always exist regardless of the irreducibility of A.

Remark 2.22. In the Boolean case, all rows and columns are critical, hence we are really generalizing the Boolean bounds.
We are motivated by a result of Nachtigall [16] who showed that the transient of critical rows and columns does not exceed
n2. Later, Sergeev and Schneider [21] conjectured that, in fact, this transient should not exceedWi(n). In particular, we prove
this conjecture.

The following is the first main result of the paper.

Main Theorem 1. Let A ∈ Rn×n
+ be irreducible and let k be a critical node. Denote by d the cyclicity of G(A), by H the component

of the critical graph Gc(A) containing k, and by |H| the number of nodes in H. The following quantities are upper bounds on the
transient of the kth row and the kth column:

(i) (Wielandt bound)Wi(n)
(ii) (Dulmage–Mendelsohn bound) (n − 2) · g(H) + |H|

(iii) (Schwarz bound) d · Wi
 n

d


+ (n mod d)

(iv) (Kim bound)
 n

d


− 2


· g(H) + min(n, |H| + (n mod d))

The first two bounds also hold in the case when A is reducible.

Remark 2.23. Denote by γ (Gc(A)) the least common multiple of the cyclicities of all strongly connected components of
Gc(A). This number is well-known to be the least eventual period of the sequence (A⊗t)t≥1 when A is irreducible (see
[8,5]). It is also the least eventual period of the sequence of submatrices of A⊗t extracted from the critical rows or the critical
columns (also in the reducible case). For an individual critical row or column, the least eventual period can be shown to be
equal to the cyclicity of the component of Gc(A) where the index of that row or column lies (see Remark 3.4).

Remark 2.24. As in the Boolean case, the bound of Schwarz (resp. Kim) is tighter than the bound ofWielandt (resp. Dulmage
andMendelsohn) when the corresponding component of G is imprimitive. Moreover, the bound ofWielandt is never tighter
than that of Dulmage and Mendelsohn when g(H) ≤ n − 1. Unlike for the unweighted graphs, the case g(H) = n is non-
trivial andwill be treated below. Likewise, the bound of Schwarz is never tighter than the bound of Kimwhen g(H)

d ≤
 n

d


−1,

but the case g(H)

d =
 n

d


has to be treated separately. Herewe prefer to deduce the bound of Kim from the bound of Dulmage

and Mendelsohn in the same way as the bound of Schwarz is derived from the bound of Wielandt (similar to the approach
of Shao and Li [23]).

Definition 2.25 (Factor Rank in Max Algebra). In max algebra, factor rank of A ∈ Rn×n
+ is the least number r such that (2.4)

holds for some vectors v1, w1, . . . , vr , wr ∈ Rn
+
.

In our next main result, we show that the results of Main Theorem 1 can be improved by means of factor rank, thus
obtaining a max-algebraic extension of Theorem 2.14.

Main Theorem 2. Let A ∈ Rn×n
+ be irreducible. Denote by d the cyclicity of G(A) and by r the factor rank of A. Let k be critical.

Denote by H the component of the critical graph Gc(A) containing k, and let h ≤ min(|H|, r) be the parameter defined below
in (7.4). The following upper bounds on the transient of the kth row and kth column hold:

(i) Wi (r) + 1;
(ii) (r − 2) · g(H) + h + 1.
(iii) d · Wi

 r
d


+ (r mod d) + 1;

(iv)
 r

d


− 2


· g(H) + min(r, h + (r mod d)) + 1.

The first two bounds apply to reducible matrices as well.
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Remark 2.26. While all parameters appearing in the bounds of Main Theorem 1 only depend on the unweighted digraphs
underlying G(A) and Gc(A), the factor rank r of Main Theorem 2 depends on the values of A, i.e. on the weights on G(A).

The next five sections of the paper contain the proofs of Main Theorems 1 and 2. That is, we will prove that Tk(A) for a
critical index k is less than any of the quantities in Main Theorems 1 and 2. Applying the result to the transposed matrix AT ,
we see that the bounds also hold for the transients of the columns.

The proofs do not use the results of Theorem 2.11 or Theorem 2.14 and hence, in particular, we give new proofs for those
classical results.

2.3. Visualization

In the end of this section, let us recall a result on diagonal matrix scaling, which we will use.
Let X be an n × n nonnegative diagonal matrix, i.e. a matrix whose diagonal entries are positive and whose off-diagonal

entries are zero. Consider the operation of diagonal similarity scaling A → X−1AX , applied to any A ∈ Rn×n
+ . It can be checked

that the diagonal similarity scaling preserves λ(A) and commutes with max-algebraic matrix powering: for B = X−1AX we
have λ(A) = λ(B) and B⊗t

= X−1A⊗tX . Hence, to analyze max-algebraic matrix powers we will use a particular ‘‘canonical’’
form that can be always reached by means of a diagonal similarity scaling.

Definition 2.27 (Visualization). A matrix A ∈ Rn×n
+ is called visualized if it has ai,j ≤ λ(A) for all i, j ∈ N . For a visualized

matrix, it also follows that ai,j = λ(A) for all critical edges (i, j) ∈ Ec .
Further if ai,j = λ(A) holds only for all critical edges (i, j) ∈ Ec , matrix A is called strictly visualized.

Remark 2.28. It is known that every nonnegative matrix with positive maximum geometric cycle mean can be brought to
a visualized form by means of a diagonal similarity scaling. Moreover, every nonnegative matrix can be brought to a strictly
visualized form [22]. Hence in our analysis of max-algebraic powers, we can assume without loss of generality that A is
visualized (and, moreover, strictly visualized), which we do in the rest of the paper. Since we also assume λ(A) = 1, it
means that all entries are between 0 and 1 and critical edges are exactly edges with weight 1.

An early use of visualization scaling (unrelated to max algebra) can be found in Fiedler and Pták [11], and the scaling was
studied in more detail in [22]. For a short survey on the use of visualization scaling in max algebra see [20]. Let us conclude
with the following observation concerning the visualization of max-algebraic powers. Recall that Gt denotes the tth power
of an arbitrary digraph G.

Lemma 2.29 (Cf. [6, Lemma 2.9], [19]). Let A ∈ Rn×n
+ and t ≥ 1.

(i) Gc(A⊗t) = (Gc(A))t ,
(ii) If A is visualized (or strictly visualized), then so is A⊗t .

3. Proof of Dulmage–Mendelsohn bound

In this section, we want to prove the second bound of Main Theorem 1. In fact, we first argue that Tk(A) ≤ n − 1 when
ak,k = λ(A), from which we get Tk(A) ≤ g(H)(n − 1) for H a component of the critical graph and k in a minimal cycle of H ,
and finally the general bound.

The proof splits into the following lemmas, all of them apply to any A ∈ Rn×n
+ and will be used again later. Without loss

of generality, we will assume in the proofs that λ(A) = 1 and A is visualized, that is all edges have weight at most 1 and all
critical edges have weight 1. (See Remark 2.28)

The first lemma gives a means to bound the transient of a row of the matrix. More specifically, it states that a row is
periodic as soon as its entries are equal to that of a higher matrix power. The proof is a straightforward calculation.

Lemma 3.1. Let k ∈ N. Further assume that there exist r < s such that a(r)
k,j = a(s)

k,j for all j ∈ N. Then Tk ≤ r.
In particular, Tk(A) ≤ m · Tk


A⊗m


for all m ≥ 1.

Proof. Set p = s − r and let j ∈ N . Then, for all t ≥ r:

a(t+p)
k,j = max

l∈N
a(s)
k,l · a(t+p−s)

l,j = max
l∈N

a(r)
k,l · a(t−r)

l,j = a(t)
k,j .

This concludes the proof. �

The next lemma shows that a stronger form of the Weighted Dulmage–Mendelsohn bound holds if k lies on a critical
cycle of length g(H). Its proof uses the fact that k lies on a critical cycle of length 1 in the digraph of thematrix power A⊗g(H).
Denote by Ak· the kth row of A.
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Lemma 3.2 (Nachtigall [16]). Let k be a critical node on a critical cycle of length ℓ. Then Tk ≤ (n − 1) · ℓ and ℓ is an eventual
period of A⊗t

k·

Proof. Set B = A⊗ℓ. Then bk,k = 1 and hence b(t)
k,j is non-decreasing with t . But since we assume λ(A) = 1, λ(B) = 1 and

supt∈N B⊗t
= maxn−1

t=1 B⊗t , so b(t)
k,j is constant for t ≥ n − 1, i.e. Tk(A⊗ℓ) ≤ n − 1.

Lemma 3.1 now concludes the proof. �

The following result enables us to use the bound of Lemma 3.2 for nodes that do not lie on a critical cycle of minimal
length. As usual, we assume that λ(A) = 1 and A is visualized. The proof makes heavy use of this assumption. It is closely
related to the circulant symmetries of the critical part of max-algebraic powers in the periodic regime, as described by
Butkovič and Sergeev [5, Section 8.3], [19].

Lemma 3.3. Let k and l be two indices of Nc(A), and suppose that there exists a walk from k to l, of length r and with all edges
critical.

(i) If t ≥ Tl(A), then A⊗(t+r)
k· = λ(A)r · A⊗t

l· .
(ii) Tk(A) ≤ Tl(A) + r.

Remark 3.4. Since none of the above lemmas assume the irreducibility of A, they imply the eventual periodicity of all rows
and columns with critical indices in the reducible case. Moreover, they show that the cyclicity γ (H) of a strongly connected
component H of Gc(A) is an eventual period for the A⊗t

k· for any k ∈ H . It is the least period because when A is strictly
visualized, a(t)

k,k takes the value 1 with least eventual period γ (H).

Proof of Lemma 3.3. Since A is assumed to be visualizedwith λ(A) = 1, the existence of thewalkwith critical edges exactly
means a(r)

k,l = 1.
Since each edge of Gc(A) belongs to a cycle of Gc(A), there is a walk from l to kwith critical edges. Let s ≥ 1 be its length.

We have a(s)
l,k = 1.

Thus, we have

a(t+r+s)
l,j ≥ a(s)

l,k · a(t+r)
k,j = a(t+r)

k,j ≥ a(r)
k,l · a(t)

l,j = a(t)
l,j

for any t .
Iterating the inequality, we see that

a(t+p(r+s))
l,j ≥ a(t+r)

k,j ≥ a(t)
l,j (3.1)

for all t and p.
If p is an eventual period of a(t)

l,j and t ≥ Tl, the first and the last entry of (3.1) are equal, so all inequalities of (3.1) are
equalities.

It means that the sequences

a(t)
k,j


t≥Tl+r

,

a(t−r)
l,j


t≥Tl+r

,

a(t)
l,j


t≥Tl

are identical. Since the last sequence is periodic,

both parts of the lemma are proved. �

Proof of Dulmage–Mendelsohn bound. Let C be a cycle in H of length ℓ(C) = g(H). By Lemma 3.2, Tk ≤ (n− 1) · g(H) for
all nodes k of C .

Let now k be any node in H . There exist walks in H from k to C of length at most |H| − g(H). Application of Lemma 3.3
now concludes the proof. �

4. Proof of Kim’s bound

Set B = A⊗d. The cyclicity classes of G(A) are the strongly connected components of G(B), and G(B) is completely
reducible, i.e. it has no edge between two different strongly connected components.

It means that, up to reordering the indices, B is block-diagonal. As in Kim [14], we want to apply the previous bound to
the smallest blocks. Then, we will get the general bound thanks to Lemmas 3.1–3.3.

Obviously, any cycle in G(A) has to go through every cyclicity class. Thus, d divides g(H) and if k belongs to H then the
girth of its strongly connected components in Gc(B) is at most g(H)/d.

Call a cyclicity class of G(A) small if it contains the minimal number of nodes amongst cyclicity classes. Let m be the
number of nodes in any small class.

We apply the Dulmage–Mendelsohn bound to the nodes of small classes and then use Lemma 3.3 to extend it to all other
critical nodes.

We distinguish the cases (A)m ≤ ⌊n/d⌋ − 1 and (B)m = ⌊n/d⌋. Note thatm ≥ ⌊n/d⌋ + 1 is not possible.
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In case (B), there are at least d − (n mod d) small classes because otherwise the sum of sizes of cyclicity classes C would
satisfy

n =


C

|C | >

d − (n mod d)


· ⌊n/d⌋ + (n mod d) ·


⌊n/d⌋ + 1


= d · ⌊n/d⌋ + (n mod d) = n, (4.1)

a contradiction. Hence every critical node is connected to a small class by a path consisting of critical edges of length at most
(n mod d).

Let us first prove that

Tk ≤

⌊n/d⌋ − 2


· g(H) + n. (4.2)

In both cases (A) and (B), by the max-algebraic extension of Dulmage and Mendelsohn’s bound, we have Tk(B) ≤

(m − 2) · g(H)/d + m for each critical node k of H in a small class. Lemma 3.1 then implies Tk(A) ≤ (m − 2) · g(H) + d · m
for all critical nodes k of H in small classes.

In case (A), a crude estimation for all critical k in small classes is

Tk ≤ (m − 1) · g(H) + d · m ≤

⌊n/d⌋ − 2


· g(H) + n − d.

Because every critical node has paths consisting of critical edges to a small class of length at most d − 1, (4.2) follows from
Lemma 3.3 in case (A).

In case (B), there is a path of length at most (n mod d) consisting of critical edges to a small class. Hence, again by
Lemma 3.3,

Tk ≤

⌊n/d⌋ − 2


· g(H) + d · ⌊n/d⌋ + (n mod d)

=

⌊n/d⌋ − 2


· g(H) + n.

This concludes the proof of (4.2).
It remains to prove

Tk(A) ≤

⌊n/d⌋ − 2


· g(H) + |H| + (n mod d). (4.3)

This is based on the following lemma, which we prove using the same case distinction.

Lemma 4.1. If k is in a critical closed walk C, then

Tk(A) ≤ (⌊n/d⌋ − 1)ℓ(C) + (n mod d), (4.4)

Proof. Let us first notice that k is in a critical closed walk of A⊗d with length ℓ(C)/d.
If k is in a small class, then Tk(A⊗d) ≤ (m − 1)ℓ(C)/d by Lemma 3.2, thus Tk(A) ≤ (m − 1)ℓ(C) by Lemma 3.1.
If k is in C but not necessarily in a small class, we distinguish between cases (A) and (B) and apply Lemma 3.3. In case (A),

m ≤ ⌊n/d⌋ − 1. Recall that C contains representatives of all cyclicity classes (and the small classes, too), and therefore,
each node k ∈ C can be connected to a node of C in a small class by a subpath of C , with length at most ℓ(C) − 1. Applying
Lemma 3.3 we get

Tk(A) ≤ (⌊n/d⌋ − 2)ℓ(C) + ℓ(C) − 1 = (⌊n/d⌋ − 1)ℓ(C) − 1

which implies (4.4). In case (B), m = ⌊n/d⌋ and there is a path from k to a node of C in a small class with length at most
(n mod d), so we get exactly (4.4). �

To conclude the proof of (4.3), we apply Lemma 4.1 to a cycle C with length g(H) and notice that for any k ∈ H , there is
a critical path from k to C with length at most |H| − g(H). By Lemma 3.3, it implies

Tk(A) ≤ (⌊n/d⌋ − 1)g(H) + (n mod d) + |H| − g(H)

= (⌊n/d⌋ − 2)g(H) + |H| + (n mod d)

and (4.3) is proved.

5. Proof of Wielandt’s bound

If g(H) ≤ n − 1, then Wielandt’s bound follows from the Dulmage–Mendelsohn bound. It remains to treat the case that
g(H) = n, i.e. Gc(A) is a Hamiltonian cycle. We therefore prove a result on cycle removal and insertion (Theorem 5.2) which
implies the Wielandt bound for matrices with a critical Hamiltonian cycle (Corollary 5.3).
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5.1. Cycle replacement with a Hamiltonian cycle

We recall the following elementary application of the pigeonhole principle.

Lemma 5.1. Let x1, . . . , xn be integers. There exists a nonempty subset I of {1, . . . , n} such that


i∈I xi is a multiple of n.

Proof. Either one of the n sums
k

i=1 xi with 1 ≤ k ≤ n is a multiple of n, or two of these sums are in the same congruence
class modulo n. �

We will use this lemma to prove:

Theorem 5.2. Let G be a digraph with n nodes. For any Hamiltonian cycle CH in G and any walk W, there is a walk V that has
the same start and end nodes as W, is formed by removing cycles from W and possibly inserting copies of CH , and has a length
satisfying (n − 1)2 + 1 ≤ ℓ(V ) ≤ (n − 1)2 + n and ℓ(V ) ≡ ℓ(W )(mod n).

Corollary 5.3. If A ∈ Rn×n
+ has a critical Hamiltonian cycle and λ(A) = 1, then the transient of A is at most Wi(n).

Proof of Theorem 5.2. W can be decomposed into a path P and a collection C of cycles. Note that P is empty when the start
and end nodes ofW are the same.

Let B be a result of recursively removing from C sets of cycles whose combined length is a multiple of n. By Lemma 5.1,
|B| ≤ n − 1. Also, ℓ(C) ≤ n − 1 for all C ∈ B.

Let us build the walk V as follows. If P intersects all cycles of B (Case (C)), then we successively insert all such cycles in
P . Otherwise (Case (D)), we first insert CH into P , getting P̃ and then insert all cycles of B into P̃ .

In case (C), we have

ℓ(V ) = ℓ(P) +


α∈R

ℓ(Cα)

≤ (n − 1) + (n − 1) · (n − 1)
< (n − 1)2 + n.

In case (D), there exists some Ĉ ∈ B such that ℓ(P) + ℓ(Ĉ) ≤ n − 1, so that

ℓ(V ) = ℓ(CH) + ℓ(P) + ℓ(Ĉ) +


C∈B
C≠Ĉ

ℓ(C)

≤ n + (n − 1) + (n − 1) · (n − 2)
= (n − 1)2 + n.

Moreover, ℓ(V ) ≡ ℓ(W )(mod n) by construction in both cases.
This concludes the proof, because if V is too short, we just insert copies of CH into it. �

5.2. Proof of Wielandt’s bound with a critical Hamiltonian cycle

In this section, we prove Corollary 5.3. Because the critical graph contains a Hamiltonian cycle, it is strongly connected
and n is an eventual period of A⊗t .

Let i, j ∈ N and let t ≥ Wi(n). We show that a(t)
i,j = a(s(t))

i,j where s(t) = Wi(n)+

(t−Wi(n)) mod n


. Because s(t) = s(t ′)

whenever t ≡ t ′(mod n), this suffices for the proof.
If t = s(t) the result is obvious. Otherwise, letW be a maximumweight walk of length t from i to j, i.e. p(W ) = a(t)

i,j . We
apply Theorem 5.2 to walk W and the critical Hamiltonian cycle CH . By Theorem 5.2, there is a walk V from i to j, obtained
fromW by deleting some cycles and possible inserting copies of C , with length satisfyingWi(n) ≤ ℓ(V ) ≤ Wi(n)+n−1 and
ℓ(V ) ≡ ℓ(W )(mod n). In other words, ℓ(V ) = s(t). Because we assume λ(A) = 1, the weight of V satisfies p(V ) ≥ p(W )
and hence

a(s(t))
i,j ≥ p(V ) ≥ p(W ) = a(t)

i,j . (5.1)

Since t ≥ Wi(n) and s(t) ≡ t(mod n), there exists some r ≥ 0 such that t − s(t) = r · n. Hence

a(t)
i,j ≥ a(s(t))

i,j · a(r·n)
j,j = a(s(t))

i,j (5.2)

because a(n)
j,j = 1. Combination of (5.1) and (5.2) concludes the proof.

Remark 5.4. To our knowledge, the results of this section are new. However, let us remark that themethod of cycle replace-
ment using Lemma 5.1 was invented by Hartmann and Arguelles [13], who also used it to derive (less precise) transience
bounds for sequences of optimal walks.
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6. Proof of Schwarz’s bound

Schwarz’s bound is derived from Wielandt’s bound as Kim’s bound is derived from Dulmage–Mendelsohn’s bound in
Section 4.

Again, call a cyclicity class of G(A) small if it contains the minimal number of nodes amongst cyclicity classes. Let m be
the number of nodes in any small class and set B = A⊗d.

For each critical node k in a small cyclicity class, we have Tk(B) ≤ Wi(m) byWielandt’s bound. Lemma 3.1 hence implies
Tk(A) ≤ d · Wi(m) for all critical nodes k in small classes.

We distinguish the cases (A)m ≤ ⌊n/d⌋ − 1 and (B)m = ⌊n/d⌋. Note thatm ≥ ⌊n/d⌋ + 1 is not possible.
In case (A), a crude estimation for all critical k in small classes is

Tk ≤ d · Wi(m) ≤ d · Wi

⌊n/d⌋


− d.

Observe that each critical node can be connected to a small class, by a path of length at most d−1 consisting of critical edges
only. So in case (A), the theorem just follows from Lemma 3.3.

In case (B), there are at least d − (n mod d) small classes because otherwise (4.1) yields a contradiction. In this case,
each critical node can be connected to a node from a small class by a path consisting only of critical edges, of length at most
(n mod d). Hence, by Lemma 3.3,

Tk ≤ d · Wi

⌊n/d⌋


+ (n mod d).

This concludes the proof.

7. Proof of the bounds involving the factor rank

In this section, we proveMain Theorem 2. Let vα, wα ∈ Rn
+
, for α = 1, . . . , r , be the vectors in factor rank representation

(2.4). Further, let V and W be the n × r matrices whose columns are vectors vα and wα for α = 1, . . . , r , and consider the
(n + r) × (n + r) matrix Z defined by

Z =


0n×n V
W T 0r×r


, (7.1)

Then we have

Z⊗2
=


A 0n×r

0r×n B


, (7.2)

where the r × r matrix B is given by

bα,β =

n
i=1

wα,i · vβ,i, for α, β = 1, . . . , r. (7.3)

We will apply the bounds of Main Theorem 1 to the critical nodes of B and transfer the result to the critical nodes of A,
thanks to the following observation.

Lemma 7.1. If (k, n + β) is an edge of Gc(Z), then Tk(A) ≤ Tβ(B) + 1.

Proof. By Eq. (7.2) and Lemma 3.1, Tn+β(Z) ≤ 2Tn+β(Z⊗2) ≤ 2Tβ(B), thus Tk(Z) ≤ 2Tβ(B) + 1 by Lemma 3.3. But Eq. (7.2)
now implies Tk(A) ≤ ⌈Tk(Z)/2⌉ ≤ ⌈(2Tβ(B) + 1)/2⌉ = Tβ(B) + 1. �

To use this lemma, we need to study the links between Gc(Z), Gc(A) and Gc(B).
The next observation is useful for the case of Kim’s and Schwarz’s bounds, where A is assumed to be irreducible.

Lemma 7.2. If A is irreducible, then so are Z and B. Moreover G(B) and G(A) have the same cyclicity.

Proof. As A is irreducible, there exists a walk in G(Z⊗2), and hence in G(Z), between every pair of nodes in {1, . . . , n}. None
of the vectors vα, wα for α = 1, . . . , r is zero by the minimality of r , i.e. every node in {n + 1, . . . , n + r} has an incoming
and an outgoing neighbor in {1, . . . , n}. Hence there exists a walk between every pair of nodes in G(Z).

By Theorem2.7,G(Z⊗2) has atmost 2 strongly connected componentswith the same cyclicity. By Eq. (7.2), it has at least 2
components, one of them is G(A) and the second one is isomorphic to G(B), hence these are the two components given by
Theorem 2.7. In particular, B is irreducible and the graphs of A and B have the same cyclicity. �
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Fig. 1. A walk in G(Z).

By construction, G(Z) is a bipartite graph, so every walk in G(Z) alternates between nodes in {1, . . . , n} and nodes in
{n + 1, . . . , n + r}. Fig. 1 depicts an example of a walk in G(Z).

As all closed walks in G(Z) are of even length, the cyclicity of any component of Gc(Z) is even, i.e. it is divisible by two.
Hence each component G of Gc(Z) splits into two components of (Gc(Z))2 such that the (disjoint) union of their node sets
is exactly the node set of G (e.g., apply Theorem 2.7 with k = 2 and even σ ). Following [6] we call these two components
related. For a component H of (Gc(Z))2, the related component will be denoted by H ′.

Each closed walk of G(Z) and, therefore, each component of Gc(Z) contains nodes both from {1, . . . , n} and from
{n+1, . . . , n+ r}. Hence, ifH andH ′ is a pair of related components of (Gc(Z))2 then one of them (say,H) contains a node in
{1, . . . , n} and the other (H ′) contains a node in {n + 1, . . . , n + r}. Since there are no edges between the two components
of G(Z⊗2),H is a subgraph of G(A) and H ′ is a subgraph of G(B). Further as (Gc(Z))2 = Gc(Z⊗2) (by Lemma 2.29), H and H ′

are components of Gc(Z⊗2). As Gc(Z⊗2) consists of only such components and the cycles not belonging to such components
have a strictly smaller geometric mean, it follows thatH is a component of Gc(A),H ′ is a component of Gc(B) and, moreover,
Gc(A) and Gc(B) do not have components that are not formed this way.3

Lemma 7.3. Let H be a component of Gc(A).

(i) g(H) = g(H ′).
(ii) If k belongs to a closed walk C on H, then there are edges (n + α, k) and (k, n + β) ∈ Gc(Z), such that α and β belong to a

closed walk C̃ in H ′, with ℓ(C) = ℓ(C ′).

Proof. Take a closed walk C on H . Each edge of C results from a path of Gc(Z) of length 2, and inserting this path in C we
obtain a closed walk of Gc(Z) (see Fig. 2, left). This walk contains nodes from both H and H ′. In Z⊗2 it splits in two closed
walks of Gc(Z⊗2) of the same length (see Fig. 2, right). One of these closed walks is C and the other is a closed walk C̃ of H ′

(since H and H ′ are isolated in Gc(Z⊗2)).
This implies g(H ′) ≤ g(H), and the reverse inequality follows by symmetry, hence part (i).4 It also follows that each

node of the original cycle in H has neighbors belonging to a closed walk in H ′. Since each node of H lies on a cycle, we have
part (ii). �

Define

h = min(|H|, |H ′
|). (7.4)

We are ready for the proof of Main Theorem 2.

Proof of Main Theorem 2. Let Z and B be the matrices defined in (7.1) and (7.3). Let k be an index in H (belonging to
{1, . . . , n}). By Lemma 7.3 part (ii), there is an edge of Gc(Z) connecting it to some node n + β , for β ∈ {1, . . . , r}, which
belongs to H ′. For each bound of Main Theorem 1, an application of Lemma 7.1 yields a version of the corresponding bound
of Main Theorem 2 on Tk, where d is the cyclicity of B, and we have g(H ′) instead of g(H) and |H ′

| instead of h.
However, g(H ′) = g(H) and G(B) has the same cyclicity as G(A) (when A and hence also B are irreducible), so it only

remains to explain why we have h (and not |H ′
|), in the factor rank versions of the bounds of Dulmage andMendelsohn, and

Kim. The following argument accounts for both cases (set d = 1 for Dulmage and Mendelsohn’s bound).
First, let k belong to a cycle C with length g(H). By Lemma 7.3 part (i), β belongs to a closed walk C̃ with length

g(H) = g(H ′) in H ′, so we can apply Lemma 4.1 to β and get Tβ(B) ≤ g(H)(⌊r/d⌋ − 1) + (r mod d) (for the bound of
Kim), or apply Lemma 3.2 and get Tβ(B) ≤ g(H)(r − 1) (for the bound of Dulmage and Mendelsohn). By Lemma 7.1, we get

Tk(A) ≤ g(H)(⌊r/d⌋ − 1) + (r mod d) + 1.

3 In fact, we also have λ(A) = λ(B) = λ(Z⊗2) = (λ(Z))2 .
4 A similar argument shows that for any strongly connected graph G, all components of Gk have the same girth.
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Fig. 2. Correspondence between closed walks of G(Z), G(A) and G(B).

Second, if k does not belong to such a cycle, we can apply Lemma 3.3, because k is connected to C by a path onH of length
at most |H| − g(H). Hence we obtain

Tk(A) ≤ g(H)(⌊r/d⌋ − 2) + (r mod d) + |H| + 1

and the factor rank versions of Kim’s and Dulmage–Mendelsohn’s bounds. The proof is complete. �

8. On the precision of the bounds

Since the bounds of Main Theorem 1 are extensions of the bounds on Boolean matrices and the latter are known to be
exact (see for instance [15] and the references therein), so are the bounds of Main Theorem 1. However, the max-algebraic
case is richer, and some natural questions arise. A general question is when these bounds are attained. To begin with, can
these bounds be attained by the matrices whose critical graph does not attain the corresponding ‘‘Boolean’’ bound, or can
the bounds be attained when not all the nodes are critical.

The easiest way to produce max-plus examples from Boolean ones is to use the semigroup morphism φ0 : Rn×n
+ → Bn×n

that maps A to its pattern B = φ0(A) such that bi,j = 0 if and only if ai,j = 0 and bi,j = 1 otherwise. Since it is a morphism,
we have:

Lemma 8.1. Let A, B ∈ Rn×n
+ have the same pattern and let A be Boolean. Then Tk(A) ≤ Tk(B) for all k = 1, . . . , n.

To illustrate the use of Lemma 8.1, consider an example from the work of Schwarz [18], attaining the corresponding
bound. It is a strongly connected graph consisting of two cycles, of lengths 6 and 4, displayed in the left part of Fig. 3. The
greatest transient of a rowof the associated Booleanmatrix is T4(A) = 11,which is equal to Schwarz’s bound of Theorem2.11
with n = 7 and d = 2. Now, let B be a matrix with pattern A such that node 4 is critical. On one hand, Main Theorem 1
ensures that T4(B) ≤ 11. On the other hand, by Lemma 8.1, we have T4(B) ≥ T4(A) = 11. Thus Schwarz’s bound is attained
by T4(B). In particular, consider any nonnegative matrix B where all entries of the bigger cycle are equal to 1, and the two
remaining nonzero entries are less than or equal to 1. The associated digraphs of A and B are displayed in Fig. 3. It can be
checked by direct computation that T4(B) = 11. More examples of this kind can be constructed using the work of Shao and
Li [23]. Observe that not all the nodes of the graph on the right-hand side of Fig. 3 are critical, but it does attain the greatest
possible transient of critical rows, because node 4 is critical.

Another way to produce examples is to use the map φ1 : Rn×n
+ → Bn×n that maps A to B = φ1(A) such that bi,j = 1 if and

only if ai,j = 1 and bi,j = 0 otherwise. It is not a morphism on Rn×n
+ but it is not difficult to check (generalizing Lemma 2.29)

that it is a morphism on the following semigroups of Rn×n
+ , defined for each subset X of N:

SX =

A ∈ Rn×n

+
| λ(A) = 1, A is strictly visualized, Nc(A) = X


For anymatrix A in SX the critical edges have weight 1, so that Gc(A) = Gc(φ1(A)). Obviously, if λ(A) = 1 and A is strictly

visualized, A ∈ SNc (A), so that any such matrix satisfies Tk(A) ≥ Tk (φ1(A)). It extends to general matrices in the following
way.
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Fig. 3. Schwarz’s example (left) and its max-algebraic version (right).

For A ∈ Rn×n
+ , let AC be the critical matrix of A, with entries

aCij =


1, if (i, j) ∈ Ec(A),
0, otherwise.

Lemma 8.2 (Cf. [6, Corollary 2.9]). Tk(AC ) ≤ Tk(A) for all k ∈ Nc(A).

Lemma 8.2 shows that if an unweighted digraph Gc on n nodes attains a given bound for some Tk, then any n × nmatrix
with entries in [0, 1], whose critical graph is Gc , attains it as well (for the same k). In the following example, the first matrix
attains Wielandt’s bound (T5(A) = 17) second matrix attains Dulmage and Mendelsohn’s bound (T4(B) = 14), since their
critical graphs attain the corresponding Boolean bounds.

A =


0 1 0.1 0.2 0
0 0 1 0 0.3
0 0.4 0 1 0
1 0 0.5 0 1
1 0 0 0 0.9

 , B =


0 1 0.4 0.5 0
0.1 0 1 0 0
1 0 0.2 1 0.7
0 0.9 0 0 1
1 0.2 0.6 0.7 0

 .

We conclude that the two lemmas provide us with some classes of matrices attaining the bounds of Main Theorem 1.
However, this characterization is far from being complete and leaves vast possibilities of research.
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